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Finite-element solution of the Schrodinger equation for the helium ground state
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The finite-element method has been used to obtain numerical solutions to the Schrodinger equa-
tion for the ground state of the helium atom. In contrast to the globally defined trial functions of
the standard variational approach, the finite-element algorithm employs locally defined interpola-
tion functions to approximate the unknown wave function. The calculation reported herein used a
three-dimensional grid containing nine nodal points along the radial coordinates of the two electrons
and four nodal points along the direction corresponding to the cosine of the interelectronic angle.
This produced an energy of —2.9032 a.u. , which lies 0.017% above the Frankowski-Pekeris value.
The values of (r"), for n = —2, —1, 1, and 2, are closer to those of Frankowski and Pekeris than
from all of the variational calculations with the exception of the calculation performed by Weiss,
whose energy and ( r" ) values are comparable to those of the finite-element computation.

I. INTRODUCTION II. REVIEW OF SOME PREVIOUS CALCULATIONS

The finite-element method is a numerical algorithm
that uses local interpolation methods to solve second-
order differential equations describing boundary-value
problems. ' Initially used to solve problems of stress
analysis, the finite-element method has been more recently
applied to problems in quantum mechanics and chemical
dynamics. This paper describes a finite-element calcu-
lation of the helium ground-state energy and wave func-
tion; by comparing with the values obtained by Pekeris
and collaborators, our set of results are. seen to be among
the most accurate available, particularly the finite-element
approximation to the helium wave function.

The lack of an exact analytic solution to the
Schrodinger equation for the two-electron atom combined
with the relative simplicity of the system has made helium
the target of many approximate calculations, both varia-
tional and numerical. ' In Sec. II, we tabulate the re-
sults of a number of these calculations so that we can
compare their accuracy with that obtained by use of finite
elements. A common feature of these calculations is a
higher error in the non-Hamiltonian expectation values
than in the energy, an indication that the approximate
wave functions are less accurate than one might originally
assume from the well-converged energies. This behavior
provides the motivation for applying the finite-element
technique to the helium problem: A local interpolation
scheme should be superior to (global) variational ap-
proaches in yielding an accurate wave function because of
the ease by which local improvements to the approximate
wave function can be introduced in the finite-element
method. In principle, therefore, it is expected that this al-
gorithm may provide new insights into the structure of
molecules and atoms.

In spherical coordinates, the spin-independent, nonrela-
tivistic Schrodinger equation for the two electrons (denot-
ed 1 and 2) in the helium atom is
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Here 8I2 is the interelectronic angle, related to the spheri-
cal angles of the two electrons by

cosOlp =cosOlcosO2+ sinOlsinOpcos( p l
—p2) (2.3)

In general, the wave function is dependent on all six
coordinates and Eq. (2.1) is nonseparable. However, in
1933, Breit showed that the Schrodinger equation is separ-
able if the coordinate system is rotated such that the z
axis is aligned with one of the radius vectors. " The in-
terelectronic angle is now identical to the azimuthal angle.
In this new coordinate system, the wave function can be
written as a sum of products of two functions,

e(rl r2) yf~(rl r2 O12)+'(4 O (2.4)

where f; depends on the two radial coordinates and the in-
terelectronic angle, and u; depends on the three Euler an-
gles which uniquely define the rotation. The angular
momentum operator L, of which the wave function is an
eigenstate, is independent of Olz and the radial coordi-
nates. Expressing L in terms of the Euler angles, one
can show" that the u; must satisfy the equation for a
symmetric top:

+cotO'
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(2.5)
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The solutions of Eq. (2.5) are known; for the particular case l =0, u; must be constant. Thus, for any s state, the wave
function can depend only on r&, r2, and Oiz. Expressing the kinetic energy operators in Eq. (2.1) in the new coordinates
and requiring that the total s-state wave function g be independent of the Euler angles, one obtains a three-variable
Schrodinger equation for g=f:
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(2.6)

This equation is not solvable analytically and one seeks
to construct an approximate solution. Since the spatial
portion of the s-state multiplies a singlet spin state, any
approximate wave function g, like the exact solution g,
must be symmetric with respect to electron exchange:

~12 P(rl 2 ~12) 8 1 r2 ~12) (2.7)

Substituting P into Eq. (2.6) yields an approximate energy
E via

(2.8)

where I is the total Hamiltonian from (2.6). The min-
max principle guarantees that E is an upper bound to the
exact energy E. By introducing variational parameters a;
into g, one can minimize E with respect to each a;, there-

by systematically lowering the approximate energy and
approaching the exact limit.

The classic work on the helium ground state is the set
of extensive calculations of Frankowski and Pekeris. '~

Using a 246-term trial function, they obtained an upper
bound to the energy of the helium ground state of
—2.903724353770326 a.u. Correcting the Pekeris ioni-
zation potential for mass polarization, relativistic effects,
and the Lamb shift, this value agrees with the measured
ionization potential of helium within the experimental er-
ror. ' (A recent variational calculations by Freund et al.
has lowered the upper bound to
—2.903 724 353 770 340. '

)

(5@i(a—Z)
i 5@) (2.9)

the error in E is of order (5$) . This result holds only for
the expectation value of the Hamiltonian, which is an
eigen operator for the wave function; the error in (r") is
linear in 5$. Hence, as is well known, the energy is an in-
sensitive criterion for judging the accuracy of the wave
function. The error in the other expectation values is a
better indication of the accuracy of the wave function.

Because the error in the contributions from the kinetic
energy and potential energy tend to cancel each other, one

It is clear that a calculation of the magnitude of Pekeris
is unfeasible for multielectron systems since the presence
of even one additional electron doubles the number of
Hylleraas coordinates. ' Hence there is strong motivation
to construct simpler electronic wave functions that still
yield energies accurate to one part in 10 or better. Table
I lists the values for the helium ground state obtained
with various variational wave functions. In general, the
error in the expectation values calculated with the trial
wave functions is consistently higher than the error of the
approximate energies as noted above. This discrepancy is
not a surprising result: it is a direct consequence of the
variational principle. If we consider a trial wave function

f=f+5$, where the error 5f in the trial wave function
is orthogonal to g, then the approximate energy E is given

by

%ave function

TABLE I. Values of energy and (r").
Reference (r') Energy

Frankowski-Pekeris
Weiss

(35-term configuration interaction)
Green et al.

(Hylleraas correction)
Stuart-Martsen

(6 term configuration interaction)
Roothaan et OI.

(Hartree-Fock)
Shustek-Kreiger

(Ritz)
Shustek-Kreiger

(Delves)
Shustek-Kreiger

(Aranoff-Percus)
Hawk-Hardcastle

(Finite difference)
Finite elements

12
17

13

15

14

19

19

19

20

12.035 3.3766 1.8589 2.3870 —2.90372
12.037 3.3764 1.8587 2.3843 —2.9032

12.025 3.3754 1.8592 2.3871 —2.9026

12.043 3.3784 1.8574 2.3787 —2.9015

11.991 3.3744 1.8544 2.3696 —2.8617

11.391 3.3750 1.777 2.1070

11.953 3.3750 1.8462 2.3392

3.3750 1.8478 2.3506

11.132 3.3830 1.8566 2.3812 —2.9036

12.034 3.3766 1.8586 2.3827 —2.9032
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can actually lower the energy by introducing a variational
parameter without an overall improvement in the approxi-
mate wave function. To elucidate this last remark, recall
that all of the cited variational calculations employ glo-
bally defined basis sets. Because the approximate energy
is strongly dependent on the behavior of g near the origin,
any trial wave function which simulates the exact wave
function for small r will give a good value for E, even
through the large-r behavior may be relatively poor. It is
not possible to improve the wave function near the origin
without affecting the large-r behavior; this latter effect
does not necessarily have to be improvement. In fact, an
examination of the relative magnitude of the error in (r")
from Table I suggests the energy may be lowered at the
expense of the accuracy of the wave function in the large-
r region.

These observations provide a strong argument in sup-
port of a calculation which uses a local basis set. One
procedure which employs local interpolation is the finite
element method. In this procedure, the domain of the in-
dependent variables is divided into a set of nonoverlap-

ping subdomains or elements. In each element, the un-
known function is approximated by a simple interpolating
function, generally a product of low-order polynomials in
each of the independent variables. Thus, when applied to
the helium ground state Schrodinger equation, each piece
of the unknown wave function is approximated by a sim-
ple polynomial. As the number of elements is systemati-
cally increased, the accuracy of the approximation in-
creases, and both the resultant eigenvalue and eigenvector
will converge to the exact energy and wave function.
Verification that this approximate wave function is in fact
converging will be a reduction in the relative error in the
expectation values. We anticipate that the error in the ex-
pectation values of non-Hamiltonian operators will be
comparable to the error in the energy.

III. THE FINITE-ELEMENT METHOD

The finite-element method solves the variational
equivalent of a second-order differential equation which
for the helium atom takes the form [from (2.6)]

+ + 2+21 85$ B1( 1 85$ BQ 1 1 1 B5$ B1(

2 Br, Br, 2 Br2 Brz 2 r~ pz~ 8 cos8 5 cos8

2 1 22+ E1t r &r2—dr&dr2 dcos8=0, (3.1)

where 8 hereafter refers to the interelectronic angle. In
order to evaluate (3.1) numerically, the infinite volume of
coordinate space spanned by r], r2, and cosO was made
finite by truncation, i.e., r] and r2 were each limited to
the domain [0, r, ]. The wave function 1(t was set equal to
zero for r ~ r, . The truncated domain was then discre-
tized into small rectangular parallelapipedal elements by
the placement of nodes (Fig. 1). It is an advantage of this
algorithm that the size of the elements may vary, since it
is desirable to use a finer discretization in the region of
small r where the potential is strong.

r'i =Xo+A X

e er2=3'o+hy3' ~

cosO=zo+ h,'z,
(3.2)

In each volume element e, a local coordinate system
was introduced whose axes x, y, and z are parallel to the
global axes r&, rz, and cos8 (Fig. 2). The range of x, y,
and z is (0,1) in each element and the local representation
of the eight corner nodes are (0,0,0), (0,0, 1), (0,1,0), (0,1,1),
(1,0,0), (1,0,1), (1,1,0), and (1,1,1). The two sets of coordi-
nates are simply related by

(O, i, t)

(0, l, O)

(O, O, I) (I,O, I )

FIG, 1. Discretization of the continuum by the placement of
nodes.

(O, O, O)

FIG. 2. Local coordinates (x,y, z) of an element.
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where xo, yo, and zo are the values of r ~, r2, and cosO at
the node corresponding to (0,0,0) in element e and h„', h~,
and h,' are the lengths of the three sides of the element.

The integration over the original volume of configura-
tion space is replaced by the sum over the volumes of the
individual elements

1.0

0.8

f dr
& fdr2 fdcos8~+h„'h~h, 'fdx f dy fdz . (3.3) 0.4

Similarly, partial derivatives with respect to the global
coordinates. are expressible as partial derivatives with
respect to local coordinates:

0.2

0.0

a
Bp2

a
8 cosO g Bz

(3.4)

-0.2
0.4 0.8

FIG. 3. Cubic Hermite polynomials.

0'(x y z) =O'Ikk (x)dj(y)Pk'(z) . (3.5)

(Summation over repeated indices is implicit here and in
the following equations; summation over the elements will
be denoted explicitly by g. ) The explicit form of these
polynomials is

Pi(x)=1 —3x +2x

$2(x)=h„'(x —2x +x ),
$3(x)= 3x —2x

Pq(x)=h„'(x —x ) .

(3.6)

Using Eqs. (3.2), (3.3), .and (3.4), the kinetic-energy
operator and the Coulomb potential can be written entire-
ly in terms of the local coordinates. In order to express
the wave function in element e, viz. g~, in terms of the lo-
cal coordinates, we expand it in a basis set which is a
product of cubic hermite polynomials in x, y, and z:

g~fijk(Hijk, lmn E+ijk, lmn

)firn&

=0
~ (3.7)

where

These functions (shown in Fig. 3 for h„'=1) are defined
such that the 64 unknown expansion coefficients i','jk cor-
respond to the value of the wave function and (seven)
combinations of the first partial derivatives at the eight
notes of the element. To illustrate this, we look at two ex-
amples: g»&, the value of g(x,y,z) at the node (0,0,0),
multiplies Pi(x)Pi(y)Pi(z), a product which has the value
1 at (0,0,0) and vanishes at all other nodes; similarly f234
is the value of i) PIBxBz at the node (0,1,1) and the corre-
sponding function Pz(x)$3(y)$4(z) has the value 1 at
(O, l, l). (The prime on P; indicates a derivative with
respect to the appropriate argument. )

Using the local representation of the operators and sub-
stituting Eq. (3.6) into (3.1), we obtain

~i'jk, i~„=2, f f f pi(x)pj(y)pk(z)p'i(x)p (y)p„(z)(xo+x) (yo+y) dx dy dz

h'h'
+—

g f f f y;(x)yj (y)yk(z)yi(x)y~(y)yg( )z( x+ox)'(yo+y)'dx dy dz
hy'

I eI e

+—,f f f i';(x)p, (y)batik(z)itii(x)i'~(y)p. '(z)[(xo+x) +(yo+y) ]dx dy dz
h,'

T

+h„'h'h, ' f f f p;(x)p (y)pk(z)pi(x)p~(y)pj(z) —2(xo+x) (yo+y) —2(xo+x)(yo+y)

(x o +x)'(y 0+y)z
[(xo+x)'+(yo+y)' —2(xQ+x)(yo+y)(zo+z)]' '

(3.8a)

Uijk i~„=h„'h~h; f f f p;(x)pj(y)pk(z)pi(x)p~(y)p„(z)(xo+x) (yo+y) dx dy dz . (3.8b)
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Equation (3.7) can now be expressed in simple matrix no-
tation as

/

gee(H E—U)e =0 (3.9) ,

where H' and U' denote 64X64 local matrices for ele-
ment e, and %' is a (column) vector of order 64 containing
the unknown coefficients corresponding to the same ele-
ment.

The local matrices U' and H' are symmetric and con-
tain no unknown quantities. Except for the element-
dependent constants, the matrix elements are identical for
every element. With the exception of the electron-electron
repulsion term in the potential operator, all of the in-
tegrals are simple polynomials and can be performed
analytically; the integral involving r &z was computed nu-
merically using 16-point Gauss quadrature.

In order to obtain the global equations, we need to sum
over all the elements in such a way that the solution is a
smooth, continuous function. This requires that a node
which is shared by more than one element be assigned the
same values of expansion coefficients in each element. To
accomplish this, we introduce connectivity matrices h.'
for each element which map the local matrices H' and U'
and local vector 4' onto global matrices H and U and
global vector %. ' If there are X nodes in the volume,
then the global matrices are 8X)&8X and the global vec-
tor is of order 8X. The mapping relations are as follows:

~ABC,DEF ~ABC, ij k ~~ij k, lmn ~lmn, DEF ~

UABC, DEF ~ABC,ijk ~ijk, lmn ~lmn, DEF ~

(3.10a)

(3.10b)

ABC ~ABC, ij k Y'ij k (3.10c)

Using relations (3.10a)—(3.10c) and the unitarity of the
connectivity matrices

~ij k, ABC~ABC, ijk (3.11)

5%'(H —EU)%=0 (3.12)

which has the form of a generalized eigenvalue problem
with symmetric banded matrices. The eigenvector 4 con-
tains the expansion coefficients, which are the value of the
unknown wave function and its partial derivatives at
every node.

In order to satisfy the boundary condition that the wave
function vanishes as r~oo, those m coefficients P~~c
corresponding to the value of g and its partial derivatives
at ~ =r, must be set equal to zero. This is equivalent to
eliminating the rows and columns of the global matrices
that correspond to those components. The resultant
(8N —m))&(8N —m) eigenvalue problem may now be
solved for the remaining components of the global vector.

Since the global matrices for a three-dimensional
finite-element calculation are generally of order 10 or
greater, standard algorithms for solving generalized eigen-
problems are impractical, both in terms of computer
storage and CPU (central processing unit) time. For-

we can perform the summation in Eq. (3.9). Introducing
a global matrix notation, we have

tunately, there exists an algorithm specifically designed to
handle the large matrix equations of finite-element calcu-
lations. This subspace iteration method exploits the band-
ed, symmetric nature of the global matrices and provides
rapid convergence with a minimal amount of computer
work area. Unlike simultaneous vector iteration, sub-
space iteration does not require that each of the n trial
vectors separately converges to the n lowest eigenvectors.
Rather, one iterates using a trial subspace which is
spanned by an approximation to a linear combination of
the lowest eigenvectors. When the trial subspace is con-
verged to the desired accuracy, the lowest eigenvectors are
found via Gram-Schmidt orthogonalization. Details of
the algorithm are found in Ref. 3.

IV. RESULTS OF FINITE-ELEMENT CALCULATION

The results of the finite element calculation are includ-
ed in Table I. These final figures were obtained from a
grid of 9)&9X4 or 324 global nodes. In order to verify
the symmetry of the wave function with respect to elec-
tron exchange, nodes were placed symmetrically along r&

and r2 at 0.0, 0. lao, 0.2ao, 0.4ao, 0.8ao, 1.4ao, 2.2ao,
4.0ao, and 6.0ao. The greater concentration of nodes
near the origin anticipates the effect of the Coulomb in-
teraction. The four nodes along cos8 were placed at
—1.0, —0.5, 0.5, and 1.0. Minor variation in the site of
the nodes did not affect the final results.

In order to impose the boundary condition that g and
its partial derivatives vanish for r =r„576 expansion
coefficients were set equal to zero. In addition to the 68
nodes satisfying r; =r„ i =1,2, we also set the wave func-
tion equal to zero at the four additional nodes satisfying
(r, +r2) &r, . This reduced the order of the global ma-
trices from 2592 to 2016. Because the matrix manipula-
tions involved in calculating the lowest eigenvalues neces-
sitated the use of double precision, storage of the matrices
in skyline mode exceeded 14 megabytes. Calculation of
the lowest two eigenvectors required 16 CPU hours on the
Brown University IBM 3081. Calculation of the expecta-
tion values (r"), n = —2, —1, 1, and 2 required an addi-
tional 49 CPU hours.

The ground-state energy of helium obtained with finite
elements was —2.9032 a.u. This energy lies 0.017%
above the Frankowski-Pekeris result and is comparable in
accuracy to Weiss's result. ' Only the energy obtained by
Hawk and Hardcastle lies closer to the Pekeris energy.
However, the expectation values ( r" ) calculated with the
finite-element wave function are superior to those ob-
tained in any of the variational or the finite difference ap-
proaches, again, with the exception of Weiss. In particu-
lar, although the error in the energy obtained by Hawk
and Hardcastle is less than 0.004%, the error in the ex-
pectation values is as high as 7% for (r '). Qn the con-
trary, with the exception of ( r ), the error in the expecta-
tion values obtained with the finite-element wave function
were less than the error in the energy. The values of ( r"),
for n = —2 and —1, are superior to those obtained by
Weiss, while the latter has better results for n =1 and 2.
The larger error in the finite element value of ( r ) is a re
suit of the crudeness of discretization for r &4ao. A sin-
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gle third-order polynomial in r~ and r2 is used to approxi-
mate the behavior of the wave function in this region, and
(r ) is most sensitive to the accuracy of the wave func-
tion at large r. We are confident that a slightly more re-
fined discretization in the large-r region would lower the
error in (r ) and improve the energy. Unfortunately, the
addition of a single node in r~ and r2 resulted in global
matrices whose storage exceeded the core capacity of the
IBM 370. The additional time required for data retrieval
during subspace iteration made out-of-core storage im-
practical for this calculation.

V. DISCUSSION

This calculation for helium has shown that the finite-
element method provides an accurate, alternate approach
for solving certain atomic and molecular problems. There
are many advantages to a local interpolation technique.
Unlike expansion in a global basis set, the restriction that
all functions of the basis set must satisfy the boundary
conditions of the problem is removed. Furthermore, no a

priori structure (other than at the boundaries) is imposed
on the wave function. The major disadvantage to the
method is the need for extensive computer core memory.
Calculations involving more than three variables require
the capabilities of a supercomputer. However, computa-
tional limits are not the same as analytical restrictions.
With the rapid advance in computer technology, it is not
unreasonable to expect that highly accurate, n;
dimensional finite-element calculations will be possible in
the near future. In the meantime, it may be possible to
combine a global variational approach with the finite ele-
ment method.
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