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The analytic properties of solutions of the relativistic Thomas-Fermi equation which tend to zero
at infinity are first examined, the neutral-atom solution being a member of this class. A new length
is shown to enter the theory, proportional to the square root of the fine-structure constant. This in-
formation is used to develop a perturbation expansion around the neutral-atom solution, correspond-
ing to positive atomic ions with finite but large radii. The limiting law relating ionic radius to the
degree of ionization is thereby displayed in functional form, and solved explicitly to lowest order in
the fine-structure constant. To embrace this knowledge of heavy positive ions, as well as results
from the one-electron Dirac equation, a proposal is then advanced as to the analytic form of the rel-
ativistic total energy E (Z,N) of an atomic ion with nuclear charge Ze and total number, N, of elec-
trons. The fact that, for N > 1, the nucleus is known only to bind Z +n electrons, where nis 1 or 2,
indicates nonanalyticity in the complex Z plane, represented by a circle of radius Z ~N. Such
nonanalyticity is also a property of the nonrelativistic energy derived from the many-electron
Schrodinger equation. The relativistic theory, however, must also embody a second type of
nonanalyticity associated with the known property for N =1 that the Dirac equation predicts
electron-positron pair production when the electronic binding energy becomes equal to twice the
electron rest mass energy. This corresponds to a second circle of nonanalyticity in E(Z,N), and
hence to a. Taylor-Laurent expansion of this quantity in the atomic number Z. The relation of this
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expansion to the Layzer-Bahcall series is finally discussed.

I. INTRODUCTION

It may be said that the properties of heavy positive
atomic ions are well understood on the basis of the many-
electron Schrodinger equation, which provides a satisfac-
tory framework for a nonrelativistic atomic theory. A
central approach in this theory is provided by the so-
called 1/Z expansion, Z being the atomic number. This
expansion had its origins in the work of Hylleraas? and
was successfully exploited especially by Layzer’ and a
number of later workers.** Explicitly one writes for the
total energy E(Z,N) of an atomic ion with N electrons,

E(ZN)=2>3 ¢.z",

n=0

(1.1)

where the coefficients €,(N) are by now known to useful
numerical accuracy for small n over a range correspond-
ing to N <20. Furthermore, as shown by March and
White,® the asymptotic form of €,(N) for large N can be

established from the Thomas-Fermi statistical theory; the

later work of Dmietrieva and Plindov’ and of Tal and
Levy® pressing this point of view fully quantitatively for
small n. Very recently, following work of Stillinger® on
the He-like ions with N =2, we have shown from the
known expansion of the Thomas-Fermi energy E(Z,N)
about the neutral-atom limit E(Z,Z) that the radius of
convergence of the series (1.1) and its associated
nonanalyticity in the Z variable can be discussed quantita-
tively in the limit of Z and N both large and N /Z <1.1°
Related work which should be cited here is that of Lieb!!
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and of Lieb et al.'? :

That some problems arise when one seeks the generali-
zation of Eq. (1.1) within a fully relativistic framework
has been clear for quite some time. In particular, the
work of Layzer and Bahcall!® has been subjected to some
criticism, for example by Ermolaev and Jones, !4 though
the Layzer-Bahcall approach seems a plausible physical
extension of Eq. (1.1) to include an expansion also in the
fine-structure constant a=e?2/fic. Thus, in the present
paper, we shall attempt, on the basis of reasonable postu-
lates, to effect an extension of the series (1.1) to take full
account of the requirements of special relativity. Why
such postulates are necessary is because we do not have at
present a satisfactory relativistic theory for many interact-
ing electrons.!®

The outline of the paper is as follows. In Sec. II, we
focus immediately on the analytic properties of the solu-
tions of the relativistic Thomas-Fermi theory,'®!” relevant
of course to the calculation of the relativistic total energy
E(Z,N) of heavy positive ions and neutral atoms.'®!®
One important result that quickly emerges there is that
the fine-structure constant entering the Thomas-Fermi
theory leads to the existence of a new length in this treat-
ment, proportional to the square root of the fine-structure
constant. In Sec. III, the properties of the neutral-atom
solution are used to develop a perturbation method for
positive atomic ions with large classical radius, which al-
lows the functional form of the relation between degree of
ionization ¢=1—N/Z and classical radius to be estab-
lished. To exemplify this functional relation, specific re-
sults are then presented to lowest order in the fine-
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structure constant. In Sec. IV we briefly review the rela-
tion between our results for heavy positive ions and the
predictions of the Dirac equation for N =1. This discus-
sion leads us, in Sec. V, to advance a proposal for an ex-
pansion of Laurent form in the atomic number Z, on the
basis of two, physically based, postulates which in turn
define the analyticity of E(Z,N) in the complex plane for
atomic ions in relativistic theory. The relation of this
Laurent expansion to the Layzer-Bahcall series is then es-
tablished. Section VI constitutes a summary, with some
suggestions as to the way in which future work might en-
able the present proposals to be confirmed or, if necessary,
refined. In Appendices, some detailed mathematical in-
vestigation of specific solutions of the relativistic
Thomas-Fermi theory are presented.

II. ANALYTIC PROPERTIES OF SOLUTIONS
OF RELATIVISTIC THOMAS-FERMI EQUATION

In Thomas-Fermi theory,?° the self-consistent potential
distribution in an atomic ion is determined by the solu-
tions of the dimensionless Thomas-Fermi equation

2 372
LA ey @.1)
dx x

where the distance r from the atomic nucleus of charge
Ze is measured by

r=bx; b=0.88534a,/Z'" (2.2)

with a, the Bohr radius #2/4m*me?. The dimensionless
quantity ¢ is converted to a self-consistent potential ener-
gy (relative to the chemical potential u) by multiplying ¢
by —Ze?/r.

When the requirements of special relativity are em-
bodied in the Thomas-Fermi statistical theory, Eq. (2.1) is
generalized to!%1720

372
d _ 4”2 ']
PRIV 1+Ax R (2.3)
where

A=(4/37)*3a?Z*3 . (2.4)

In this section, we shall investigate the analytic proper-
ties of the solutions of Eq. (2.3) which tend to zero at in-
finity. The corresponding solutions of Eq. (2.1), given by
Coulson and March,?! can be expressed in the form

144 F F, F

$)="F |l——C+———+ |, 29
where
c=(7312-7)/2=0.772 , (2.6)

while F,=f,F}, the numbers f, being tabulated for
n <10.22 The Sommerfeld?® exact solution 144 /x 3, corre-
sponding evidently to F; =0 in Eq. (2.5), divides the (¢-x)
plane into two regions; that below this Sommerfeld solu-
tion corresponding to positive F, and that above to nega-
tive F, as discussed by one of us elsewhere.?* Our first
task below is to establish, for the relativistic Thomas-
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Fermi equation (2.3), that solution which effects the gen-
eralization of the Sommerfeld exact solution 144 /x3, with
asymptote corresponding to x =0, to include the fine-
structure constant, reflected by A+40 in Eq. (2.3).

Generalization of Sommerfeld solution
to include the fine-structure constant

To effect this generalization, it will be useful to gain
orientation as to the types of solutions of Eq. (2.3) which
tend to zero as x tends to infinity, by presenting a solution
to first order in A using, essentially, perturbation theory
on the Sommerfeld solution 144 /x3. To do this, we mere-
ly rewrite Eq. (2.3) first as an equation expressing the con-
stancy of A in space, namely,

2/3

- (2.7)

x2

= ?
This Eq. (2.7) can clearly be reexpressed by the simultane-

ous differential equations for ¢(A,x) and, say, h(A,x),
given by

A

173 172

x| [[e” s | A
x — = 2.
¢ x x h(A,x) 28)
and
, 1173 172
LA [ A R ) N N AR 2.9
¢ x x
Clearly, by substituting the Sommerfeld solution

144/x3 into Eq. (2.9) we obtain almost immediately

h(0,x)=x2/6 (2.10)

and from this “nonrelativistic’’ approximation to % insert-
ed into the right-hand side of Eq. (2.8) we can integrate to
find the first-order perturbation solution to Eq. (2.3) as

A

144
l4+ay;—+"""
x

¢(}\4ax):? 5 (2'11)

where a;=3X12%/76. This solution for @(A,x) is
developed systematically for the coefficients a, in
Appendix A. We merely note here that (@)
(A, x)=(144/x3)f(A/x*), and that (i) f(s) has a simple
pole at a critical value, say s, which in order of magni-
tude is about 1072, This evidently corresponds to a criti-
cal length r, =bx, where

x.=const X A% const=2.9045 , (2.12)

yielding r,=2.229a!"%2a;~0.190a,. In Fig. 1, the non-
relativistic situation is compared and contrasted with the
relativistic situation. From this figure, it can be conclud-
ed that, from the point of view of analytic properties, the
nonzero fine-structure constant results in the analog of
the Sommerfeld solution 144/x% of Eq. (2.1) having its
asymptote at nonzero x, namely x,«A”*«<a!/?2. This
new “length,” we stress, is a fundamental mathematical
property of the solution of the relativistic Thomas-Fermi
equation (2.3).

In the next section, we use the knowledge of f(s), set
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FIG. 1. Shows schematic form of solutions of Thomas-Fermi
equations for (a) nonrelativistic case, i.e., ¢(0,x) and (b) relativ-
istic case ¢(A,x). In (a), the Sommerfeld exact solution of Eq.
(2.1) divides the (¢,x) plane into two parts. The part where ¢(x)
is always below 144/x? includes as a special case the neutral-
atom solution in which one has the second boundary condition
¢(0,x =0)=1 for a point nucleus. In case (b), the curve
(144/x3)f(A/x*) has its asymptote at nonzero x, labeled x.,
which is proportional to A!/4. This reduces to the Sommerfeld
solution 144/x? in the limit A—0. There is therefore a length
in relativistic Thomas-Fermi theory which is not in evidence in
the nonrelativistic limit. The neutral-atom solution, now for a
finite nucleus, in order to obtain a normalizable electron density,
corresponds to a solution in which ¢(A,x) lies below the general-
ized Sommerfeld solution labeled (144/x3)f(A/x*).

out fully in Appendix A to generate what is the relativis-
tic analog of (i) the Coulson-March solution (2.5) of Eq.
(2.1) to include relativity, and (ii) the perturbation theory
on this zeroth-order neutral-atom-type solution to treat
positive ions with weak degree of ionization, i.e., with
small g.

It is important, in concluding this section, to note that
it is not physically significant to solve Eq. (2.3), in con-
trast to (2.1), for a point nucleus, as the electron density is
not integrable.'®=!° This question of the (presumably
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weak) dependence of E(Z,N) on the choice of (a) nuclear
radius and (b) the detailed model adopted for the proton
distribution, will be discussed a little later in the paper.
For the present, however, we turn to discuss the relevance
of the above generalization of the Sommerfeld solution to
the determination of the self-consistent potential distribu-
tion in neutral atoms and positive ions in the relativistic
Thomas-Fermi theory. Since numerical solutions are al-
ready available,!® our purpose below is solely to clarify the
analytic nature and functional dependence of these poten-
tial distributions reflected through ¢(A,x) satisfying Eq.
(2.3).

III. ANALYTIC FORM OF SOLUTION OF
RELATIVISTIC THOMAS-FERMI EQUATION
FOR NEUTRAL ATOMS
AND WEAKLY IONIZED SYSTEMS

We can show, with little difficulty, that the analog of
the Coulson-March solution (2.5) corresponding to A=0
has the form

F,
1__+...
X

4

144

$(hox)=—=-f(A/x") 3.1

Whereas the series inside the final parentheses in Eq. (3.1)
has only nonintegral inverse powers in Eq. (2.5), the
nonzero value of A in Eq. (2.3) will eventually introduce
integral inverse powers of x into Eq. (3.1), but this will
only occur at order 1/x* and we need not go into details
for our present purposes.

Experience in relating g and the classical ionic radius
xo in the nonrelativistic case, using the positive ion boun-
dary conditions

#(x9)=0, (3.2)

xo¢'(x0)=—q , (3.3)
leading to

gx3=144(7+c), (3.4)

prompts us to write for the relativistic case, with ¢,
denoting the neutral-atom solution,

d(A,x)=do(A,x)+k7n ,

where k1) is to be treated as a perturbation on ¢,. Then in
the nonrelativistic case, 7 is found to satisfy the differen-
tial equation

(3.5)

172

o

X

”

3
=5 (3.6)

For weak ionization, i.e., sufficiently small g, it is ade-
quate in lowest order to impose the boundary conditions
(3.2) and (3.3) after replacing ¢o by the Sommerfeld solu-
tion 144/x3. Then one finds from Eq. (3.6) that

necx**e: large x, small ¢ 3.7
and hence for the relativistic analog we shall write
b =2 (0 /) +hx g (A /xh) ; (3.8)
x
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f(0) and g(0) both being equal to unity.

In Appendix A, we set out an explicit perturbation
equation relating g and f, without treating A perturbative-
ly, and imposing the boundary conditions we can general-
ize the limiting law (3.4) to read

G(A/x8)=gx3—144(T+c) . (3.9)

The function G is briefly considered in Appendix A,
where it is shown that to first order in A

28%3% . | 11c — 149
4y A , 3.10
G(A/x3) Tox8 ‘ 213 (3.10)

which exemplifies the functional dependence in Eq. (3.8)
through the explicit perturbative solution

qx3=144(7+c)+34o434.7i4+ e
X0

(3.11)

Should it prove of interest later, it will plainly be possible
to (a) integrate Eq. (A2) for f(s) numerically and (b) to
use this numerical determination of f(s) to numerically
integrate Eq. (A13) for g (s). For our present purposes the
important conclusions are (i) the limiting length xg o A!/*
and (ii) the new limiting law having the functional form
(3.9), exemplified perturbatively in the explicit form
(3.11).

Having established these properties of heavy atoms and
positive ions from the relativistic Thomas-Fermi theory,
the remainder of the paper is concerned with the way we
might use them, in conjunction with the supposedly exact
results from Dirac’s one-electron equation, to advance a
definite proposal as to the analytic structure in the (now
complex) variable Z of the relativistic total energy
E(Z,N). Before doing so, we must summarize some re-
sults for N =1 briefly in the following section.

IV. CONSEQUENCES FOR TOTAL
RELATIVISTIC ENERGY E(Z,N)
OF RESULTS FOR DIRAC EQUATION FOR N =1

Here we take as the starting point the Dirac relativistic
wave equation for one electron. The energy of the 1s lev-
el, which is mcX(1—Z%a?)!/? for a point nucleus, clearly
vanishes at Z, =137 and becomes imaginary for larger Z.

The situation is changed when one treats a finite nu-
cleus. As discussed, for example, by Zel’dovich and Po-
pov,?> for nonzero nuclear radius R, each energy level
changes continuously with increasing Z from mc? to
—mc?. The energy then becomes complex if Z is further
1ncreased In particular, for physical values of R, the crit-
ical value Z, at which the 1s level merges into the lower
continuum is around 170. This property that the energy

levels change continuously until the lower continuum 'is

reached is a characteristic of the long range of the
Coulomb potential.

We note here that the above behavior of the energy is
not unique to spin 7 Fermi partlcles, a similar situation
obtained with the Klein-Gordon equation for particles
with zero spin. 26 With bosons, however, further con-
siderations involving Bose condensation change the physi-

cal picture’’ =?° considerably. These remarks are especial-

ly relevant below since the relativistic Thomas-Fermi
theory includes, of course, the Pauli exclusion principle
but does not treat the kinetic energy operator in the
manner characteristic of the Dirac theory.

The main point to be stressed here is that for very small
R there will plainly be nonanalytic behavior of the one-
electron energy, reflected in the appearance of a term in-
volving InR. The considerations of Zel’dovich and Po-
pov® relate the Dirac level spectrum for R=0 to the
physically realistic case of finite nuclear radius. Though
their work is specifically for N =1, we shall see below
that for large Z and N it is also essential to treat a finite
nuclear radius.

V. TAYLOR-LAURENT EXPANSION
OF TOTAL ENERGY E(Z,N)
IN RELATIVISTIC ATOMIC THEORY

In this section we shall, on the basis of two postulates,
develop a Taylor-Laurent expansion of the total energy
E(Z,N) of relativistic atomic ions in the complex Z
plane. The two basic postulates on which we found such
an expansion are the following.

(i) That there is a circle of nonanalyticity in the com-
plex Z plane which reflects the established fact that, for
N > 1, it is not possible to bind to a nucleus of charge Ze
more than one or at most two electrons beyond the neutral
atom. This circle of nonanalyticity exists, therefore, for
Z ~N, and is not specifically, in fact, a consequence of
special relativity; it is already present for the nonrelativis-
tic expansion (1. 1) It is evidenced, for example, in the
work of Stillinger® for two-electron ions treated by nonre-
lativistic Schrédinger wave mechanics, and in our own
work!? on the nonrelativistic theory for large Z and N in
the limit N/Z < 1.

(ii) That, now specifically associated with special rela-
tivity, there is a second circle of nonanalyticity in the
complex Z plane. The physical significance of such a
singularity with R340 is that the nature of the 1s level
changes from a true localized bound state to a vacuum po-
larization as the 1s level passes through the lower contin-
uum, corresponding to Z taking its critical value Z..
This criterion is quite equivalent to that obtained by
equating the electronic binding energy for one electron to
2mc?, the energy required to create an electron-positron
pair.

This then is the basis of the postulate (ii); in the absence
of a full relativistic theory of N interacting electrons it is
presently not possible to give more than a plausible physi-
cal basis for adopting such a postulate. In the end, of
course, its validity or otherwise must rest on bringing its
consequences into contact with experiment.

These two postulates (i) and (ii) above then lead, quite
naturally, to a basic expansion for the total energy
E(Z,N) in relativistic atomic theory.

Taylor-Laurent expansion related
to that of Layzer and Bahcall

Figure 2 for N >1 shows schematically the conse-
quences of the postulates (i) and (ii) above. The circle la-



32 ANALYTIC PROPERTIES OF THE RELATIVISTIC THOMAS- . .. 3281

(b)

FIG. 2. Shows nature of singular points of total energy
E(Z,N) in complex Z plane for (a) nonrelativistic theory and (b)
relativistic theory. In (a), the circle shown at Z ~N contains a
singular point which lies on the real axis. This circle has
nonzero radius for all N greater than one and its radius tends
precisely to N in the limit as both Z and N tend to infinity. For
N =1, such a circle is not present, as a bare Coulomb potential
energy —Ze?/r inserted in the Schrédinger equation has, of
course, an infinite number of bound states, for all Zs£0. The
proposal made in this paper as to the analytic structure of the
relativistic energy E(Z,N) is illustrated schematically in (b).
This again is drawn for N > 1; for N =1 there is only one circle,
for a finite nucleus, corresponding to the singular behavior of
the Dirac one-electron energy at a value of Z ~170. The outer
circle (ii) for N >1 reflects this same physical phenomenon,
namely the lowest bound state crossing the lower continuum,
with increasing Z. To date, the relative movement of the two
circles with increasing Z and N is not known. The Taylor-
Laurent expansion (5.1) is only valid in the shaded region en-

_closed between (i) and (ii).

beled (ii) is a result, as we stressed, of the requirements of
special relativity; we know that this circle must move
away to infinity, for all N greater than or equal to unity,
in the nonrelativistic limit in which the fine-structure con-
stant a tends to zero. In contrast, the circle labeled (i) is
present even in nonrelativistic theory, and we know about
its movement with varying N from the work of Refs. 9
and 10.

It follows, by referring to Fig. 2, with the assumption
that E(Z,N) is analytic in the shaded region between the
circles (i) and (ii), that we can write the Taylor-Laurent
expansion

E(Z,N,a,R)=Z*> 3 ¢€,(N,a,R)Z7".

n=-—oo

(5.1

In contrast to Eq. (1.1), which corresponds to analyticity
of E(Z,N) in the shaded region of Fig. 2(a), Eq. (5.1) in-
volves both positive and negative powers of Z, and in ad-
dition nonzero values of @ and R. Clearly €,(N,a,R), as
we let first a—0 and then R —0, must reduce to the coef-
ficients €, in Eq. (1.1) for n >0, and to zero for n nega-
tive.

From our previous discussion for the special case
N =1, the coefficients €,(1,a,R) are all zero for n >2.
In the limit of large Z and N, the relativistic Thomas-
Fermi theory can be brought into formal contact with Eq.
(5.1) as discussed previously by Marconi and March.!®

However, our main purpose below is to demonstrate
that Eq. (5.1) embraces the Layzer-Bahcall (LB) expansion

En(ZN=2>3 3 E.(Ne"z—" (5.2)

n=0m=0

with e=a’Z?% As written in Eq. (5.2), the coefficients
E,,(N) also have a weak dependence on €Z in the
Layzer-Bahcall formulation.

First of all, with neglect of this dependence of E,,, (N)
on €Z, Eq. (5.2) can readily be rearranged to take the form
(5.1), the coefficients €,(N,a,R) taking the form
S Ey_pid NP, (5.3)
t >max[p,0] .

€n=2p=

which is plainly valid for even n since p and t are integers
or 0. For odd n we have the result

2(t —p)
E Eytt1,—p+ea™ 7P
t >max[p,0]

€p =2p+1= (54)

In Egs. (5.3) and (5.4), the notation max[a,b] means the
larger of a and b.

Returning at this point to the relativistic Thomas-
Fermi theory, Marconi and March'® demonstrate that this
corresponds, for large N, to the coefficients

Enm(N)~c'(l)m(N)n—2m/3—-1/3 ,

which clearly again relates, through Egs. (5.3) and (5.4),
with the series (5.1).

VI. SUMMARY AND FUTURE DIRECTIONS

The main proposal of the present paper is embodied in
the Taylor-Laurent expansion (5.1). This followed an in-
vestigation of the analytic properties of the solutions tend-
ing to zero at infinity of the relativistic Thomas-Fermi
equation, which are shown schematically in Fig. 1. This,
synthesized with the Dirac equation results for N =1, led
to the schematic form of E(Z,N), in the complex plane
implied by Fig. 2. We have stressed that the existence of
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Eq. (5.1), as well as the correctness of Fig. 2, is strongly
favored by physical arguments; namely the inability of a
nucleus of charge Ze, for N > 1, to bind more than one or
at most two states beyond the neutral atom. That is, it is
the instability of negative ions in nature beyond singly and
doubled charged states which is the essential physics
underlying the existence of the circle labeled (i) in Fig. 2.
Secondly, we have argued from the Dirac ground state en-
ergy for N =1 for the presence of the second nonanalyti-
city reflected by circle (ii) in Fig. 2. That this circle is
sensitive to the nonzero nuclear radius is clear from the
Dirac theory.

These postulates are then shown to embrace the
Layzer-Bahcall expansion and, in our view, render the ob-
jections that have been voiced against it much less com-
pelling than they have appeared to be hitherto. Experi-
ments, for N >1 and for various values of Z, will be of
the essence in either confirming the postulates (i) and (ii)
of this paper, or in indicating the directions in which
these postulates may eventually need refining.
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APPENDIX A: SOLUTIONS OF RELATIVISTIC
THOMAS-FERMI EQUATION
WHICH TEND TO ZERO AT INFINITY,
AND ALSO FOR LARGE RADII POSITIVE IONS

If in Eq. (2.3) we write x3¢ as a new dependent vari-
able, we are led to a differential equation solely dependent
on the quantity A/x*=s, which confirms the scaling
property which one would infer from the series (2.11). As
there, we choose to write explicitly

144

¢=?-f(s): s=A/x*, (A1)
and then we find the differential equation for f(s) as
4s2 "+ 11sf +3F =321+ 144f5)3/2 . (A2)

We wish to solve this equation such that f(s) reduces to
the Sommerfeld exact solution of Eq. (2.1), namely
144/x3, in the limit in which A—0, i.e., s =0. This solu-
tion has the small s expansion given in Eq. (2.11) and our
purpose now is (i) to obtain higher terms in that expansion
and (ii) to investigate the singular point of this solutio

f(s). e

Systematic determination of
small s expansion of f(s)

- From Eq. (2.11), a convenient independent variable is
aA/x*=a,s=t say. Then f(s)—F(t) and we seek the
series solution

G. SENATORE AND N. H. MARCH 32

TABLE 1. Explicit coefficients f, for n <13 in series solu-
tion (A3).

= it
_ 338 4482296
f2=10 f3=4099896

fa= 6033405 354
4= 5287328379

Further coefficients have been obtained to the numerical
accuracy given below:

B fs=1.190519
fe=1.242296 ) —1.296202
fs=1.352519 © fo=1.411235
f10=1.472533 Sf11=1.536469
f12=1.603 200 f13=1.672814

F(t)= 3 fot" (A3)
n=0

and substituting this in Eq. (A2) leads to a recurrence re-

lation for the coefficients f,. From Eq. (2.11) it is already

clear that fo=f;=1. For n>1, the recurrence relation

can be expressed in the form

fr 6

=——"—-H,, (A4)
8n°+14n—3

where, in terms of the binomial coefficients b,, given by

3 (%)
= =— , (AS)
"l T(3—nT(n+1)
H, has the form
1 n—2
H, :len—l+ 2 b, _ Dy _k: n>2. (A6)
k=0
Here
~ 19 k 1 k—1 .
Di=75 2 fifki+5- 2 (k=2p)cx _pDp: k21
1=0 €o p=1
(A7)
and
1K "
Di= [(k—p)n —plek_pDp, n>1,k>1 (AB)
kCo p=0

where D3=(c,)" and DQ=>5,. Finally c,, is defined by

cm:fm+1+%*2flfm—l' (A9)
1=0

From these results, we find explicitly the coefficients
recorded in Table I.

Expansion of f(s) around singular point

Having established the small s expansion of f(s), we
next turn to a study of its behavior around its singular
point. We assume this to occur at s =s, and write, for
s Ssc’ )
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A

. Al0
o) (A10)

f(s)~

Substituting this expression (A10) into Eq. (A2) we find
the results

y=1; A=s}*/18V2. (A11)

Of course, the determination of s, is only possible exactly
by joining f(s) in Eq. (A10), valid near s, with the small
s expansion. This will eventually require numerical in-
tegration of Eq. (A2), but fortunately, as we shall see
below, the singular behavior determined by Eqs. (A10)
and (A11) is already in evidence in the higher coefficients
of the small s expansion.

To demonstrate this, we use the data in Table I to find
the ratio f,/f, 11=R,, for n >4 say. R,, even at n =4,
has already reached a limiting value of 0.958. At the larg-
est values of n in Table I R, has reached the limit
0.958 38. Thus, from a well-known convergence property,
the singular point, ¢, say, of F(¢) is given by

t,=0.95838; 5,=0.014050, (A12)

which leads directly to Eq. (2.12) of the main text. This
leads from Eq. (A1l1) to a value . 4=0.013 525 and hence
we have settled the values of 7, s., and 4 in Eq. (A10) to
the accuracy specified above. It is of some interest to note
that, if we write from Eq. (2.11) that

fi=l4ais+ - =(1—as)™!

then a; =s.'= A ~!, confirming that A and s, are nearly
equal, as demonstrated numerically above. Thus, f(s) is
already determined to useful accuracy, without explicit
numerical integration of the differential equation (A2).

Perturbation expansion about neutral-atom solution

In Eq. (3.1) the above exact solution is used to construct
an asymptotic solution of Eq. (2.3) tending to zero at in-
finity and valid at sufficiently large x. Our object in this
section is to develop a perturbation expansion about that
solution of the form (3.1) corresponding to the neutral
atom. As discussed in the main text, this leads to ¢(A,x)
expanded as in Eq. (3.8). Therefore, we need a perturba-
tion differential equation to determine the function g(s),
given the above knowledge of f(s). This equation is
found to take the form

8s%g" —(6+4c)sg' + 1+% (6+2c)g

—.=3~f;(4s2f”+11sf'+3f) [1+—19ﬂ— - (ADY)

1+ 144sf

This equation will eventually require numerical integra-
tion, with £ (s) as input data, to determine g(A/x*) in Eq.
(3.8). Below we will content ourselves with the low-order
term in the series solution in s of g(s), which will allow
the determination of the function G(A/x§) in Eq. (3.9) to
lowest order in A. Writing

g(s)= 3 gus", go=1 (A14)
. n=0
we find g; by using the series in (2.11) for f(s) as
2
%_§_9 g1=3(432+11a,)
or
67392 _ 390.2888 . (A15)

815" 19(4c +6)
Using the boundary condition (3.2), we can write, before
expanding f and g,

144 f(A/x8)
B xite g(A/xd)

(A16)

and imposing Eq. (3.3) we obtain further

G(A/x3)=144—)‘7
X0

+(7T+c)144(f —1)

4fg’
4 &
f g

=gx3—(T+c)144 , (A17)

which reduces to Eq. (3.4) for A=0. This equation
demonstrates that its right-hand side is solely a function
of A/x§ as expressed by Eq. (3.9) of the text. We now use
the results

f'(s=0)=a,; g'(s=0)=g, (A18)

in Eq. (A17) to obtain Eq. (3.10).

APPENDIX B: THOMAS-FERMI THEORY
FOR NONZERO NUCLEAR RADIUS

In this appendix, the effect of nonzero radius on the
Thomas-Fermi theory of neutral atoms will be briefly
considered.

Nonrelativistic case

Starting with the nonrelativistic case, we shall refer to
two models: model A, the protons are uniformly distri-
buted within the nuclear radius R; and model B, the less
realistic model in which the total proton charge is uni-
formly smeared over the surface of a sphere of radius R.

Model B

From the work of one of us,>* on a model of almost
spherical molecules like CH,, we can adapt the results to
the finite-nucleus case to obtain the electronic energy
E(Z,R) in the form
Z2%?

R
where V| = —eX, X being the total electrostatic potential
inside R. Using the continuity of the nuclear electrostatic
potential at R we find

E(Z,R)=—3ZV(R)++ZRV}(R), (B2)

E(Z,R)=—3ZV(R)++ZRV{(R)— , (B1)
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where the subscript e denotes the electronic contribution
to ¥V;. As R—0 the second term on the right-hand side
vanishes. No difficulty arises therefore in taking the limit
R —0, by means of which we regain the well-known total
energy of the neutral atom in the Thomas-Fermi theory.?°

Model A

Here the potential energy due to the proton distribution
felt by an electron is quadratic in the distance » from the
center of the nucleus. With the appropriate scaling from
V to ¢, this term has simply to be added to the right-hand
side of Eq. (2.1). Though, to our knowledge, the resulting
self-consistent solutions have not, so far, been obtained
numerically by matching across the nuclear radius, we
have no reason to expect more than minor quantitative
changes from the conclusions drawn from model B above.
In summary, this argument shows that the coefficients
€,(N) in Eq. (1.1) will not vary in any important manner
in nonrelativistic heavy positive ions as the nuclear radius
is increased from zero to its known value.

Relativistic results for bare Coulomb case

Although Hill et al.'® have solved the relativistic
Thomas-Fermi equation for model A numerically and
have thereby calculated total energy, we have not, so far,
been able to make purely analytical progress. Therefore,
below, we content ourselves with the study of the relativis-
tic Thomas-Fermi electron density p(r) given by

5 3/2
L Vin] +u—V(r) , (B3)

—V(r
(7)=const X
P 2mc?

where the constant is (2m)3/%(87/3h3), with

—Ze?/R, r<R

—Ze*/r, r>R . (B4)

Vir)= [
This will lead to a non-self-consistent solution of model B.
Our aim is to study the nonanalytic behavior of the
chemical potential u, or equivalently the classical radius
R corresponding to p(Ry)=0, i.e.,

w=—Ze?/R, . (B5)

We notice that, as the nuclear radius R —0, R /Ry— fin-
ite constant, D say. The leading nonanalytic terms for D
small then yield

D =exp _%Tﬂﬁ =exp(—1/A%?) (B6)
or
p= exp(—1/A37%) , (B7)

displaying the fact that in relativistic Thomas-Fermi
theory the nonzero nuclear radius is playing an essential
role, in sharp contrast to the nonrelativistic case discussed
above.

*On leave from the Dipartimento di Fisica Teorica
dell’Universita degli Studi di Trieste, 1-34014 Miramare
(Grignano), Italy.
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