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This article is concerned with the construction of a quantum-mechanical Hamiltonian describing
a computer. This Hamiltonian generates a dynamical evolution which mimics a sequence of elemen-
tary logical steps. This can be achieved if each logical step is locally reversible (global reversibility is
insufficient). Computational errors due to noise can be corrected by means of redundancy. In par-
ticular, reversible error-correcting codes can be embedded in the Hamiltonian itself. An estimate is
given for the minimum amount of entropy which must be dissipated at a given noise level and

tolerated error rate.

I. INTRODUCTION

Why cannot a computer run backwards? Imagine a
mechanical computer, such as one of the calculating
machines designed by Charles Babbage some 150 years
ago. The input is fed in by means of pegs and cams, and
likewise the output is indicated by the positions of pegs
and plungers. Make a movie of this calculating machine,
and then run the film backwards. The resulting motion
will appear very unnatural, because it defies the physical
laws of friction. Any mechanical computer, even the
humble abacus, must have friction to operate reliably; it
dissipates heat.!®

When modern electronic computers are operated, some
heat dissipation, typically 10% T per elementary logical
(Boolean) operation, is also involved. The heat must be
removed by external means. This may soon become an
acute problem in computer design, as the miniaturization
of electronic components allows computers to be made
more and more compact, while at the same time increas-
ing the speed of their operations. Is heat dissipation, then,
an essential element in the computing process?

In an electronic computer, logical bits (binary digits) are
materialized as bistable components, such as magnetic
domains. The latter are similar to ordinary mechanical
locks having two stable positions—open and closed. No
heat is dissipated by a lock as long as it is left alone. It is
only when the state of the lock is switched by means of a
key that friction must be overcome (one hears a click).
Could we manufacture frictionless locks? There is no dif-
ficulty in principle to reduce considerably the friction of a
mechanical lock. However, the resulting device would be
useless in ensuring the safety of a house, because even the
slightest tremor or breeze could randomly open or close
the frictionless lock.

Likewise, in current computers, the bistable com-
ponents representing logical bits are required to be im-
mune to thermal fluctuations. Their design is such that
switching them from one state to the other involves a dis-
sipation of energy many times the value of kzT. Howev-
er, there is an essential difference: Contrary to a door
lock, a properly designed computer element is not affected
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by tremors or breezes, and its noise temperature may be
very low.!® A logical bit can in principle be materialized
as a single spin component, e.g., | 1) represents “1” (true)
and ||) represents “0” (false). A spin precession from
| 1) to | 1) can be generated by a magnetic field and dis-
sipates no heat.

We are thus faced with two distinct problems. One is
to write a Hamiltonian H for the system such that the
time evolution e ~"#*/% represents the execution of a com-
putation. The other one is to build the hardware
described by this Hamiltonian. Assuming that the first
problem can be solved, the second one is only a matter of
technical ingenuity.? Even if our state-of-the-art technol-
ogy is inadequate for solving the second problem, the
solution of the first one is nevertheless interesting in its
own right because it shows how dissipation can be re-
duced, if not totally eliminated.

This article is concerned with the construction of a
quantum-mechanical Hamiltonian describing a computer.
Here, the word ‘“computer” is taken to mean a physical
system where strings of bits—having a logical meaning—
are realized by strings of dichotomous elements, called
“spins.” The difference between this computer and an ar-
bitrary system of interacting spins is the following. The
computation process must be modular, i.e., each logical
operation involves only a few spins (no more than three
are ever needed). Nevertheless, all the spins, even those
which do not participate actively in some logical opera-
tion, may be affected by noise and precess at any time in a
random way. It is therefore essential to introduce, in the
computing process, error-correcting codes: Combatting
noise and correcting errors are not only technological
problems, but fundamental scientific ones as well.

In a quantum-mechanical computer, the execution of a
program is a dynamical process, which may be described
by the Schrodinger equation. It is well known that the
latter applies only to isolated systems and is valid in the
time interval separating a preparation (input) and a mea-
surement (output).> Although the theoretical considera-
tions in this paper do not set any formal limit to the size
of quantum-mechanical computers, the reader should not
envisage a general-purpose mainframe. What I have in
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mind is a small device, dedicated to a single task (the ex-
plicit example which I discuss below is an adder). This
device must be built in such a way that, once it has been
activated with a suitable input, it can work in (almost)
complete isolation from the external world, until the out-
put is extracted from it. The question “how big can a
quantized computer be” is a special case of the problem of
existence of macroscopic quantum systems.*

The plan of this paper is as follows. In Sec. II, I dis-
cuss logical reversibility, which is the key to physical re-
versibility. Section III describes some quantum computer
models, due to Benioff and Feynman. In particular, the
Feynman computer model is improved in such a way that
the result of the calculation must show up at a precise
time at a given site. The problem of noise is examined in
Sec. IV. It is shown how error-correcting codes can be in-
corporated in the Hamiltonian, so that the probability of
error may be made arbitrarily low. Finally, Sec. V out-
lines some possible future developments.

"~ II. LOGICAL REVERSIBILITY

In a seminal article, Landauer® showed that any erasure
or overwriting of one bit generated an amount of entropy
equal, at least, to kpln2. Landauer argued that it was
possible to avoid erasing or overwriting bits by keeping all
intermediate results on a huge scratchpad. However, this
would only postpone the entropy generation to a later
stage, when the computer was reset to start a new calcula-
tion. '

The last point was reexamined by Bennett, who
showed that it was possible to design a computing au-
tomaton (a reversible general-purpose Turing machine’)
capable of resetting its scratchpad to the initial state be-
fore ending the computational process. Therefore, the
only unavoidable entropy expenditure would be propor-
tional to the total amount of input and output (not to the
length of the intermediate calculations).? Reversible com-
puting was further discussed by Toffoli® and a
conservative-logic gate, constituting a universal signal-
processing primitive, was designed by Fredkin.®’

Following this, a number of Gedankenexperiment fric-
tionless computers have been conceived. They involve
elastic collisions of classical billiard balls,’ or the flipping
of quantized spins,'® or more complicated schemes.!!
There still is some controversy on whether reversible com-
puting can proceed in the presence of noise.'? I shall re-
turn to this point in Sec. IV and give a quantitative esti-
mate of the minimum amount of heat which must be dis-
sipated for a given noise level and tolerated error rate.

Before I discuss the various models of quantum-
mechanical computers and the problem of noise, it is im-
portant to make a clear distinction between what I call
“local” and “global” logical reversibilities. A simple ex-
ample will illustrate the difference. Consider a typical
random-number generator such as!® !4

X, —>X, +1=ax, (modb) , (1)

where the integers a and b are relatively prime. Equation
(1) shows how to obtain x, | from x,. It also shows how
to obtain x, from x,,;, because it defines a finite se-
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quence of pseudorandom integers (the period cannot be
longer than b). However, it is obviously considerably
more difficult to obtain x, from x, ., than x, ,; from x,
(many more operations are needed). Therefore, the pro-
cess described by Eq. (1) may be called “globally reversi-
ble.” It will be shown below that global reversibility is
not sufficient to obtain a useful computer: One would
have to know the solution of all the problems which the
computer can solve in order to write its Hamiltonian ex-
plicitly (i.e., to draw a blueprint of the computer).

On the other hand, “local reversibility” means that if a
forward step involves only a few bits, then a backward
step also involves only a few bits. From the point of view
of physics (and, by extension, of technology) this means
that the Hamiltonian involves only interactions between
small clusters of particles (e.g., two-body forces, three-
body forces, etc.). :

To illustrate the difference, consider a very simple Tur-
ing machine’ (Fig. 1) whose task is to compute the sum S
of two numbers A4 and B, given in binary representation.
As shown in the figure, the read/write (R/W) head starts
from the right, and successively replaces each digit of B
by the corresponding digit of S. It likewise replaces each
digit of A4 by the carry C. The only information to be
stored in the R/W head is the truth table'®

(A,B,Cip)—(C oy, S,Ciy) - (2)

After performing this transformation, the R/W head
moves one step to the left and repeats the process.

It is obvious that the above process cannot be reversible.
Based on the knowledge of the output, namely S and the
string of carried digits, it is impossible to retrieve 4 and
B separately (for example, we could exchange 4 and B
and get the same result). In fact it is easily seen that the
truth table of Fig. 1 is not bijective (i.e., not one-to-one
and onto): Each one of the final states 010 and 101 has
two predecessors, while the states 001 and 110 have no
predecessor (they are called “Gardens of Eden”).!!

In this particular case, global reversibility can be ob-
tained at the relatively small cost of storing C in the R/W

Ag |A7 | Ag |As |As | C3|Ca | Cy

000|000
001/011

INPUT 010|010

o11]101
Ak Bk Ck-1 |1 00[010
101(101
110{100

111111

OUTPUT
Ck Sk Ck-1

FIG. 1. Turing machine computing .S =4 + B. The cases in-
dicated by a heavy line are those affected at the next computa-
tional step.
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Ag [ A7 |Ag | As |Aa | As | Az | Ay
Bg |B7 [Be |Bs |Ba|Ss [S2| Sy

000|000
001/010
INPUT 010|010

011|001
Ak Bk Cin  |100[110
101(101

110[101
11111 J

FIG. 2. Globally reversible Turing machine, performing the
same task as that of Fig. 1.

QUTPUT
Ak Sk Cout

head, and keeping A unchanged (Fig. 2). The truth table
now is
(A9B’Cin)—’(A:S,Cout) . (3)

As before, the transformation is not locally reversible be-
cause each one of the final states 010 and 101 has two
predecessors, while the states 011 and 100 are “Gardens of
Eden.” However, the whole operation must be globally
reversible: It is obviously possible to retrieve B from the
knowledge of the output 4 and 4 +B. One way to do
this is to have a second R/W head starting from the right
and undoing the work of the first one. Another way is to
start from the left and explore both possible paths when-
ever one reaches a state with two predecessors. Any
wrong choice must ultimately lead to a “Garden of
Eden,” since the original state is unique (and in particular
the initial C is zero).!!

Local reversibility requires a more complicated
machine, illustrated in Fig. 3. It keeps the input 4 and B
unchanged, and replaces a string of zeros by the digits of
S. Its transformation table could be written as

(O,A,B,Cin)—"(SyA’B’Cout) N (4)
0O|0|0|0|0O][S3]S2|S
Ag | A7 | Ae | As | Aa| Az | Ax | Ay
Bs | B7 | Be | Bs | Ba | Bs | B2 | By

«~—— (C
000[000
001|100
INPUT  |010|110| ouTPUT
011011
O AcCin |y00 o:n s Ak
c By s 101|101| Sk Bk Cout
110]i11
111]010

FIG. 3. Locally reversible Turing machine performing the
same task as those represented in Figs. 1 and 2. The truth table,
which is bijective, must be applied twice (see the text for details).
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This table contains only 8 out of 16 possible inputs of 4
bits. The 8 other ones are not used (they are technically
known as “don’t care combinations,” see Ref. 15, p. 82).
In any hardware realization of (4), these irrelevant com-
binations would, of course, have some well-defined out-
puts.

However, it is preferable to keep the transmission func-
tion (the truth table) as simple as possible and to execute
the transformation (4) in two separate steps, each one of
which involves only three bits. First, we add 4 and C,
store their sum s in the bit reserved for S, and their carry
¢ in the R/W head, instead of C. This operation requires
only the first four rows of the truth table in Fig. 3. In the
second step, we add B and s, store their sum as S, add
their carry to ¢ and store the result as the new C. All this
does not involve yet the 6th and 8th rows of the table of
Fig. 3, because the combination s =c =1 never occurs in
the first four rows. These two remaining “don’t care”
combinations are uniquely determined by the conditions
that the transmission function must be bijective and that
its second argument be invariant.

Here, the reader may object that s and ¢ have switched
places between the two steps of the table of Fig. 3. If this
is considered as a problem, it is easily solved by the same
table which can generate the exchange operation

(s,0,c)—(c,0,s) . (5)

Other properties of this table, which is a universal primi-
tive, are discussed in the Appendix.

III. SOME COMPUTER MODELS

In this section, part of which is a review, I shall freely
use some computer jargon, for example “software,”
“hardware,” etc. These terms should, of course, be under-
stood as metaphors:!® In a quantum-mechanical comput-
er, the software is represented by a wave function ¥ and
the hardware by a Hamiltonian H. The latter describes
the dynamics of the central processing unit (CPU), e.g., of
the R/W head of a Turing machine.

The software is a finite string of bits having a logical
meaning. It includes the input (programs and data), the
output, and a scratchpad needed to store intermediate re-
sults. Each logical bit is materialized by a dichotomous
object, such as a spin. The states | 1) and | 1) represent
bits -with logical values O and 1, respectively. Quantum
theory also allows spins to be in linear superpositions of
the |{) and |1) states, with arbitrary complex coeffi-
cients. However, a state such as a | { ) +B| 1) has no log-
ical meaning from the point of view of conventional com-
puter science.

All these spins are considered as distinguishable—e.g.,
they may be attached to well-defined sites on a lattice—
therefore there is no need of wave-function symmetriza-
tion. It is convenient to take, as the basis of the
quantum-mechanical Hilbert space, all the direct products
of type | t4L11111 -+ ), which can also be represented by
integers in a binary basis. The initial state (the input) is
one of these basis vectors. If the calculation is correctly
done (see below), the output should also be one of these
basis vectors.
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Up to now, I have used the terminology of quantum
theory, but not really quantum theory itself. I now intro-
duce it explicitly by the following physical assumptions:
The hardware (represented by the Hamiltonian H) gen-
erates a unitary evolution of 1(t), the state of the software
at time ¢. This assumption has important consequences:
As unitary transformations are invertible, the logical
operations which they generate must be reversible, as dis-
cussed in Sec. II. The difference between local and global
reversibilities is that the former corresponds to a local
Hamiltonian (each interaction term involves only a small
number of particles) while in the latter case the Hamil-
tonian is such that any particle may interact with any oth-
er.
The purpose of the present section is to write H ex-
plicitly. This can be done in various ways, depending on
how closely one wants to simulate realistic digital com-
puters. The latter are usually of the synchronous type:
They are controlled by an internal clock in such a way
that one logical operation is performed during each time
step 7. (More generally, parallel processors perform
several simultaneous logical operations during each time
step.) If one accepts a time-dependent Hamiltonian, it is
fairly straightforward to write one which simulates the
record, compute, and shift steps of a Turing machine.!”
Each one of these steps involves only a small number of
spins (those scanned by the R/W head, and those in the
head itself). The other parts of the computer are not af-
fected. However, a time-dependent Hamiltonian is not
really satisfactory in this context. The internal clock of
the computer is considered as a classical object, turning
interactions on and off, never affected by the other com-
puter components which it is supposed to control. To be
consistent, one should quantize the clock too and treat it
as a dynamical system, interacting with the CPU and oth-
er computer parts. If we attempt to do that, it turns out
that the motion of the clock is affected by whatever in-
teracts with it,!7 time steps are blurred, and, presumably,
the computer operation is impaired. (These effects vanish
in the limit of a slow, macroscopic, quasiclassical clock.
However, this limit does not fit well with the spirit of the
present work.)

Next, consider time-independent Hamiltonians.!® A
clockless computer can be obtained from Benioff’s time-
dependent model as follows.!® Consider the unitary
transformation generated by each computer step. It acts
only on a few spins, but can be embedded in a huge U ma-
trix acting on the whole Hilbert space. This U matrix is
implicitly defined by all the sequences of logical steps

Yo—>t1— - =y _ 11—, (6)

starting at an arbitrary state 1,. Notice that the evolution
generated by U must be cyclic, since the total number of
states is finite. The length of the cycle, M, may of course
be a huge number, which depends on the choice of .

Now, all the legal initial states span only a tiny fraction of

Hilbert space (see, for example, Fig. 3). Therefore, all the
physical orbits, i.e., all the logical states which may be ob-
tained by starting from a legal 1, cover only a subspace
of Hilbert space. Notice that the subspaces spanned by
each one of these orbits are mutually orthogonal, and are
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invariant under U. ,

These properties allow one to construct explicitly U,
and then H, in the subspace of each orbit.!° Indeed, the
M states in Eq. (6) are mutually orthogonal. Using them
as a basis, one has

1if r —s =1 (modM) ,

s = 10 otherwise . 7

The eigenvalues of U are e*™ M (k=0,1,...,M —1)
and the corresponding normalized eigenvectors are
Vier =M 2 2mikr/M (8)

It follows that

Uy, =™ My, v, )
3
and since we want to have U =e ~*#7/% we obtain
Hy= —Quti/MD)S kVi Vi . (10)
%

The sum can be performed explicitly'® and gives, for
| r—s | <M,

H, =i#/7(r —s) if r+s , (11)

and H,,= —m#i/7. It may thus seem that the fundamen-
tal problem (writing H explicitly) has been solved, and the
results is ready to be handed over to the technologists.
Unfortunately, as pointed out by Benioff,!° in order to
make sense out of Eq. (11), one must know explicitly the
basis states ¢, and 1, i.e., the whole sequence (6). In oth-
er words, the Hamiltonian of this computer can be written
explicitly only after we know every step in the solution of
every problem which the computer may solve.

Benioff also pointed out that when ¢ is not an integral
multiple of 7, the computer state 1(¢) is a linear superpo-
sition of all the basis vectors in (6), i.e., all the computa-
tional steps of the cycle. This is readily seen from
i#idy/dt =Hv and Eq. (11). Benioff raised the question
whether all time-independent Hamiltonian models had
that property. The above argument, which is quite gen-
eral (not specific to Turing machines) indicates that-it is
indeed so. Benioff also speculated that these ‘“time-
global” Hamiltonian models might always require prior
knowledge of all computation orbits in order to construct
the Hamiltonian.

This difficulty was overcome by Feynman, who in-
troduced an additional degree of freedom, called a “cur-
sor,” to enumerate the consecutive logical states in Eq. (6).
In Feynman’s approach, it is the logical order, rather than
the time order, which is important. The calculations run
forward and backward in time, just as particles and an-
tiparticles in Feynman’s classic work on relativistic quan-
tum field theory.2o®

The Hamiltonian of Feynman’s computer can be writ-
ten as

20(a)

H=t3 o | k) (k—1| U+ |k—1) (K [UD,  (12)
k

‘where | k) is the cursor state after the execution of step

k, and U is the unitary matrix converting the logi-
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cal state ¥ _; into the logical state ¥,. Likewise, the in-
verse matrix Uy converts 9, into ¢¥; _;. The sum in Eq.
(12) runs from 1 (the first logical step) to N, if N transfor-
mations are needed to obtain the final state ¢y. Here, the
word ““final” refers to the logical end of the calculation,
not to the time evolution. The latter is endless, unless ter-
minated by an external agent.?!

For example, in Fig. 3, the state is ¢3|3) and N =8.
Each one of the U involves the spins which participate
in the kth logical step. (All the U, matrices may look the
same, but they act on different degrees of freedom.) Since
the Turing machine of Fig. 3 moves in only one direction,
the cursor simply indicates the current position of the
CPU (the R/W head). In Turing machines where the
CPU can move in both directions, the cursor is a step
counter, which is part of the CPU. (What is called here a
cursor may itself be a set of spins. For example, a “cur-
sor” with N =2™ “positions” can be simulated by the
states of M spins.)

The coefficients #iw, in Eq. (12) are arbitrary. In
Feynman’s paper?®® they are all set equal to 1 but, as will
be seen below, it may be advantageous to make them dif-
ferent. Moreover, I wuse here Dirac’s notation

| k) (k —1]|, which seems simpler than gg gy _; (creation
and annihilation operators) in Ref. 20(a).

To see that the evolution generated by (12) indeed gives

the desired computational process, expand

e—iH:/ﬁ%lmzi(_th/ﬁ)"%]o)/n!. (13)

n=0

By virtue of the orthogonality property {k |l)=38, the
only nonvanishing terms in (13) are those where
| k+1) (k | Uy, stands on the left of | k) (k —1]| U,
orof | k) {k+1]|U; . Forexample, one such term is

UlU,U 0| 1) (2]2) (1]1)(0]0)=U,h| 1)
=y;|1). (14)

Thus, in general, it is easily seen that the solution of
i#idy /dt = H must be of the form

W= ety | k) . o (s)
k

In other words, the computer is in a superposition of
states including all the steps of the calculation, with
time-dependent coefficients c;(z). There is no relationship
between logical ordering and time ordering. However, the
logical steps are correlated with the states of the cursor.
Thus, if a measurement?® is performed and the cursor is
found at position N, then the state of the software is
1y—the logical end of the calculation.

Equation (15) can be generalized to the case of a statis-
tical mixture, which is represented by a density matrix p.
(This may be required to take into account the effect of an
unsuccessful measurement,?? as discussed below.) Consid-
er

p(t)=3 cu(t) | kY (I | ] , (16)
k,1

where cy; is any Hermitian matrix with unit trace. Then,
the equation of motion
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ifdp/dt =[H,p] (17)

shows that the time derivative of p has exactly the same
structure as the right-hand side of Eq. (16), so that p(¢)
will always retain that structure.

Formally, consider the projection operator on the kth
logical state, i.e., Py =8;1. It satisfies

Py=Up Py _ U . (18)
Then define
P=3|k)(k|P, (19)
k

which is also a projection operator. The latter satisfies
Py =1 for all ¢ of type (15), where the kth logical step is
correlated to the kth position of the cursor. Now, it
readily follows from (12) and (18) that [ P,H]=0, so that
P is a constant of motion. In other words, the above
correlation (of logical steps and cursor positions) is main-
tained by the Hamiltonian evolution, even if the state is
not pure (e.g., even if phase relationships between the vari-
ous components are blurred by noise). Thus in general, if
one measures |N) (N | and finds it equal to 1, this
selects the logical state corresponding to Py, i.e., ¥y .

Now, what happens if the cursor is not found in state
| N)? If this measurement is properly done,? without
disturbing the correlations of other wave-function com-
ponents, the resulting density matrix will still have the
form (16), with cxy =cyx =0. An additional time evolu-
tion will then restore the cyy component and one may
then try again to find the cursor at | N').

Naturally, it would be preferable to ensure that at some
prescribed time 7, the cursor will be found at position N,
with 100% probability. This result can indeed be
achieved by a suitable choice of the coefficients wy, name-

ly
wr=(7/2T)[k(N +1—Kk)]\/2. (20)

This is easily seen if we relabel the cursor positions from
—J to j, instead of O to N (here, j is an integer or half-
integer, since 2j = N). Let m =k —j run from —j (the in-
itial position of the cursor) to +j (the final position).
Consider a representation where J,, the position of the
cursor, is diagonal. Then the matrix elements of the rais-
ing operator?’

Uz Ly )mm —1=[( +m)j +1—m)]'/?, 21

are, up to factor 7/27, the transition frequencies, in Eq.
(20), from state | m —1) to state | m ).

The cursor thus behaves as a spin-j particle, initially in
state m,= —j, placed in a magnetic field with Larmor
frequency 7/7. This is easily seen from Eq. (12) which
would become, without the U, operators, H =(7w#/T)J,.
One would have, in the Heisenberg representation,

J, (1) ____eth/ﬁJz(O)e —iHt/#
=cos(7/T)J;(0)+sin(w/T)J,(0) . (22)
In particular

J,(T)=—J,(0), (23)
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as desired. Returning to the Schrodinger representation,
this means that if ¥(0)=| —j), then Y(T)= | +j). The
U, operators in Eq. (12) do not affect the above result.
As seen in Eq. (15), they simply correlate the position of
the cursor with the logical steps of the computation.

It is instructive to obtain explicitly the coefficients
c1;(t) in Eq. (15). Qulte generally, the solution of the
Schrédinger equation is

cn()=3 3 un(Ep)um(E)exp(—iEt /#i)cy, (0) , (24)
m k

where the u,(E;) are the normalized eigenvectors corre-
sponding to the energy eigenvalues E;. The latter are
E,=kw#/T, where k =—j,—j+1,...,j. The eigenvec-
tors of J, can be obtained from those of J, by a 7/2 rota-

tion around the J,, axis. Recall that we are using the rep- .

resentation where J, is diagonal, so that each one of its
eigenvectors has a single nonvanishing element. We there-
fore simply have?*

u,(Ex)=[DY({0,7/2,0}) 1 - (25)
In particular®*

uj(Eg)=2"7{2j) /[ + kNG —kN]}'72 (26)
and

u_j(Ex)=(—1Y*ky;(Ey) . 27

As the motion starts from position —j, we have
¢, (0)=38,, _; and we obtain from (20)

(t 2][(21 |]Ee—lk1ﬂ/T/[(] +k)'][(_] k)'] ,

(28)
=cos¥(mwt/2T) , (29)

where the last step results from the binomial expansion of
(5 +7e~im™/T)4, Likewise

cj(t)=[i sin(wt /2T)]¥ . (30)

It follows that the probability of finding the cursor at its
final (Nth) position is sin?"(s¢ /2T). Likewise, the proba-
bility of finding it at its initial position is cos*(#t /27T).

Thus, a measurement performed at time T is of the
“quantum nondemolition” type.?> This is because the cor-
responding logical state i, although unknown, must be
one of the orthogonal basis vectors such as
[ tiititt--- ). It cannot be a general linear combina-
tion of them, and therefore it is unchanged by the mea-
surement.

IV. NOISE AND CORRECTION OF ERRORS

Anything which tampers with the above ideal process is
called “noise” and induces computational errors. Zurek!®
distinguished two types of noise, causing software errors
(inaccurate initial data) and hardware errors in the Hamil-
tonian:

H'=H +H s - @31

Zurek pointed out an essential difference between classical
frictionless ~computers’ and  quantum-mechanical
ones.!%20@) 15 the classical case, software errors grow ex-
ponentially with the number of steps executed. In quan-
tum mechanics, inaccuracies in the initial data do not
grow. This is due to the fact that classical dynamics in-
volves the symplectic group, which is noncompact, while
quantum dynamics uses the unitary group, which is com-
pact

Quantum-mechanical computers thus appear more
stable than classical ones. Unfortunately, they are subject
to a new type of error: To obtain the result of a computa-
tion, a macroscoptc readout system must perform a mea-
surement’ upon the quantum-mechanical system and con-
vert the information stored in the wave function into tan-
gible data. Any imperfection in the measurement process
may cause a readout error. For example, if the Feynman
computer described in Sec. III is not observed at time 7T,
but at a slightly different time 7'+ 8 (or, what essentially
amounts to the same, during a finite time interval®’ of
length 8, centered around 7) the probability of getting a
correct result is

| (| e~HA| gy | 21— ((H?) — (H Y2)8% /% +

(32)

The energy dispersion (H?)—(H)? is a constant of
motion and can easily be evaluated for the initial state
¥o|0) by using (12) and (20). One has

Hiy|0)=(m#i/2T)N' 2, | 1), (33)
whence (H ) =0 and
(H?)=Nm*#/4T? . (34)

The readout error probability therefore is N (w8/2T)%
This result could also be derived directly from (30), by ex-
panding

sin?¥(7t /2T) =1 —=N[m(t = T)/2TP+ - - - . (35)

In summary, if the measurement is not extremely short in
comparison with the computer execution time and, more-
over, precisely synchronized with it, the readout system
may not register what it was intended to. (A classical sys-
tem, on the other hand, may in principle be observed con-
tinuously without ever being disturbed.)

This difficulty can be overcome by smoothly turning on
and off the computer itself. In other words, one replaces
the time-independent Hamiltonian H of Eq. (12) by

H(t)=g(H , (36)

where g(t) is a smooth function with compact support
satisfying f g(t)dt =T. The Schrodinger equation
ifidy/dt =H (t)y can be rewritten as i#dy/d60=H,
where d0=g(t)dt. Therefore the dynamics of this time-
dependent computer, in terms of 6, is exactly the same as
that of the time-independent computer (12), in terms of ¢.
However, 0 is automatically. constrained to the domain
[0,T]. One can then leisurely prepare the initial state
10| 0) before g(z) is turned on, and observe the final state
Yy | N) after g(t) is turned off.?
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This introduction of an explicit time dependence could
be criticized on the same grounds as in the case of
Benioff’s time-dependent Hamiltonian!® (see Sec. III).!7
There is however an essential difference: Benioff’s model
required to turn on and off various parts of the Hamil-
tonian with a very short time scale (three different parts
of the Hamiltonian were involved in each logical step).
On the other hand, the time dependence in (36) is smooth
and can last as long as we wish. The external clock which
controls it can therefore be treated as a classical system,
immune to any reaction from the quantum computer.
Yet, the synchronization problem which was mentioned
earlier did not disappear: We may still be faced with the
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below).

Hardware errors, Eq. (31), are the most difficult to deal
with. They may be time independent, such as
manufacturing defects, or time dependent, due to-external
perturbations. They may involve one-body effects, such
as spin precession in an external magnetic field, or two-
body effects, such as imperfect couplings of spin pairs, or
higher-order effects.

As an example, consider the spin precession of electrons
in a random magnetic field, with rms average B =10~
gauss. Assuming that H and H . are constant over the
time scale involved, one has, for the overlap?® of the
correct wave function e ~*H*/% and the incorrect one

difficulty of making | g(¢)dt =T exactly. Any inaccura- e —iH't/h
cy here should be considered as a hardware error (see
|
l <¢ ‘ e’Ht/ﬁ —lH A I ¢> l =S 1_"[<Iin01se > - <Hnoise )z]tz/ﬁ2+ Tt (37)

Notice that the error probability increases quadratically
with time.!®?° In the present case, Hoie= 4 Brandom>
the sum being taken over all the spins. We thus have
(H 0. ? =0 and, if there are v spins in uncorrelated ran-
dom magnetic fields,

<Hnmse>=vl*l'2<B2> . (38)

For electrons, we have u?(B?) /#*=(8.8 s~!)2. For a sin-
gle electron, this appears to be quite slow, compared to
obtainable computer cycle times. However, if there are,
say, v=10° spins (125 kbytes; 1 kbyte =8 1024 bits) this
gives, after only 1 =10"° s, an error probability ~ 10~%,
which is not acceptable. (If all the electrons were in the
same magnetic field, the error rate would still increase by
a factor of v.)

The above numerical example shows in a dramatic way
the essential difference between frictionless computers and
those based on current technology. In the latter, errors
are likely to affect components actually participating in
logical operations. Idle components are considered stable
over the time scale of the computation. To switch their
state, one must overcome an energy barrier of many kT
and this is unlikely to happen spontaneously (this can
occur only in the wake of very rare large thermal fluctua-
tions). On the other hand, in a frictionless computer, all
the components are free to move all the time. It cannot be
otherwise, since every logical state is present (has some
nonvanishing amplitude) at every time—with the possible
exception of a set of measure zero.

Redundancy is the key to improve computer reliabili-
ty.1>16 Instead of taking a single spin to represent a bit,
we may take several noninteracting ones. Conceptually,
this is the same as having several computers performing
the same job, and polling them to decide the result by ma-
jority vote.*® If this is done at intermediate steps (not
only at the end of the calculation), one has to realign each
spin in each computer along the (supposedly) correct
direction.

Let r be the number of identical replicas. Let p be the

probability to obtain a correct result, and g =1—p the er-
ror probability in a single measurement. The probability
to get r /2 or more erroneous results is (for even r)

kor r! k,r—k (39)
o

If gr <<p, the sum is dominated by its first term, and
Q=q"X(r)/[(r /201 P=(4q) (2 /mr)! /> . 40)

On the other hand, if gr >>p, but we still have g <<p, the
De Moivre—Laplace limit theorem gives®!

Qe "%/ (7r/29) "% . 1)

In both cases, the error probability decreases exponentially
with the redundancy r and can be made arbitrarily small.

The real problem which we have to face is the cost of
redundancy in terms of generated entropy. If error
correction is needed not only at the end of the calculation
but also at intermediate stages, all the spins must be tested
and realigned before the computation can proceed.

In modern-day computers, error correction is accom-
plished simultaneously with logical operations by means
of interwoven redundant logic (see Ref. 15, p. 258). A very
simple example is shown in Fig. 4, where r =3 and it is
assumed that at most one incoming bit may be erroneous.
If most incoming bits in Fig. 4 are 1, their sum is 2 or 3
and all the outgoing bits will be 1. If most incoming bits
are 0, their sum is O or 1 and all the outgoing bits will be
0. Simple as it is, this system is extremely wasteful, be-
cause each bit is tested as if it were totally unknown. No
use is made of the fact that the error probability must be
very small (if it were not, triple redundancy would not be
enough) so that the three bits are highly correlated. More-
over, it is possible to keep a record of all the error correc-
tions.>? Now, if this is not done, information is lost (and
therefore entropy is wasted during the computation),
while if a record is kept, it will have to be destroyed later,
when the computer is reset to start a new task (and then at
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FIG. 4. Classical error correction by means of triple redun-
dancy. All the outgoing bits are the same, either O or 1, accord-
ing to the “majority opinion” of the incoming bits.

least the same amount of entropy will be generated).’

To prevent this waste, error correction should be done
reversibly. In particular it should be impossible to keep a
record of the error. A possible way to achieve this is illus-
trated by the Gedankenexperiment of Figs. 5 and 6. Tri-
ple redundancy is again used, as in Fig. 4. Thus, if there
were no computational errors, the three incoming spins
should be in states | 111) or |ii{). Because of noise,
their actual state is of type

al| M) +BItt)+y | tit)+8]11L) (42)
or
al L) +BI 1) +y | i) +8] 1) . (43)

These expressions should be understood as statistical mix-
tures. In particular, the phases of the ‘“wrong” com-
ponents, 3, ¥, and § are unknown.

The classical error-correcting code (ECC) of Fig. 4 was
based on the assumption that the probability of having
two erroneous bits (out of three) was negligibly small. The
quantum ECC likewise assumes that there is no admix-
ture of components of (43) into (42) or vice versa, or that
this admixture has a negligible amplitude. In fact, we
may assume (although this is not really necessary) that
| @ | =1 and that 3, ¥, and 8 are very small.

We thus tie the three spins together and send them
through the Stern-Gerlach (SG) apparatus of Fig. 5. This
apparatus is enclosed in the same “black box” as the com-

FIG. 5. Error detection by a Stern-Gerlach apparatus. If
there is no error, the three incoming spins are either in the +%
state or in the — % state, and leave in the upper or lower outgo-
ing beam, respectively. The two intermediate beams, corre-
sponding to total spin :t%, contain an admixture having one
spin with the wrong sign. This error is then corrected in a

second apparatus (under the magnifying glass) described in
Fig. 6.
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FIG. 6. Error correction by an array of Stern-Gerlach ap-
paratuses. The outgoing beam in Fig. 5 has total spin % while it

should be % The three spins are separated and the one which is
deflected downward (spin=—4) has its direction reversed in a
magnetic field.

puter and is likewise perfectly isolated from the external
world. (There must be as many distinct SG apparatuses
as there are triples of spins to be tested and realigned.?)
The wave-function component having coefficient a in (42)
or (43) propagates in the upper or lower beam of Fig. 5.
That beam is then sent back to the computer, untouched.
The rest of the wave function propagates in one of inter-
mediate beams, which correspond to total spin +#/2 (in-
stead of the correct values +3%/2, respectively). This er-
ror ought to be corrected. To this effect, we untie the
three spins and send them, separately, through three addi-
tional SG apparatuses, as shown in Fig. 6 for the case
+#/2 (there are three more SG apparatuses doing a simi-
lar job for —#/2). Here, any spin in the | 1) state is re-
turned to the computer, as is; and any spin in the | 1)
state is made to pass through a perpendicular magnetic
field where it precesses into the | 1) state, and then it re-
turns to the computer. The computer thus receives a pure
[ t11) (or | 144)) state, while the battery of SG appara-
tuses is left in a mixed state.

Note that no “measurement” has been performed, from
the point of view of quantum measurement theory.®> No
information was extracted from the SG apparatuses and
in particular we cannot know whether the correct state
was | t11) or | {ll). Rather, the mixed state (42) or (43)
was “purified” while the SG apparatuses, which had ini-
tially a prescribed pure state, have been left in a mixed
state. In other words, an amount of entropy

—kpTr(plnp)~—kp(|B|4n|B|*+ |y |Mn|y |?
+18]4n]8|?), (44)

has been transferred from the logical part of the system to
the auxiliary SG apparatuses. Since f3, 7, and 8 are as-
sumed small, this entropy is considerably less than 3kgln2,
which would be generated by standard measurements of
the spins.

When the computer is reset to enable it to perform a
new task, all its SG apparatuses must also be reset to their
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initial pure state. The entropy which they stored is there-
by released to the external world. For a computer having
v components (spins), an error probability g per com-
ponent, and a redundancy r—the latter obtained from Eq.
(40) or (41)—the released entropy is given by a straightfor-
ward generalization of Eq. (44), namely
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Fortunately, we do not need this multitude of Stern-
Gerlach apparatuses to obtain a reversible ECC. The
latter can be achieved by spin-spin interactions, just as any
other logical operation. In the simple case of triple redun-
dancy, we only need one pair of auxiliary spins, initially in
the state | L1) say, to realign the three spins in (42) and

S =—kgvrglng . (45) (43). This can be done as follows:
|
[ LM a | T +B Ity | 1) 8| 1)) —(a | L) +B| 1) +y | 1) +8] 1t )| 111), (46)
and likewise
[V | LU 4B 1Y +y [ 1t 8 Lit))—(a | L) +B | 1) +y [ 1) +8] 1)) | LiL), . 47)
[

The processes in (46) and (47) are unitary evolutions (they
can be generated by a Hamiltonian) because they corre-
spond to a reversible truth table (Table I). It is possible to
write explicitly the unitary matrix corresponding to Table
I by the method used in the Appendix. Alternatively, the
logical operations in Table I can be reduced to a sequence
of three-spin interactions (such as those of the table of
Fig. 3, which is a universal primitive).

It is important that none of the 24 unspecified rows of
Table I may contain outputs such as mn000 or mn 111.
In other words, if the initial state of the two ECC spins is
not | {1), the final state of the three logical spins cannot
be |111) mor |iil). This implies that each error
correcting device (pair of spins, or SG apparatus, etc.) can
be used only once in the computation. Otherwise, it would
cause errors, rather than correcting them (in particular,
any software error in the initial state of the ECC spins
will induce errors in the logical spins). In general, any
further use of the same ECC device necessitates resetting
it by an external agent, with concomitant heat dissipation.

The final problem is to combine these error-correcting
codes with the Hamiltonian (36). First, one must intro-
duce in it redundancy and this can be done in two ways.
One possibility simply is

H—)EH(G) 3 (48)
a

where a =1,2, . ..,r, and it is understood that the r par-
tial Hamiltonians H,, are defined in r different Hilbert

TABLE I. Eight rows of the truth table corresponding to
Egs. (46) and (47). The 24 other rows can be chosen arbitrarily,
provided that each combination appears once, and only once, in
the input and output.

Input Output
00000 00000
00001 01000
00010 10000
00 100 11000
00110 01111
00101 10111
00011 11111
00111 . 00111

spaces. Another possibility is to duplicate only the logical
part of the Hamiltonian, namely the U, matrices, and to
use the same cursor for all of them. Each term in (12)
then becomes

[k)Ck—1|Uu®Upp® - - U » (49)

which is a direct product®® of Uy. (The same direct-
product formalism would be used to describe a parallel
processor.>¥)

If each one of the r identical computers has v com-
ponents (spins), the error-correcting Hamiltonian for each
one of these components can be written as

Hypce=(m/2F()(| 1) 0|V +|0) (1| V), (50

where V is the unitary matrix corresponding to Table I
(or, more precisely, to the extension of Table I to r redun-
dancy) and |0) and | 1) are two orthogonal states of a
new ‘“‘cursor.” This is similar to Eq. (12), but with a sin-
gle step. The cursor is initially in state |0) before the in-
teraction f(¢) is turned on. It ought to be in state |1)
when f(t) is turned off. This result may be achieved by
making ff(t)dt =1.

This completely resolves the problem of a single-pass
computer. First, g(¢) in Eq. (36) is turned on and off, and
then f(¢) in Eq. (50). Notice that the scratchpad cleanup
requested by Bennett® is an integral part of the logical
steps in the Hamiltonian (12) and need not be considered
as a separate operation. On the other hand, the ECC
should not be considered as part of the logical program,
although it consists of elementary logical operations
which are of the same type as those of the program itself.
The reason is that the ECC is a trivial identity operation
if there is no error. On the other hand, if there is an er-
ror, the reverse process (as prescribed by Bennett for
“scratchpad cleanup””) would then cause additional errors.

There still is a difficulty if the error probability for a
single component is so high that no redundancy would
help. It is then necessary to break the execution of the
program into several consecutive subprograms. Each sub-
program has its own Hamiltonian, of type (36).> One
first executes the first subprogram, then an error correc-
tion by (50), then the second subprogram, than a new er-
ror correction, etc. As already explained, each intermedi-
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ate error correction involves every spin in those parts of

the scratchpad and the input data that may still have to be

used in the computation. Only the final error correction
may be restricted to the output (the result of the calcula-
tion). In this final correction, no advantage can be gained
by resetting the scratchpad to zero exactly, since its re-
sidual entropy (the one due to noise) is transferred to the
error-correcting system, and then the latter has to be reset
anyway.

V. OUTLOOK

Computer science, as it is practiced today,'” uses Aris-
totelian logic. It is based on the notion ‘“true” and
“false,” represented by 1 and 0, materialized by | 1) and
| L). Matter, however, can support states more general
than | 1) and | {). They appear in the dynamics, but not
in the logic of the quantum computer described in this ar-
ticle. This computer thus is “effectively classical.”>® In
each elementary logical step, no generic quantum property
(interference, nonseparability, indeterminism) can be
detected.

One is naturally tempted to try to generalize computer
science, so that it would admit a continuous logic, where
a|1)+B|L) (with complex coefficients a and B) would
have a meaning. For example, one could have a true
random-number generator’® (not only pseudorandom
numbers, as in Refs. 13 and 14) by rotating a spin half-
way, to the | —)=2"12(|1)4|!)) state, and then
measuring whether it is | 1) or | !). On the other hand,
this measurement process is inherently irreversible’ and
therefore the Bennett scratchpad-cleanup procedure®
would not be feasible in this truly quantized computer.

Ultimately, a quantum computer making full use of a
continuous logic®’~3° may turn out to be more akin to an
old-fashioned analog computer, rather than to a modern
digital computer. This would indeed be an ironic twist of
fate.
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APPENDIX: UNIVERSAL REVERSIBLE GATE
The truth table of Fig. 3,

(x,y,z)ﬂ(x',Y',Z') > (A1)

has many interesting properties. In pseudocode, it per-
forms the functions

x'=y-XOR'z ,

y'=y, (A2)

z'=x'XOR'(y*ANDZ) .

(Here, XOR is the “exclusive or” relational operator, which
gives the “true” value as output if and only if one of the
input values is “true” and the other “false.”)

By constraining one of the inputs, one obtains some
familiar primitives. For example, if y =0, one has the ex-
change operation of Eq. (5. If x =0, one has
z'=y-AND'z and; most important, if x =1, one obtains
z'=y NAND-z. It is well known that the NAND gate is a
universal primitive.'* (NAND is the relational operator
which gives the “true” value as output only if one or both
input values are “false.”) Therefore the reversible gate
(A2) is also universal.

By constraining fwo of the inputs, we may get both the
NOT and the FAN-OUT functions, e.g.,

(A3)

Our problem is to write the table of Fig. 3 in terms of
spin operators, so that it can be used as one of the Uy in
Eq. (12). To do this, one replaces each combination
(x,y,z—x",y',z') in (A1) by a direct product23 of three
matrices M, ,®M,,® M., (one 2X2 matrix for each one
of the three spins). Explicitly, these matrices are

(0,}’,1)—*( l —y,y,)’) .

10 .
My = 00 =P, =5+s;,
. 00 .
Myo= 01 =P_=35—5;,
(A4)
01 .
M y= 00 =J+ =5, +1is), ,
00 .
My, = 10 =J_ =5, —is, .

For example, the second line in the table, namely
(001-—-)1'0'0'% becomes MI'O®M0'0®MO'1 =J+ QP_®J_.
In this way, the eight rows together become the unitary
matrix

U=P_®P_®P_+J,®P_®J_+J,8P ®P_+P_®P QP

+J_@®P_®J,+P,®P_®P, +P,®P,®J, +J QP ,J_ .

(AS)

It is straightforward to verify that U tU=I®1I&I (the direct product of three 2 X2 unit matrices).
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