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With the use of a simple similarity transformation which brings the radial wave equations of the
Dirac-Coulomb problem into a form nearly identical to those of the Schrodinger and Klein-Gordon
equations, we derive simplified solutions to the Dirac-Coulomb equation for both the bound and
continuum states following the familiar standard procedure adopted in the derivation of the conven-
tional solutions. We show that to obtain the desired form of the second-order radial equations we

can still work with a first-order partial differential equation rather than with the second-order Dirac
equation widely employed in the derivation of the simplified solutions, and thus we can avoid the
task of reducing the solutions of the second-order equations to those of the original Dirac equation.
The transformed Dirac-Coulomb radial equations are so simple that one can apply the WK.B
method to them in the same way that one applies the WKB approximation to the Schrodinger radial
equation, without making the further approximations commonly invoked, and the Sommerfeld-
Dirac discrete spectrum follows immediately. For small Za, we also present approximate expres-
sions for both the transformed and the original Dirac-Coulomb wave functions, which are valid for
all energies and certainly valid in the quasirelativistic approximation which takes account of relativ-
istic effects. The structure of these approximate expressions also suggests one of the methods to ob-

tain relativistic approximate wave functions from the Pauli-spinor wave function for more general
central potentials arising in atoms, molecules, and solids.

I. INTRODUCTION

The exact solution to the Dirac equation for an electron
in a Coulomb field was first obtained by Darwin' and
Gordon. The radial part of the upper or lower com-
ponent in the usual solution can be expressed as a sum
of two confluent hypergeometric functions. Instead of
solving the Dirac-Coulomb equation directly, one can
solve the second-order Dirac equation ' which is ob-
tained by multiplying the original equation on the left by
a differential operator. The second-order equation is simi-
lar to the Klein-Gordon equation in a Coulomb field.
The latter equation can be reduced to a form nearly iden-
tical to that of the Schrodinger equation and its solution
can thus be inferred from the known nonrelativistic solu-
tion. ' ' One can also perform an analogous reduction of
the second-order Dirac equation by diagonalizing this
equation in a certain representation, and one thus obtains
the solution in the same way as one solves the Schrodinger
equation. ' Since the solution to the second-order equa-
tion is not always a solution of the original Dirac-
Coulomb equation, one has to find some methods to
reduce solutions of the second-order equation to solutions
of the original Dirac equation. ' Biedenharn
discovered a generalized recursion operator for the radial
eigenfunctions, which was utilized to reduce solutions of
the second-order equation to those of the original Dirac
equation for the continuum states and bound states.
The resulting solutions are simpler than the previous ones
in that each component contains only one confluent hy-
pergeometric function.

The exact solution of the Dirac-Coulomb equation has
recently been used to study the relativistic effects in

bound state problems of external fields' and of interac-
tion with radiation' and in the process of inner-shell ioni-
zation. ' Some approximate schemes for the Dirac-
Coulomb equation have also been investigated recently,
which may also have relevance to relativistic calculations
of systems other than the hydrogenlike atom. The varia-
tional study of the Dirac-Coulomb equation in a finite
basis set' can be useful in the calculations of relativis-
tic molecular structure. Solution to an approximate
Dirac-Coulomb equation given recently is basic to the
study of the relativistic wave equation for X interacting
Dirac particles. '

In this paper we obtain simplified Dirac-Coulomb solu-
tions by first applying a similarity transformation' '

to the Dirac-Coulomb equation. The similarity transfor-
mation is chosen so that the radial wave equations of the
Dirac-Coulomb problem are simplified considerably and
can be put in a form completdy similar to those of the
Schrodinger and Klein-Gordon equations. As a result, the
solutions to these radial equations can be inferred immedi-
ately from those of the Schrodinger and Klein-Gordon
equations. The resulting radial function of each of the
upper and lower components contains only one confluent
hypergeometric function, which is much simpler than the
radial function in the usual solution, containing a sum of
two confluent hypergeometric functions. Note that
throughout this paper we always study the first-order par-
tial differential equation instead of the second-order Dirac
equation. ' The similarity transformation used here is
fairly simple, containing no differential operator and thus
does not raise the order of the Dirac equation so that the
transformed Dirac-Coulomb equation under investigation
remains a first-order equation. This has the advantage
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that we can avoid the problem of reducing the solutions of
the second-order Dirac equation to those of the original
Dirac equation in a certain representation, which presents
a great hindrance in explicitly writing down the solutions
of the Dirac-Coulomb equation in a simple form "" and
has been overcome only after the ingenious discovery by
Biedenharn ' of a generalized recursion operator for the
radial eigenfunctions. It is evident that our inethod of ob-
taining the simplified solutions to the Dirac-Coulomb
equation is simple and familiar, following the standard
procedure adopted in obtaining the usual solutions.

We also consider the problem of the WKB approxima-
tion to the radial wave equations arising in the (first-
order) transformed Dirac-Coulomb equation. The radial
equations are so simple that the application of the WKB
method to them is as elementary as the application of the
WKB method to the Schrodinger radial equation,
and as a result the Sommerfeld-Dirac discrete energy
spectrum follows immediately from the quantization rule.
In contrast, the radial equations in the usual formulation
are very complicated. In applying the WKB method to
these radial equations one has to invoke further approxi-
mations, and only after that one can obtain the
Sommerfeld-Dirac energy levels. '

From the simplified solutions to the transformed
Dirac-Coulomb equation, we derive approximate expres-
sions for both the transformed and the original Dirac-
Coulomb wave functions by expanding the exact wave
functions in powers of Za. The resulting expressions
contain the Pauli approximation as the lowest-order ap-
proximation, and can also be used as quasirelativistic
wave functions which take account of the relativistic ef-
fects on the wave functions. The structure of the approxi-
mate wave functions indicates how one can obtain the ex-
act Dirac-Coulomb wave functions from the Pauli-spinor
wave function, and suggests a similar procedure to find
approximate relativistic wave functions from the Pauli
wave function for general central-potential problems,
which are certainly useful in understanding relativistic ef-
fects in atoms, molecules, and solids. ' '

In Sec. II the Dirac-Coulomb equation is transformed
under a similarity transformation. The constants in the
transformation matrix are determined in such a way that
the resulting radial wave equations can be put in a form
completely similar to those of the Schrodinger and Klein-
Gordon equations. In Sec. III we present simplified solu-
tions of the transformed Dirac-Coulomb equation for the
bound states and also the continuum states which reduce

to the usual free-particle solutions for a vanishing poten-
tial. In Sec. IV we apply the WKB method to the radial
wave equations obtained in Sec. II and obtain the usual
discrete energy levels immediately. In Sec. V we expand
the transformed and the original Dirac-Coulomb wave
functions in powers of Za and obtain approximate wave
functions which, for small Za, can be used in the quasire-
lativistic approximation and in the relativistic case as
well. Finally, in Sec. VI we summarize the results ob-
tained in this paper.

II. THE DIRAC-COULOMB EQUATION
UNDER A SIMILARITY TRANSFORMATION

w1th

H =ca p+P. mc Ze —/r (2.2)

and the Dirac matrices a and P have their usual mean-
ings. Applying a similarity transformation' to the
Dirac-Coulomb equation, we get

H'Q'=Eg'

with

(2.3)

H'=SHS (2.4)

(2.5)

and

S =a +ibPa r, . (2.6)

where 9 is the unit vector r/r and a and b are real con-
stants to be determined. For any central potential, the
solutions to (2.3) can be written in the form5

(2.7)

The radial equations are then' '
R(r) R(r)
Q(r) Q(r) (2.8)

with

We start with the Dirac equation for an electron in a
stationary state of energy E in a Coulomb field,

(2.1)

r

mc cosh8+Ac sinh82 d 1

dr r
ZQ 2 d 1 k—~ mc sinh8+fsc cosh8 +-

dr r r

mc sinh8+Rc cosh8 +—+-d 1 k
dr r r

mc cosh8+Ac sinh82 d 1 Za
dr r r

(2.9)

and k =~(j +—), co =+I for I =j+—,, and a =e /iric being the fine-structure constant. Here cosh&= (a 2+ b2)/(a 2 —b2)
and sinh9=2ab/(a —b ) if we assume that a 2 b2 &0. —

If one chooses

tanh8= —Za/k (2.10)
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then the terms in the square brackets of the matrix elements (H„' )» and (H„' )i2 in (2.9) are proportional to those of
(H„' )2i and (H„' )22, respectively, and one attains great simplification in solving the radial equations. In fact, one can get

Q(r)= E—coZa/y+Ac +(I+coy)lr R(r)/[me +(j+—, )E/y]
dp'

(2.11)

and

R (r)= EcoZa/y+fic +(1 eely)/—r Q(r)/[mc —(j+ , )E/y—] (2.12)

with y=[(j+ —, ) —Z a ]'/. By eliminating
'

Q(r)
[R (r)] from the above equations one obtains the equation
for R(r) [Q(r)]

r

1 d 2dr +[(E mc )/—fi c +2EZa/Pier
p2 dT dp

R(r)—(y +any)/r ] X „=0, (2.13)

where the upper (lower) sign refers to the equation for
R(r) [Q(r)]. These radial equations also arise in the
second-order Dirac-Coulomb equation ' ' ' after di-
agonalizing the Martin-Cxlauber operator.

From Eqs. (2.5) and (2.6) it is clear that the Hermitian
matrix S enables us to find a suitable linear combination
of the radial functions of the upper and lower coinponents
of the usual solutions for the new radial functions of the
transformed wave functions so that we can write down
the transformed Dirac-Coulomb radial equations in the
simple form of (2.13). The solutions of Eqs. (2.13) will be
investigated in Secs. III—V. For simplicity we choose
a b=1 thro—ughout this paper such that S=1 for
Z=O, then we can write a =cosh(9/2) and
b =sinh(e/2). The resulting similarity transformation S
is then equivalent to the transformation T given by
Hostler ' ' which was taken directly from the S operator
discovered by Biedenharn" to diagonalize the second-
order Dirac-Coulomb equation.

III. SIMPLIFIED SOLUTIONS
OF THE TRANSFORMED

DIRAC-COULOMB EQUATION

'Let us now discuss the solutions of Eqs. (2.13) for the
bound states (m c &E ). Equations (2.13) can then be

l

I

put in a form completely similar to the corresponding ra-
dial wave equations of the Schrodinger and Klein-Gordon
equations, ' and the solutions are thus given by

R(r)=C(s+)e "(2Ar) —F(s++1—w, 2s++2, 2Ar)

and

(3.1)

ZaE/Pic A, (s+ + 1)=n„', — (3.4)

where n,
' is a non-negative integer. This quantization

condition yields the usual expression for the discrete ener-

gy levels:

Elmc =[1+Z a /(n, +y) ]

n, =0, 1,2, . . . . (3.5)

It remains to determine the normalization factor C(s+ )
in the wave function. Using the generating function of
Laguerre polynomials, one can calculate the radial in-
tegrals involving two confluent hypergeometric functions
and obtain the following value for the constant C(s+ ):

Q(r)=C(s+)e '(2A.r) +F(s++1—w, 2s++2, 2A,r),
(3.2)

where F(a, ,bz) is the confluent hypergeometric function,
A, =(m c E)'/ /Pic—, w =ZaE/ficA, , s+ ——y —1, and
s =y. The upper and lower signs refer to co= —1 and 1,
respectively. Putting r=0 in Eqs. (2.11) and (2.12), we
obtain the relation between the integration constants:

C(s )=C(s+)(mc +kE/y)/2AAc(2y+I) . (3.3)

The two confluent hypergeometric functions reduce to
polynomials, if

C(s+ ) = —co[(2A, ) /I (2y)][I (2y+n„)E
~

mc kE/y
~

/n!4(n„+—y)m c ]' (3 6)

(
2 4 E2)1/2 i (E2 2c4)1/2

A,~—lk, M~lV ~

where k'=(E mc )'/ /Ac, v=Za—E/Pick'.

(3.7)

The radial wave functions for the continuum states
(E &m c ) can be obtained from those for the bound
states, Eqs. (3.1)—(3.3), by the following substitutions:

Making these substitutions in (3.1)—(3.3), we inay write

R (r) = C'(s+ )e'" '(2k'r) +—F(s+ + 1 iv, 2 s++—2, 2ik'r)—
(3.8)

Q(r)=C'(s+)e' "(2k'r) +F(s++1 iv, 2s++2—, 2ik'r)—
(3.9)
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with

C'(s )=C'(s+)(mc +kE/y)/2kVic(2y+ I) (3.10)

with r I and r2 being the classical turning points and

k =[(E —m c )/iii c

R (r) =A (s+ )j, (k'r) (3.11)

and

Q (r) =A (s+ )co j, (k'r),O'Ac

E+mc + (3.12)

where A (s+ ) are normalization constants, and j„(z) is a
spherical Bessel function, since for a free particle the
similarity transformation given earlier reduces to an iden-
tity transformation, S= 1, and g'= P in this case.

IV. THE &KB APPROXIMATION
TO THE RADIAL WAVE EQUATIONS

and C'(s+ ) is a normalization constant.
The simplified solutions of the radial wave functions

obtained here are equivalent to those of Wong and Yeh
for the bound states and Biedenharn "for the continuum
states which are obtained by diagonalizing the Martin-
Glauber operator arising in the second-order Dirac-
Coulomb equation, and by utilizing a generalized recur-
sion operator. "' Substitution of the simplified solutions
into Eqs. (2.11) and (2.12) will reproduce the recurrence
relations for the radial functions obtained by Wong and
Yeh, and Biedenharn.

For the case of a free Dirac particle, V=O, one can ob-
tain ' the usual radial wave functions from Eqs.
(3.8)—(3.10) by setting Z=0:

+2EZa!Pier (y+—co/2) Ir ]'~

which gives rise to

Elmc =[1+Z a l(n„'+ —,'+y+co/2) ]

(4.2)

(4.3)

The above expression can be summarized as

Elmc =[1+Z a l(n„+y) ] '~, n„=0, 1,2, . . .

(4 4)

which is identical to (3.5). It is the radial wave equations
in the representation defined by the similarity transforma-
tion S that make our calculations straightforward and
completely similar to those employed in the WKB ap-
proximation to the Schrodinger radial equation, which
give rise to the Bohr energy levels. ' On the contrary, if
one starts with the usual radial equation for the upper
component, which is rather complicated, one has to make
various approximations by dropping certain terms ' ' to
obtain the Sommerfeld-Dirac fine-structure levels (4.4).

V. APPROXIMATE DIRAC-COULOMB
%AVE FUNCTIONS FOR SMALL Za

We can expand the radial functions R (r) and Q(r) in
powers of Za. For G & 0 ( I =j ——,

'
), we have

R(r)=C[ —2k+AficZa/(mc +E)+3Z a /4k+ ]
We have solved the radial wave equations (2.13) for the

bound states and obtained the usual expression (3.5) for
the discrete energy levels. We can also obtain these
discrete energy levels by applying the WKB approxima-
tion to the same radial wave equations. The quantization
rule for these radial equations, after taking account of the
Langer-Kemble modification, is

~ ~ ~

P2

k, dr =(n„'+ —,
'

)m, n„' =0, 1,2, . . . (4.1)
7')

Xe "(2Ar)r 'F(y —w, 2y, 2ir)

Q(r)=C( —2k)[(mc —E mc Z a —l2k

+ )/2A, Pic( —2k+1)]
X e ~"(2kr)rF (y+ 1 —w, 2y+2, 2Ar)

and for co&0 (5 =j+—, ), we have

(5.1)

(5.2)

R(r)=[C/(2k+1)](kI1+[ —
~ +(4k+1)/(2k+1) mc /(mc +E)]Z—a /2k + )

—[Za(mc +E)/2iiric]t I+[——,+(4k+1)/(2k+1) mc /(mc +E)—]Z a /2k + . I)

X e '(2Ar)~F (y+ 1 —w, 2y+ 2,2Ar), (5.3)

Q (r) =C [2kkiiic/(mc +E)—Za+ ]e "(2Ar)r

XF(y —w, 2y, 2Ar), (5.4)

with y=
~

k
~

(1—Z a /2k + . . ) to be substituted in
the exponent of 2A,r and in the confluent hypergeometric
functions, and C being a common normalization factor.
For bound states, one can write m —y =n, =0, 1,2, . . . in
the above expressions, which are also valid for the contin-

uum states by making the substitutions (3.7). For small
Za, the leading terms in R (r) in the nonrelativistic limit
give rise to the Pauli-spinor wave functions for both the
bound states and the continuum states, ' since in this
limit S= 1 and f'=P. In this way the simplified solu-
tions g' lead directly to the Pauli approximation.

We can also obtain the approximate wave function g
for the original Dirac-Coulomb equation (2.1) for small
Za. We first present the exact expressions for g(r) and
f(r,), the radial functions of the upper and lower com-
ponents of P=S
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and

g(r)=Ce "(2ir)r '[y —k+ZaARc/(mc +E)]
&& IF(y —w, 2y, 2Ar}—[(mc y+kE)Za/2AAcy(2y+1)(y —k)](2Ar)F(y+1 —w, 2y+2, 2Ar)J

f(r)=C[(mc E)/—Afic]e "(2Ar)r '[y+k —Za(mc +E)/Afic]

)& IF(y —w, 2y, 2ir)+ [(mc y+ kE)Z a/2Aficy(2y+ l)(y+ k)](2Ar)F(y+ 1 —w, 2y+2, 2Ar) I,

(5.5)

(5.6)

where C is a common normalization factor. These ex-
pressions are equivalent to the usual results for the radial
functions. ' These expressions, being written for the
bound states with w —y=n„=0, 1,2, . . . , are also valid
for the continuum states if one makes the substitutions
(3.7). From the leading terms of g (r) in (5.5) one immedi-
ately obtains the Pauli-spinor wave functions for both
bound and continuum states and for co=+1, if small Za
is assumed and the nonrelativistic limit is taken, since in
each case the leading term in g (r) involves only one con-

I

fluent hypergeometric function. The solutions g written
in this form thus lead directly to the Pauli approximation.
On the contrary, the usual expression for g (r) in the con-
ventional solutions involves two confluent hypergeometric
functions with coefficients of comparable magnitude, '

and therefore one cannot immediately obtain the Pauli-
spinor wave functions from the usual solutions in the non-
relativistic limit.

The approximate expressions for g(r) and f(r) for
small Za are given, for co & 0 ( l =j——,

'
) for instance, by

and

g(r)=Ce "(2Ar)r 't[ —2k+Zakfic/(mc +E)+Z a /2k]F(y —w, 2y, 2Ar)

[Za(mc—E —mc —Z a /2k )/2AA'c( —2k+1)](2iEr)F(y+ I —w, 2y+2, 2Ar)]

f(r) =Ce "(2Ar)r 't ZaF(y —w, 2y,—2Ar)

—k[(mc —E mc Z a /2—k )/Acmic( —2k+1)](2Ar)F(y+I w, 2y+—2,2kr)J

(5.7)

(5.8)

with y = —k (1—Z a /2k + ) to be substituted
above. These approximate formulas can be obtained from
Eqs. (5.5) and (S.6) or from the following relations:

g(r)=(1+Z a /8k )R (r)+(Za/2k)Q(r), (5.9)

E —mc + g(r)= —Rc +—(1—k) f(r),Ze d 1

r dr r

f (r) =(Za/2k)R (r)+(1+Z a /8k )Q(r), (5.10)

and Eqs. (5.1) and (5.2). From the above relations and
Eqs. (5.3) and (5.4) we can similarly write down the ap-
proximate expressions for co & 0 ( l =j+ —,

' ).
The approximate expressions for g(r) and f (r) give the

wave function g with relativistic corrections. The
behavior of g(r) near the origin r=0 is proportional
to r r or r r for co = —1 or 1, which is a modifica-
tion of the nonrelativistic behavior —r since
y=(1+1)[1—Z a /2(1+1) + ] for co= —1 and
y=l(l —Z a /2l + . ) for co=1. This behavior can
easily be deduced from the usual equations for g(r) and
f(r),

I

f(r) is roughly given by e " and e +—'"" for the bound
and continuum states with A, =(m c —E )' /Rc and
k'=(E mc )'~ /Pic —which are modifications of the
nonrelativistic expressions, since in the latter cases
A, =(—2mE)'~ /fi and k'=(2mE)'~ /A'. These asymptot-
ic expressions can also be deduced from Eqs. (S.ll) and
(5.12) by neglecting the potential term and the (1/r)(1+k)
terms compared to the other terms.

If one starts with the Pauli-spinor wave function, deter-
mines the small 'component by (5.12) in the limit of
Ze /r « mc, and takes account of the relativistic correc-
tions near the origin and at infinity, one will make the fol-
lowing substitutions: I~y —1 for &&0, I~y for G&0,
and ( 2mE)' r/A~(m—c E)'~ r/Pic in t—he radial
wave functions and obtain two confluent hypergeometric
functions as suggested in Eqs. (5.1) and (5.3). Motivated
by these arguments one may be able to find the exact solu-
tions or better approximate solutions more easily. A simi-
lar procedure or its variant is expected to be applicable
also in other relativistic central-potential problems.

VI. CGNCI. USIONS

E+mc + f(r)=Pic +—(1+%) g(r),Z8 d 1

r dr r

(5.11)

(5.12)

by neglecting the terms E+mc compared to the potential
term

~
V

~

=Ze /r. The asymptotic behavior of g(r) and

In this paper we have solved the first-order transformed
Dirac-Coulomb equation and obtained simplified solu-
tions for the bound states and also the continuum states
which reduce to the usual free-particle solutions when the
Coulomb potential is turned off. We also show that the
transformed Dirac-Coulomb radial equations are so sim-
ple that we can apply the WKB approximation to them in
a fashion similar to that used to apply the WKB approxi-
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mation to the Schrodinger radial equation, and the
Sommerfeld-Dirac discrete spectrum follows immediately.
In contrast, the radial equations in the usual formulation
are very complicated. One has to make further approxi-
mations in applying the WKB method to these radial
equations, and only after that one can obtain the
Sommerfeld-Dirac energy levels. We have also given ap-
proximate expressions for both the transformed and the
original Dirac-Coulomb wave functions which are valid
for small Za and for all energies.

In solving the second order-Dirac-Coulomb equation,
many authors also got the radial wave equations ' ' ' in
the form of Eq. (2.13) after diagonalizing the operator in-
troduced by Martin and Glauber ' in four-component
form ' (or in two-component form"' ), especially in
the representation defined by the transformation operator
S found by Biedenharn. ' ' '

The simplified solutions for the second order Di-rac-
Coulomb equation can then be obtained easily. Afterward
one has to utilize Biedenharn's generalized recursion
operator for the radial eigenfunctions ' to obtain the sim-
plified solutions to the original first-order Dirac-Coulomb
equation, which were obtained by Biedenharn for the con-
tinuum states ' and by Wong and Yeh for the bound
states. In this paper we first apply a similarity transfor-
mation to the Dirac-Coulomb equation. The constants in
the transformation matrix for the similarity transforma-
tion are chosen so that the resulting radial wave equations
can be put in a desired simple form. The transformation
matrix obtained in this way, which happens to be propor-
tional to the simplified form of the Biedenharn S opera-
tor ' utilized to diagonalize the second-order Dirac-
Coulomb equation, enables us immediately to obtain the
simplified solutions of the fErst-order transformed Dirac-
Coulomb equation. Therefore we can avoid the task of
reducing the solutions of the second order equation t-o

those of the original Dirac-Coulomb equation.

It is clear that to bring the radial wave equations,
second-order in coordinates, into a form completely simi-
lar to the corresponding radial wave equations of the
Schrodinger and Klein-Gordon equations, we need not
first transform the Dirac-Coulomb equation into a
second-order equation. Since we originally have two cou-
pled first-order equations for the two radial functions of
the upper and lower components, by eliminating one radi-
al function in favor of the other we can obtain the desired
form of the second-order radial equations in the represen-
tation defined by the similarity transformation given in
Sec. II.

From the simplified solutions to the transformed
Dirac-Coulomb equation we obtain Eqs. (5.5) and (5.6),
the solutions to the Dirac-Coulomb equation in the con-
ventional representation. Each of the upper and lower
components of the solutions contains two confluent hy-
pergeometric functions like the usual solutions. Neverthe-
less, only the first (second) coefficient in (5.5) for the
upper large component is important for l =j ——,

'

(l =j+—, ) in the Pauli approximation for small Za. In
contrast, both coefficients in the conventional solu-
tions' are of comparable magnitude in the same ap-
proximation. Consequently the solutions given in Eqs.
(5.5) and (5.6) are more suitable than those given in the
usual form' for obtaining the approximate wave func-
tions (5.7) and (5.8) for small Za and for all energies,
which take into account the relativistic effects and go
beyond the Pauli approximation. The structure of these
approximate wave functions also suggests one of the
methods to obtain the approximate relativistic wave func-
tions for general, central-potential problems arising in
atoms, molecules, and solids, ' ' which may complement
the perturbation approach to the general central-potential
problems and shed some interesting light on the approx-
imate methods used in the problems of atoms, molecules,
and solids' and of X interacting Dirac particles. '
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