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We present an exactly solvable effective potential that reproduces atomic spectra in the limit of
exact quantum-defect theory, i.e., the limit in which, for a fixed I, the principal quantum number is
modified by a constant: n =n —6{l). Transition probabilities for alkali atoms are calculated using
the analytical wave functions obtained and agree well with accepted values. This allows us to make
phenomenological predictions for certain unknown transition probabilities. Our analytical wave
functions might serve as useful trial wave functions for detailed calculations.

In modern notation, Eo is a constant with dimensions of
energy and n* is

n' =n —5(l), (2)

where n is a positive integer, the principle quantum num-
ber, and 5(l) is approximately constant for a given fixed
orbital quantum number I, I &0. Spectra given by Eqs.
(1) and (2) are called Rydberg series, and their study is
known as quantum-defect theory.

The quantum defect 5(l) phenomenologically models
the effective charge, generated by the Z —1 core electrons
and the nucleus of charge Z, by shifting the energy eigen-
values away from the hydrogenic values. For example,
the low-lying s orbitals of lithium may be described by
the values @*=1.588, 2.596, 3.598, etc., rather than by
the hydrogenic values n =2, 3, 4, etc. In the modern ap-
proach to quantum-defect theory, the quantum defect
5(l) is defined as the phase shift of an exact atomic wave
function relative to Coulomb wave functions beyond a
core radius.

As Cowan has summarized, the standard approach to
quantum-defect theory usually proceeds either with de-

l

Rydberg noted' that the spectra of many atoms have
series. given approximately by

E ~= Eo/n*—

tailed many-body calculations or with calculations using a
multiparameter effective potential that is fitted to atomic
energy levels. We call "exact quantum-defect theory" the
limit in which 5(l) for fixed l is exactly constant for all n,
as distinct from the more general case for which 5(l)
varies by a few percent with n. In this paper, we observe
that, in the limit of exact quantum-defect theory, there is
an analytically solvable effective potential that yields the
"exact" quantum-defect eigenvalues. ,

To establish our notation, we summarize the hydrogen-
atom. solution. The radial equation may be written as

[—d /dy —1/y+l (l + 1)/y E]X„ (yt)—=0,
where E„=—1/4n, y =Pr, and n & l +1. Here,
P=2pe /A represents tmoo inverse Bohr radii; also, we use

y rather than the standard variable p=y/n The nor.mal-
ized radial wave function R„t P„t/r is giv——en by

R„t(y)=n [P I (n 1)/2I—(n+l+. 1)]

X (y/n)'exp( y/2n)L„' 't —",(y ln),
and satisfies the usual orthonormality condition

dI ~ +nl+n'l ~nn' .
0

Note that we use associated Lag uerre polynomials
L„' '+t "i(y/n) defined by

(x)= g ( —x) I (n +a+ I)/[p!I (p+ a+1)I (n —p+1)],
p=0

instead of the related L„'++i '(y /n) often used in quantum mechanics, which are defined by

Li (x)=dJL„(x)ldx J, (7)

where L„are the ordinary Laguerre polynomials. Equation (7) is valid for integer j only. This distinction will be impor-
tant in the following discussion.

Returning to exact quantum-defect theory, we propose the following equation to model the effective radial equation
of the valence electron in the presence of the quantum defect:

[—d Idy —1/y+l(l+1)/y + V,ff(y)+1/4n ]yR ~t, (y)=0 .

Here, V,ff(y) is chosen to satisfy

l ( l + 1)/y + V,ff(y) = l*(l *+ 1 ) /y

I ' =I —5(1)+I( l), (10)
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for integer l(l). The range of possible integers l(1) will be discussed later. A glance at the hydrogen equation shows
that the potential V,ff(y) yields a solution with the same functional form as Eq. (4) but with noninteger values of n and
1'. It is here that the definition (6) plays a critical role.

Thus, the eigenvectors are

R,&,(y)=n [p I (n —1 —I)/21 (n*+1 +I)]'~ (y/n ) e r~" L„' ~+&' ~(y/n'),

with eigenenergies given by Eq. (1). The solution still involves the associated Laguerre polynomials because n —1*—1

is 'equal to n —1 I ——1, an integer. The eigenvectors (11) are therefore normalizable, and in our convention they obey
the orthonormality condition

f dr r'R ...R„,,l, ——5„, , (12)

The usual spectroscopic notation designates energy levels as though they are hydrogenic, so that the wave functions are
expected to have n —1 —1 nodes. This means that the number of nodes in our wave functions can be unusual, since it is
given by the order of the associated Laguerre polynomial, n —1 I —1—. Thus, for example, if I =0 or 1 the physical
ground state of the 1 =0 lithium Rydberg series, designated as the 2s level, would have one or zero nodes, respectively,
even though n = 1.588. The node counting is important for an interpretation of the phenomenologically determined in-

teger I, as is discussed below.
The solution (11) may be used to calculate expectation values. Due to the factor n in the expression p=y In', it is

easiest to perform the integration using the expression (6) for the associated Laguerre polynomials in terms of products
of I functions. For a transition from the level ( n;, 1; ) to the level ( nf, lf ), the expectation value of y"= (pr )" is

(nf, lf ~y ~
n, l;*&=—,'(n nf') (n )

' (nf*) F„' [1(n —1; )1(nf' 1 f) 1(n —+1; +1)1(nf +lf +1)]'

p=0
( F„In;* P(—F„/nf' )»—

q=0

Xi (1 +lf*+d+p+q+3)/[I (p+1)I (q+1)1 (n;* —1 —p)1 (nf —lf' —q)

X I (21;*+p+2)I (2lf*+q +2)] (13)

where F„=2n;*nf /(n;*+nf'). As required, Eq. (13) satis-
fies the orthornormality condition (12).

Observe that Eq. (13) has (n;* —1;*)X(nf* —lf*) closed-
form terms, each of which is a product of I functions.
Therefore, all of our subsequent calculations can in princi-
ple be done by hand, on the back of an (admittedly large)
envelope.

We may test the eigenvectors (11) by computing transi-
tion probabilities for selected atoms. The transition prob-
ability Tf; for the transition of a valence electron from
the level (n;, 1;) to the level ( nf, lf ) is

Tf; =(ma v~/6)[(nf*) —(n ) ']
Fj [ (nf lf Iy In 1'&

I
(14)

where the fine-structure constant a is given by a =e /Pic,
the Rydberg frequency vz is given by v~ ——pe /4m', and
where F& is an 1-dependent factor given by

1;I(21;+1), lf =1;—1

(1;+1)/(21;+1), lf =1;~1. (15)

We have used Eq. (14) to compute probabilities of tran-
sition between a variety of levels of the elements lithium
and sodium. The s —+p and p~s transition probabilities
should provide the most stringent test of the model, be-
cause they involve the largest quantum defects. For
higher values of l, the asymptotic quantum defects are

zero, so the eigenstates become hydrogenic.
The value of the integer l(l) was varied with 1 and was

thus selected separately for the initial and final states.
The allowed range of variation of I(l) is determined by
two conditions. First, requiring the kinetic and potential
energies to be separately. normalizable imposes the con-
straint 1*+—,

'
& 0, i.e., 5(l) —1 ——,

'
& I(l). Second, the

Laguerre polynomials L„' ~+&' &(yln*) defined by Eq.
(6) exist only for l(l) &n;„—1 —1, where n;„ is the
principal quantum number of the physical ground state.
Thus, ' for example, for the lithium s orbitals
—0. 1 &l(l) & 1; therefore, l(l) can only take the values of
0 and 1.

Table I lists the results for lithium, along with accepted
transition probabilities. The asymptotic quantum de-
fects used in our calculations were 5(0)=0.40,
5(1)=0.05, and 5(2)=0. The listed probabilities Tf; were
obtained with I(l) =0 for all 1; this gave the best agree-
ment with accepted values.

In considering Table I, we defer until later a discussion
of,the special cases of the 2p —+2s, 3p~2s transitions and
the transition probabilities of order 10 Hz. Then, our re-
sults always agree with the accepted values to within 10%
and in certain cases to within a fraction of a percent.
Now, the accepted values, except for 2p~2s, are con-
sidered valid to within about 10%%uo. Therefore, our results
are surprisingly good.

In particular, due to the agreement of the p~d transi-
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TABLE I. A comparison of our transition probabilities with currently accepted values (Ref. 5) for
the lithium atom. The asymptotic quantum defects are 5(0)=0.40, 5(1)=0.50, and 5(2)=0.

Transition

3$~2p
4s ~2p
4s ~3p
5$ ~2p
Ss ~3p
Ss —+4p

Phenom enological
approximation (10 Hz)

0.337
0.106
0.0744
0.0486
0.0285
0.0224

Accepted
value (10 Hz)

0.349
0.101
0.0746
0.0460
0.0276
0.0225

2p ~2$
3p ~2$
3p ~3$
4p ~2$
4p —+3s
4p —+4s

0.327
0.0170
0.0356
0.0169

9.07 X 10
0.007 52

0.372
0.0117
0.0377
0.0142

3.69 &&
10-'

0.007 72

4p ~3d
Sp -+3d
Sp ~4d
6p ~3d
6p -+4d
6p —+5d

0.005 33
0.002 24
0.002 79
0.001 16
0.001 36
0.001 39

0.005 52
0.002 31
0.002 86

0.001 39
0.001 42

3d ~2p
3d~3p
4d —+2p
4d ~3p
4d ~4p
Sd ~2p
Sd ~3p
5d —+4p
Sd ~Sp

0.732
6.04X 10-'

0.248
0.0702

1.89~ 10-'
0.116
0.0361
0.0138

6.83 ~ 10-'

0.716
3.81~ 10-'

0.230
0.0685

1.28 &&
10-'

0.106

0.0136
4.78 &&

10-'

tions (within 4%) and the d~@ transitions (within 10%,
except for probabilities of order 10 Hz), we consider our
phenomenological values of 1.16&&10 Hz for 6p~3d
and 3.61X10 Hz for 5d~3p as predictions to be tested
against detailed atomic calculations. Other predictions
are also made by our model, but the ones quoted involve
lower-lying levels and so provide the best test of its
predictive power.

Table II contains a similar listing for sodium. In this
case, we used asymptotic quantum defects 5(0)=1.35,
5(1)=0.859, and 5(2)=0.01. The best match to accepted
values was obtained with I(l) values of I(0)=2, I(1)=1,
and I(2)=0.

Here, the agreement with accepted values might even be
viewed as better than that of Table I. This is because (ex-
cept for the 3p~3s transition) the accepted values are all
considered valid to only about 25%%uo and (except for the
3p ~3s case) all of our values are within this limit.
Therefore, our results for the Ss~4p, 6s~5p, 5p~5s,
and 5d —+Sp transition probabilities can again be con-
sidered as phenomenological predictions.

Returning now to the special cases, note that our calu-
clations have not allowed for the experimentally observed
variation of 5(l) with n, which is largest for small values
of n. Therefore, low-lying levels should be modeled less
accurately than those with larger values of n. However,

phenomenological quantum defects 5„(l) that vary slight-
ly with n for a given l may be used just as easily to
describe the wave functions, although the number of input
parameters becomes large and the exact orthonormality
relation is gone. We have therefore calculated transition
probabilities using wave functions involving the
phenomenological quantum defects 5„(l). We find that
significant improvement in the agreement occurs for the
transition probabilities that are small, i.e., of order 10
Hz, in Table I. The cancellations in the overlap integrals
are evidently unusually sensitive to the wave functions in-
volved. Similarly, there are also improvements in the
2p~2s and 3p~2s values of Table I and the 3p~3s
value of Table II. The relatively large deviation of the
"exact" quantum defects of the lowest levels from the
phenomenological quantum defects can be important.

The node structure implied by the values of I(l) for
sodium is especially interesting, indicating as it does a dis-
tinct departure from the standard hydrogenic picture.
Since the number of nodes is n —l —I—1, the s orbitals
have wave functions with two fewer nodes than expected,
while the p orbitals have wave functions with one fewer
node.

This situation is reminiscent of supersymmetry. s Our
results cannot be used as evidence either for or against su-
persymmetry, however, because the effective potential
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TABLE II. A comparison of our transition probabilities with currently accepted values (Ref. 5) for
the sodium atom. The asymptotic quantum defects are 6(0}=1.35, 6(1)=0.859, and 5(2}=0.01.

Transition

4s ~3p
Ss ~3p
Ss —+4p
6s ~3p
6s —+4p
6s ~Sp

Phenomenological
approximation (10 Hz)

0.247
0.059
0.0552
0.0253
0.0159
0.0167

Accepted
value (10 Hz)

0.251
0.072

0.0330
0.0173

3p ~3$
4p ~3s
4p ~4s
Sp ~3s
Sp —+4s
5p ~5s

0.453
0.0261
0.057
0.0060
0.0073
0.0129

0.629
0.0292
0.062
0.0060
0.0074

4p ~3d 0.001 89 0.001 57

3d ~3p
4d ~3p
4d ~4p
5d ~3p
Sd ~4p
5d ~5p

0.421
0.106
0.062
0.045
0.0240
0.0154

0.495
0.131
0.067
0.050
0.0260

V,rr in (8) masks the original potential. One cannot tell
whether the potential should be I (I + I )/y + V,ff or
(i+I)(i+I+ I)/y + V,'ff. The relative sizes of the two
constituent pieces of the potential do not provide any clue,
as they vary considerably with l. One way to tell the ori-
gin of the I (I) factors would be to obtain the form of V,ff
from a few assumptions about the nature of the electro@-
electron interactions that V,ff partially models.

In conclusion, the agreement obtained suggests that the
analytical eigenvectors (ll) may provide good trial wave

functions for detailed atomic calculations. The model
may also serve as a phenomenological description that
predicts certain previously unknown transition probabili-
ties.
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