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We use Feshbach's theory of resonances to demonstrate that bound states in the continuum
(SIC's) can occur due to the interference of resonances belonging to different channels. If two reso-
nances pass each other as a function of a continuous parameter, then interference causes an avoided
crossing of the resonance positions and for a given value of the continuous parameter one resonance
has exactly vanishing width and hence becomes a BIC. The condition for a BIC relates the positions
of the noninterfering resonances with the coupling matrix elements between the various channels.
In the neighborhood of the BIC point one resonance remains anomalously narrow for a finite range
of values of the separation of the noninterfering resonances. Whether or not two resonances inter-
fere is not directly related to whether or not they overlap. All these results, including the occurrence
of exactly bound states in the continuum, are not consequences of approximations inherent in
Feshbach's theory but are general features of a coupled-channel Schrodinger equation with only one
open channel. We illustrate the results in a simple but realistic model, where all matrix elements in-

volved can be calculated analytically. We also discuss the case of coupled Coulombic channels
where BIC s are caused by perturbations interfering with a Rydberg series of autoionizing reso-
nances. Below the continuum threshold the analogy to a BIC is an infinitely narrow perturbation of
the bound-state spectrum. Near such an infinitely narrow perturbation we may observe approxi-
mate level crossings.

I. INTRODUCTION

For a Hamiltonian consisting of the kinetic energy and
a purely local potential, the solutions of the stationary
Schrodinger equation generally fall into two distinct
categories: Below a well-defined continuum threshold the
energy eigenvalues are discrete and the corresponding
eigenfunctions are square-integrable bound-stat'e wave
functions. Above the continuum threshold the eigen-
values are distributed continuously and the corresponding
wave functions are, in general, not normalizable. ' Above
threshold, narrow resonances with large but finite life-
times can occur if a slight modification of the Hamiltoni-
an would lead to an effectively higher threshold. Exam-
ples of such long-lived resonances are metastable states
trapped by a large potential barrier or quasibound states
in closed channels of a system with weakly coupled chan-
nels.

In contrast to these almost bound states, there are, how-
ever, examples of square-integrable and exact solutions of
the Schrodinger equation above the continuum threshold.
These "bound states in the continuum" (BIC's) have infin-
ite lifetimes and are not related to subthreshold states of
an approximate Hamiltonian.

In one dimension, potentials which support a BIC can
be explicitly constructed by a method due to von Neu-
mann and Wigner, as shown by Stillinger and Herrick
and discussed by Gazdy. The potentials obtained in this
way by direct construction depend sensitively on the wave
function of the BIC and are characterized by weakly
damped oscillations; it is difficult to envisage a real physi-
cal situation described by a one-dimensional potential ex-

actly equivalent to such a von Neumann —Wigner con-
struction.

Examples of BIC's are more readily found if we go
beyond the one-dimensional Schrodinger equation. For a
given correlated two-electron wave function, Stillinger and
Herrick3 have constructed a two-electron potential for
which this wave function becomes a BIC. Again, the po-
tential has to be explicitly constructed, but in contrast to
the one-dimensional example it does not have any mani-
festly unrealistic properties. In this example, strong
correlations in the two-electron wave function, and, hence,
appreciable nonseparability of the Hamiltonian, are im-
portant for the occurrence of the BIC. Fonda and
Newton ' showed many years ago that BIC's can occur in
a system of two coupled square-well potentials if the well
depths and coupling strengths are adjusted appropriately.

The aim of the present paper is to demonstrate that the
occurrence of BIC's' is a natural feature of the common
physical situation that two resonances associated with dif-
ferent channels interfere.

In Sec. II we describe the theory of two interfering reso-
nances as developed by Feshbach. 7 s The basic result of
this section is that, if we have the freedom of varying the
separation of two (noninterfering) resonances as a func-
tion of a continuous parameter, then for a well-defined
value of the continuous parameter one of the interfering
resonances becomes a BIC. The results of Sec. II are il-
lustrated in a simple but realistic model in Sec. III. In
Sec. IV we describe the adaptation of the theory of Sec. II
to the case of coupled Coulombic channels and discuss the
example of a hydrogen atoin in a uniform magnetic field,
where a first physically real example of BIC's caused by
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the interference of resonances in different channels was re-
ported.

II. THEORY OF TWO INTERFERING RESONANCES

The theory of resonances caused by the coupling of
bound states in closed channels to open channels was for-
mulated comprehensively by Feshbach many years ago. '

Although the theory of isolated resonances and of over-
lapping resonances is well established and has found
widespread application, for example, in the field of nu-
clear reactions, " to our knowledge there exists as yet no
investigation of the quantitative influence of the interfer-
ence of resonances on their individual positions and
widths. This influence can be very dramatic, but the
theory is remarkably simple, at least for two interfering
resonances.

Following the general procedure of Ref. 7, we start
from a physical system described by channel wave func-
tions 4;(r) depending on the radial coordinate r. The
dynamics are determined by real local potentials V;;(r)
and real coupling potentials VJ(r)= VJ, (r), j&i Th. e
coupled-channel equations for the wave functions are

r

d
2 + V;;(r) %';(r)+ g V).(r)%'J(r)=E%';(r) .

2M dr
" '

( )

%p pA pa to that part of Hilbert space which no longer
appears in Eq. (4) leads to smoothly energy-dependent ef-
fective potentials, which remain real if the excluded part
of Hilbert space contains no open channels. If, however,
the transition from Eq. (1) to Eq. (4) involves the elimina-
tion of open channels, then the effective potentials in Eq.
(4) will have to account for the loss of flux into these
channels and will, in general, be complex. For our present
purposes it is important that the potentials in Eq. (4) are
all real, and hence the following discussion implies that
only channel 0 is open.

The last two equations in (4) can be simp1ified by tak-
ing matrix elements

A « —EA)=BMAa+ &PA I VoA I po&

B(E Ea) =AM—AB+ &ya I Voa I

'

where the matrix element M~~ describes the direct cou-
pling between the states pA and pa..

MAB=&4 A I VAB Ida& .

The Schrodinger equation for %p(r) can be written as

d —Vop(r) %'o(r)=AVoA(r)PA(r)
2M dr2

Let us now assume that only one channel, i=0, is open
and that only two other (closed) channels, i =A and i =B,
are important. Let us further assume that the wave func-
tions in the closed channels are dominated by bound-state
wave functions:

+A(r) =A/A (r), Pa(r) =Bga(r),
where pA and pa are normalized eigenfunctions of the
respective uncoupled channel Hamiltonians:

d
z + VAA 4'A A4'A2M dr2

+BVpa(r)pa (r)

and can be solved with the help of the Green's function

GjG= E+ —~oo2M dr2

as follows:

% p(r) =Pp(r)+A f G (r,r') VpA(r')PA (r')dr'

+B f G (r, r') Voa(r')pa(r')dr',

(7)

(8)

d
2 + VBB NB BNB2M dr2

where Pp(r) is a solution of the uncoupled (i.e., homogene-
ous) equation in the open channel and obeys the following
boundary conditions:

These assumptions greatly simplify the coupled channel
equations (1):

lm.
Pp(0) =0 P ( o~roo ) =sin kr — +5bg2

(9)

d
2 + Voo(r) %p(r)+AVpA(r)PA(r)

2M dr2

+BVpa(r)pa(r) =E+o(r),
AEA/A(r)+BVAB(r)ya(r)+ VoA(r) Pp(r) =EAljkA(r) (4)

BEapa(r)+ A VAB(r)yA (r)+ Voa(r) po(r) =EBya(r) .

The approximations involved in formulating Eq. (4) are
well justified in situations where just two individual reso-
nances are important. In fact, an exact reduction of the
coupled-channel equations (1) to the form (4) is possible
using Feshbach's projection techniques. ' In such an ex-
act formulation, the coupling of the wave functions

here, k =V 2ME /fi, and l is the orbital-angular-
momentum quantum number. 5bz is a background phase
shift due to the potential Voo in the open channel.

The form of.Eq. (9) implies that the potentials in Eq.
(4) are short ranged. The case of short-ranged potentials
superimposed on a repulsive Coulomb potential can be
treated by simply replacing the sine by the appropriate
regular Coulomb function and (later) the cosine by the ap-
propriate irregular Coulomb function. The interesting
case of attractive Coulomb potentials is treated in Sec. IV.

Inserting the expression (8) for %p into Eqs. (5) gives a
completely determined set of two linear equations for the
two unknown factors A and B:
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A (E E—g —G~ )=B(M~s +Ggs ) +M~ o,

B(E —Es —Gsg ) =A (M~~ +Ggs )+Msp .
(10)

I

Tz 8'~0+ T~ Sso+28'w p~ao~aa2 2

tan5= ——
T~ Ta —~~a

Here, Mzp and Mzp are the matrix elements describing
the direct coupling between the uncoupled open-channel
wave function Pp and the states Pz and Ps, respectively:

MAO &4A I +OA
I

)I'o& Mao= &4'a I
I oa I

4'o&

The dynamic effect of the coupling of the channels enters
through the matrix elements of the Green's function G:

where we have redefined the coupling matrix elements

w„=vkM„=vk &y„I V,„ly,),

WAS ™A&+G&& & 0& I ~&s I NB &

(18)

(19)

G~=&N~ I
I'o~«o~ IN~ &

Gas=&4'a
I

I'oaGI'oa
I de&

G(r, r')= —
~ Pp(r()P;„(r) ),2M

fi k
(15)

where Pp is the uncoupled regular open-channel wave
function obeying the boundary conditions (9) and P; is
the uncoupled open-channel wave function which is irreg-
ular at r=0 and behaves asymptotically as

P; (r}-cos kr — +5b
lm

bg

With this choice of G, all matrix elements in Eqs. (10) are
real.

For large values of r the (coupled) open-channel wave
function (8) has the form

Equations (10) are merely a specialization to the case of
two resonances of a more general set of equations for
several overlapping resonances, as given in Ref. 7. For
the case of two resonances, the equations are readily
resolved for A and B. Using the abbreviations

e~ Eg +G~(E——), eg Eg +Gs——s(E),
(13)

A A~ 8 8

we obtain

TaM~ o+ (M~a+ G~a )Mao

T~ Ts —(Mgs +Ggs )

(14)
TA MB0+™AB+GAB )MA 0

Tw Ta —(Maa+Gws)

For further discussion it is advantageous to take G to
be the standing-wave Greens' function,

tan5= —(1/E)(W~o/To+ Wao/'Ts) . (20)

Poles of the right-hand side of Eq. (20) occur when Tz or
Ts have zeros, i.e., for

E =Eg+G~ or E =Eg+Ggg . (21)

Around these energies, the phase shift 5 jumps more or
less suddenly by ~, i.e., we have resonances at energies

eA EA +GAB(~A )& eB EB+0 0 0 0 (22)

which, due to the coupling of the respective closed chan-
nel A or B to the open channel, are shifted from the un-
coupled eigenvalues E~ and Es. The width I of a reso-
nance is given by'

r

r=2 "'
dE E=E

(23)

where E„ is the resonance position. Taking derivatives of
Eq. (20) at E =a~ and E =us gives

+&Pa I
I'o~Gvoa

I 4a & ~

all matrix elements W have the dimensions of an energy.
Equation (18) is an explicit equation for the additional

asymptotic phase shift of the open-channel wave, function
due to the coupling of the open channel to the closed-
channel wave functions P~ and Ps. All quantities on the
right-hand side of Eq. (18) can be directly calculated from
the solutions of the uncoupled equations. Note that the
matrix elements containing the regular uncoupled open-
channel wave function Pp and the matrix elements con-
taining the Green's function G depend on the energy E.
Since we are interested in the interaction of two reso-
nances, we assume that the continuum in channel 0 does
not contain any additional resonant structure, so the ener-

gy dependence of these matrix elements will be smooth.
We now study in detail the implications of Eq. (18).

If the coupling matrix element Wzs is neglected, Eq.
(18) becomes

lm.
%p(r) -sin kr — +5bs + (tan5)cos kr-g

lm
+6bg r, =(2/eg)Wgp, rs=(2/Es)Wso. (24)

and the additional phase shift 5 due to the coupling to the
closed channels A and B is given by

This is, of course, the well-known formula for isolated
Breit-signer resonances.

Interference of the two resonances affects their posi-
tions and widths. Poles of the right-hand side of Eq. (18),
i.e., resonances, occur when the denominator

tan5=AMgp+BMgp .

From Eq. (14) we obtain

D (E)= (E —e g )(E es ) —Wgg—

has zeros; these zeros are

(25)
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Ein =(@A+@a)/2+[(eA —ea) /4+ WAB]' (26) tan5 = N—(E)/D (E), (27)

Considering that WAB, eA, and ea depend (smoothly) on
the energy E, Eq. (26) actually represents two transcen-
dental equations for the new positions Ei and Ei of the
interfering resonances. If the separation of the nonin-
terfering resonance positions is much larger than

~
WAB ~,

then interference has little effect on the resonance posi-
tions. For small values of EA —Ea, inteference pushes the
resonances apart, so that their separation is at least
2

~
WAB

~

. Thus interference leads to an avoided crossing
of the resonance positions. The effect of the interference
of the resonances on their widths is quite dramatic.

If we write

with

( Ta WA 0 + TA WB 0 +2 WA 0 Wa 0 WAB )/E t

(28)

d5 D'
dE

(29)

The widths I i, I z of the resonances are given via Eq. (23):

then the derivative of the phase shift at resonance, i.e.,for
D=O, is simply

=1 2 20+ciao+

1 2 2~~0+ ~ao—

( WA0 WB0)( A ~B )/2+ WAOWBOWAB
2 2

[(&A —&B )'/4+ WAa l'"

( WA 0 Wa 0 )( ~A ~B ) /2+ 2 WA 0 WB0 WAB

[(&A —&B)'/4+ WAa l'"
(30)

We have written the equations separately for I i and I 2 in
order to remind the reader that the smoothly energy-
dependent matrix elements 8' and energies Eg E'a are to
be taken at E =Ei in the formula for I i and at E =Ez in
the formula for I z.

In deriving Eqs. (24) and (30) the energy dependences of
the various matrix elements have been neglected. If all
energy dependences are taken into account exactly, the
right-hand sides of Eqs. (24) have to be divided by
1 —G~ and 1 —Gaa, respectively, and the right-hand,
sides of Eqs. (30) have to be divided by

2 1/2

+EA +Ea EA —EB

dE 2 2

Because all energy dependences are smooth, these divisors
are close to unity.

Equation (30) shows that the sum of the widths of the
two interfering resonances is roughly equal to the sum of
the noninterfering widths (24), because the quotients in
the large parentheses in Eq. (30) approximately cancel.
This result is well known from the theory of overlapping
resonances. Less well known is the fact that the distribu-
tion of the total width over the two resonances is very
uneven and depends sensitively on the separation of the
noninterfering resonances and on the coupling matrix ele-
ments 8'. The width of one of the resonances can, in
fact, vanish exactly. From Eq. (29) and from the fact that
D(E), defined by Eq. (25), obviously has no multiple
zeros, we see that an infinite derivative of 5(E) corre-
sponding to vanishing width of a resonance occurs when a
zero of N(E) coincides with a zero of D(E). This hap-
pens if

~~o ~ao
~~a =&a — ~~a .

~ao ~~o
(32)

0 0 ~~o
&~ —&a = ~~a

~ao
Rap
~~o

(33a)

and the energy of the BIC is given by either of Eqs. (32).
In the general case with all energy dependences included,
the BIC condition is

~~o ~ao
E~ —Ea =Gaa —G~+ ~~a

~ao ~~o

(33b)

If Eq. (32) is fulfilled, both numerator and denominator in
Eq. (18) [Eq. (27)] vanish simultaneously and the asymp-
totic phase shift becomes indeterminate because we have a
bound state in the continuum.

Imagine a situation in which the separation of the un-
coupled energy eigenvalues E&,Ea depends on a continu-
ous parameter such as the strength of an external field.
At this point it is important to remember that pA and pa
are states in different channels and that the uncoupled en-
ergies Ez,Ea are determined independently by their
respective channel Hamiltonians. Thus the energies E~
and Ea may pass each other as the continuous parameter
is varied. Then there is a well-defined value of the con-
tinuous parameter for which the BIC condition (32) is ful-
filled.

If, for example, the energy dependence of eA, ea, WAB,
and the quotient WAO/WBO is negligible, then the BIC
condition becomes

~~o 8"ap
T~ ——— Wga and Ta ——— 8'ga

Mao ~~0

or, in other words,

(31)
with the matrix elements on the right-hand side taken at
one of the resonance energies E& or E2, depending on the
relative sign of the coupling matrix elements (see below).
The resonance energies depend on E~ and Ea via Eqs.
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(13) and (26), and so Eq. (33b) involves a self-consistency
condition. However, we can always fulfill (33b) if .we
have the freedom of varying EA E—z. Thus the oc-
currence of bound states in the continuum is a general
feature of situations in which two resonances pass each
other as a function of a continuous parameter.

Which of the two interfering resonances becomes a BIC
when Eq. (32) is fulfilled depends on the sign of the prod-
uct WAOWAg Whip. Using Eqs. (32) and (33b) in Eqs. (26)
and (30), we see that the resonance at E2 has vanishing
width I 2 if WAOWAii Whip&0, and that the resonance at
Ei has vanishing width I i if WAOWAii Wzo&0. In other
words, if the product WAOWAg Whip is positive, it is al-
ways the lower of the two interfering resonances which
becomes a BIC; if the product is negative the upper reso-
nance becomes a BIC.

It is interesting and important to see what happens if
the BIC condition is almost fulfilled. Let E„be the ener-

gy of the resonance which would be a BIC if Eq. (32) were
exactly fulfilled (i.e., E„=E, if WApWAii Whip &0,
E„=E2 if WAOWAii bio&0), and let us assume that, at
E =E„,the BIC condition (33b) is almost fulfilled:

~AP
&A ~B ~AB

8'BP

8'BP +e.
AO

(34)

Equation (35) shows that even if the BIC condition (33b)
is not fulfilled exactly, anomalously small widths of one
of the interfering resonances persist over a finite range of
deviations e in Eq. (34). In Eq. (35), (2/E„)

I WAOWao I

is roughly equal to the geometric mean of the widths of
the noninterfering resonances. If the matrix elements
8'Ao and 8'Bo are comparable in magnitude, then the
range of values of EA E~, over whi—ch the width of the
narrow resonance is much smaller than the noninterfering
widths, is of the order of

I WAz I. If the magnitudes of
WAp and Whip are very different, then the "narrowing
factor"

(~ ~WAB )
I WAo~WBO+ ~BO~WAo

I

in Eq. (35) will be anomalously small for a much larger
range of values of e.

Note that the formula (26) describing the avoided cross-
ing of the two resonances does not contain the matrix ele-
ments WAp Wgp which determine the widths of the
noninterfering resonances according to Eq. (24). Also, the
BIC condition (32), (33b), and the narrowing factor in Eq.
(35) dePend only on the ratio of WA p and Wzo and not on
their absolute magnitudes. Thus the most important ef-
fects of the interference of the two resonances do not de-
pend on the absolute widths of the (noninterfering) reso-
nances.

If the widths of the noninterfering resonances are com-
Parable, i.e., if the magnitudes of WAO and W~p are not

Then, from (30), the width of the corresponding resonance
is, to leading order in e,

—3
e2 ~AO ~BOI'» =(2~En) I WAOWao I 2 +

BO AO

very different, then according to Eq. (33) the BIC point
occurs for relatively small separations of the noninterfer-
ing resonance positions, i.e., near the avoided crossing of
the positions of the interfering resonances. However, if
the widths of the noninterfering resonances are very dif-
ferent, the BIC point may occur far from the avoided
crossing of the resonance positions.

If the widths of the noninterfering resonances are both
small in comparison with the coupling matrix element

I
WAz I, then the widths of the interfering resonances will

always be smaller than their separation, which is at least
2

I WAii
I

. Thus the resonances never overlap, even
though the effects of their intereference are just as
dramatic as if their original (noninterfering) widths were
much larger than

I WAii I. Whether or not two reso-
nances interfere strongly does not depend on their over-
lapping. We may have strong interference effects in a sit-
uation where the widths of the resonances are much
smaller than their separation; conversely, if, e.g., I WAO I

and
I Whip I

are large but
I WAii I

is small, we may have
very little interference between two resonances which
overlap strongly.

Vpp(r) =0,
a2 —CX

2 2

e —1

p2 pi-
Vii~(r) =Ia—

e —1

0&CZ) &&2

0&pi &p2

and with the coupling potentials

V0A(r) U0Ae V0B(r) U0Be

VAa(r) =UAae '"

(36)

(37)

with constant parameters vpA, vOB, and vAB.
The potentials VAA and Vzii are proportional to llr

near the origin and approach the respective inelastic
thresholds IA and IB exponentially for large r. The un-
coupled ground-state wave functions pA and p~ in these
potentials are simple differences of exponentials:

NA(r)=&A« ' —e '
) 4B(r) +B(e e )

with normalization constants NA, NB given, e.g., by

I~ A I.2ala2(al+ 2)] ~(a2 al) '

The uncoupled energy eigenvalues EA and Eii of the
ground states (38) are

EA IA — ai, Ez ——Iz — P, . ——
2M ' 2M

(39)

The regular uncoupled open-channel wave function $0 is

III. A SIMPLE MODEL

In order to illustrate the effects discussed in Sec. II, this
section presents a model calculation for a simple but real-
istic system of interfering resonances.

The system consists of three coupled s-wave channels
with the following diagonal potentials:
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Pp(r) =sin(kr), fi k =2ME, (40) 2M
+A ppA [F(a+a1 a+a1)+F(a+a2 a+a2)

and the open-channel Green's function is simply the free
s-wave Green's function —2F(a+a„a+a,)],

—(2M/11t k)sin(kr)cos(kr'), r & r'
G(r, r')= '

—(2M/A' k)cos(kr)sin(kr'), r & r' . (41) and there is an analogous expression for GBB. The matrix
element

We have studied the three-channel problem defined by
the above potentials by two different methods:

(i) Direct numerical integration of the coupled-channel
equations (1).

(ii) Evaluation of the analytic formulas based on Eq.
(18), which was derived from Eq. (4) and hence involves
the approximation that each closed channel is dominated
by the single bound state p~ or pB.

which describes the indirect coupling via channel zero of
the states in channels A and B, is

2M
Ga~ ——— Nq2Vauow Uoa

. X [F(a +a1, p+ P1 ) +F(a+ aq, p+ p~)

X [k'+(a+a, )']-' . (42)

Wg p is given by an analogous expression. The energy-
independent matrix element M~B ——(p~

~
V~B

~ pB ),
which describes the direct coupling between the states in
channel A and B, is

MAB +A +BUAB [(a1 +P1+r )
' + (a2+ Pp +7' )

(al+P2+7) (a2+Pl+ 7) ]

(43)

The matrix elements involving the Green's function (41)
are most conveniently expressed in terms of the (energy-
dependent) function

F(x,y)=(xy —k )[(k +x )(k +y )(x+y)]
With this definition of F, the energy shift

(44)

in the position E~ of the (noninterfering) channel-A reso-
nance is

Comparing the results of the "exact" solution (i) with the
one-state-per-closed-channel approximation (ii) gives an
estimate of the importance of the influence of the other
states in the channels A and B.

With the above choice of the potentials [Eqs. (36) and
(37)], all matrix elements appearing in the analytic formu-
las of method (ii) can be evaluated analytically: The ma-
trix element W~p ——~k(Pg

~
Vpg

~ Pp) which describes
the direct coupling of the state in channel 2 with the open
channel, is

~AO 4UOAk (a2 al )(a1+a2+2a)[k +(a+a1) ]

F(a+—a1, p+pq) F(a+ay—, p+p1)] .

(46)

For explicit calculations we have taken A /2M to be un-
ity. This means that k, a, p, etc. are all in units of an (ar-
bitrary) inverse length and all energies are in units of the
square of this inverse length. The radial coordinate r will
always be given in units of the corresponding length.

The potential parameters we used are summarized in
Table I. The relative positions of the thresholds of chan-
nels A and B (and hence of the uncoupled energy eigen-
values Zq and EB ) are considered variable. Figure 1

shows the uncoupled channel potentials V~ and Vzz
(solid curves), together with the uncoupled ground-state
wave functions p„and pB (dashed curves). With our
choice of potential parameters the uncoupled channel po-
tentials Vzz and Vz& each support only one bound state.
Calculations were performed with different signs of the
coupling strength Uoz in order to illustrate the dependence
of the interference effects on the relative signs of the cou-
pling matrix elements.

We now keep the mean position ,' (Ez +EB ) of—the un-

coupled energy eigenvalues fixed (at the value 7.0) and
vary their separation in order to study the interference of
the two resonances. The positions and widths of the reso-
nances are plotted as functions of Ez EB in Fig. 2. The-
lower two parts of Fig. 2 correspond to different signs of
UOB and illustrate the strong effect of the relative signs of
the coupling matrix elements on the widths of the in-
terfering resonances. Changing the sign of upB also af-
fects the positions of the interfering resonances because it
changes the sign of G~B but not of MqB in the formula
for the coupling matrix element IV&B [see Eq. (19)].
However, this effect is negligible in the present case, be-

TABLE I. Parameters defining the potentials (36) and (37) of the simple three-channel model (the
range parameters a&, az, a, P&, etc. , are all in units of an arbitrary inverse length aud the coupling
strengths vo&, vo&, and v» are in units of the square of this inverse length).

1.5 2.5 1.3 2.0 3.0 1.5 1.4

vow

—1.0

vow

+ 1.0

VAB

—1.0
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A{r

FIG. l. Diagonal channel potentials V~(r) and V»(r) (solid
lines) as defined by Eq. (36) with the parameters of Table I. The
uncoupled energy eigenvalues E~ and E~ are shown relative to
the respective channel thresholds I& and I~, and the corre-
sponding uncoupled ground-state wave functions P~(r) and

Ps(r) are shown as dashed lines.
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. Throughout
the present calculations the matrix elements (12) involving
the Green's function are small in comparison with the
coupling matrix elements 8'.

As shown in the top part of Fig. 2, the interference of
the resonances causes ari avoided crossing of the reso-
nance positions. In the lower part of the figure we see
that, for a given value of Eq Es—, which lies close to zero
in the present case, one of the resonance widths vanishes
giving a BIC, while the other increases in order to keep
the sum of the widths roughly constant. The case vs &0
corresponds to 8'~08'&~8'zo ~0, and. hence the upper
resonance becomes a SIC, while uo& ~0 corresponds to
8'qo8~&8'~0~0 and the lower resonance becomes a
SIC.

Figure 3 shows the asymptotic phase shift 5(E) as a
function of energy for two fixed values of the separation
Ez —Ez of the uncoupled energy eigenvalues. For
E~ Ez ————1.5 we see two isolated resonances of com-
parable width and, although there is some interference, its
effects are not dramatic. For E~ Ez ——0 w—e are close to
the avoided crossing and also, in the present example, to
the BIC point. Here interference effects keep the actual
resonances apart and lead to a concentration of almost all
of the total width in the upper resonance; the lower reso-
nance is anomalously narrow. Note that although in-
terference effects are dramatic in the right half of Fig. 3,
the resonances are still "isolated, "because the noninterfer-
ing widths are smaller than

~
W~~

~

in the present exam-
ple. This illustrates the point made in Sec. II that in-
terfering resonances need not neceesarily be overlapping
resonances.

On the scale of Fig 3the. difference between the exact
phase shifts obtained by numerical solution of the
coupled-channel equations and the results obtained from
the analytic formula (18) is smaller than the thickness of
the lines. In order to illustrate the difference of the two
methods, Fig. 4 shows on an expanded scale—the width
of the narrow resonance in the vicinity of the point of
vanishing width (for the case Upg )0). The dashed curve
shows the widths derived from the analytic formulas in
Sec. II and the solid curve shows the exact results ob-
tained by numerical integration of the coupled-channel
equations (1). A comparison of the two curves in Fig. 4
shows that the analytic formulas based on the one-state-
per-closed-channel approximation indeed reproduce the
results of the exact calculation very well. Both curves

0.12—
EA- EB = - 1.5 EA-Ee

0.06-

0 -8 0
EA- EE

FIG. 2. Top part of the figure shows the positions E~ and E2
of the interfering resonances as functions of the separation
E~ —E~ of the uncoupled energies of the closed-channel states.
The energies obtained with the two different signs of the cou-
pling strength Uo~ agree to within the thickness of the lines. The
bottom part of the figure shows the widths I ~ and I q of the in-
tefering resonances for the two different choices of the sign of
~os.

FIG. 3. Asymptotic phase shift 5(E) of the open-channel
wave function for two different values of the separation
E~ —E~ of the uncoupled energies of the closed-channel states
(here, uo~ &0).
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0.0012— I (—exact

0.0008—
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-0.04 0 0.04 0.08
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FIG. 4. Width of the narrow resonance in the vicinity of the
SIC point. Here, Uo~ &0, so the lower resonances is the narrow
one. The dashed curve shows the width obtained from the ana-
lytic formulas derived in Sec. II and the solid line shows the ex-
act results obtained by numerical integration of the coupled-
channel equations. In each case the BIC point is marked by an
arrow.

IV. COULOMBIC CHANNELS

An interesting variation of the situation described in
Sec. II occurs when the diagonal channel potentials V;;(r)
behave asymptotically (large r) as

Vr(r)- —e /r .2 (47)

In this case a resonance from one channel may interfere
simultaneously with a whole Rydberg series of resonances
in another channel. The fact that interference in coupled
Coulombic channels can and does lead to bound states in
the continuum was recently shown in Ref. 10. In the ab-
sence of channel coupling the eigenstates of the Hamil-
tonian form uncoupled Rydberg series with energy eigen-
values E„; in each channel i converging to the channel
threshold I;:

show a point of vanishing width (in the numerical calcula-
tion the width at this point was less than 10 ) and the
same quadratic dependence of the narrow width on the
continuous parameter E„—E~ in the vicinity of this BIC
point [compare Eq. (35)]. The essential difference be-
tween the two calculations is a small shift of the BIC
point which lies at E~ —E~ ——0.025 in the. exact calcula-
tion and at Eq —Z~ ——0.016 from the analytic formulas of
Sec. II.

The deviation of the dashed curve in Fig. 4 from the
solid curve reflects the effect of neglecting the excited
(continuum) states in the closed channels in the present
three-channel model. Incorporating the effects of these
states into the reduced version (4) of the coupled-channel
equations (1) leads to a sinooth energy dependence of the
potentials in Eq. (4), as would the consideration of the ef-
fects of other closed channels. All the results derived in
Sec. II are valid in the presence of such a (smooth) energy
dependence of the potentials in Eq. (4). It is important to
realize that the results derived in Sec. II, including the oc-
currence of exactly bound states in the continuum, are not
restricted to the one-state-per-closed-channel approxima-
tion or to a three-channel system, but are quite general
features of interfering resonances in a multichannel sys-
tem with only one open channel.

E„( Ig——%—/(n —p„;)~, (48)

where &=Me /2' is the Rydberg energy and p„; form,
for each i, a convergent series of weakly n-dependent
quantum defects which are due to the short-ranged devia-
tions of the channel potentials from a pure Coulomb po-
tential. In a given channel the quantum defects p„of the
bound states below threshold are intimately connected
with the asymptotic phase shifts of the continuum wave
functions above threshold, as was first pointed out by
Seaton. '

In the presence of channel coupling, ordinary bound
states exist only below the lowest channel threshold I~.
States lying above Ij become resonances and can decay by
autoionization. In the case of comparatively weak cou-
pling, the states associated with higher channels form
Rydberg series of autoionizing resonances converging to
the respective threshold. If a state associated with a
higher channel happens to lie below the lowest threshold,
it causes a pseudoresonant perturbation in the quantum
defects of the Rydberg series of bound states. '

Coupled Coulombic channels are comprehensively
described by "multichannel quantum-defect theory"
(MQDT), which has been developed by Seaton' and by
Pano and collaborators. ' Here we use a representation
recently introduced by Giusti-Suzor and Fano, ' where
the basic equation of MQDT reads

det
(
tan[m. (v;+p;)]+8;J

~

=0. (49)

The elements R,z define a real symmetric coupling matrix
with no diagonal elements. The p; describe the diagonal
effects of the short-ranged deviations from the case of un-
coupled pure Coulomb potentials. If all important chan-
nels are included, the p; and R,J depend only weakly on
energy. In closed channels i, the quantity v; in Eq. (49)
stands for the effective quantum number and is related to
the energy E by

E Ig ———9P/v; . — (50)

In the absence of channel. coupling, Eq. (49) yields uncou-
pled Rydberg series with energy eigenvalues in the ith
channel determined by

tan[a (v;+p; )]=T (E)=0 . (51)

If channel 1 is open, then @pi represents a smooth back-
ground phase shift of the wave function and
5= —m.v] —mp] is the additional phase shift due to
channel-coupling effects.

For three coupled Coulombic channels, channel 1 open
and channels 2 and 3 closed, Eq. (49) becomes

R ]2T3 +R3jT2 2R )2R23R3j
2 2

tan5=— (52)
T2T3 —R 23

with Tz and T3 as defined in Eq. (51). Equation (52)
bears a remarkable resemblance to (18) describing the
open-channel phase shift due to interfering resonances. A
superficial difference between Eqs. (52) and (18) is that all
quantities in Eq. (52) are dimensionless. The essential
difference is that the zeros of Tz(E) and T~(E) in Eq.
(18) define the positions of just two noninterfering reso-
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nances [see Eq. (13)), whereas the zeros of T2(E) and
T3(E) in Eq. (52) define whole Rydberg series of (nonin-
terfering) resonances. The Coulombic generalization of
Eq. (24) for the widths of the noninterfering resonances is,
e.g., in channel 2,

R R4 A2R2 R4
3 12 23+

&V2 12
'3 2 2

3 2 R23R3]
R23 2 +1

V2 R12

r„/u= 4R12 ]
7T v2

(53)
(56)

and depends quadratically on k. Near the second thresh-
old, i.e., for v2~ oo, we obtain

Note that the autoionization widths decrease with the in-
verse cube of the effective quantum number as we ap-
proach the series limit, i.e., at the same rate as the separa-
tion of successive resonances.

As in the case of only two resonances described in Sec.
II, interference of the resonances associated with two dif-
ferent Rydberg series has a dramatic effect on the widths
of the resonances. Infinite derivatives of the phase shift
corresponding to exactly bound states in the continuum
occur when both numerator and denominator of the quo-
tient on the right-hand side of Eq. (52) vanish simultane-
ously. In analogy to Eq. (31), the BIC condition is now

4R 12 k2
3 4 2 2 2

nv2 R23+RiiR23/R i2

i.e., the width is reduced by a factor

g2(R4 +R2 R2 /R2 )
—1

(57)

compared with, the widths expected for an unperturbed
Rydberg series of resonances. The range of values of A,

over which the widths of the perturbed series of reso-
nances is anomalously narrow is at least of the order of
R 23 This translates into a finite-energy range via the
derivative dE/d A, defined by

T2(E)=R23Ri2/R3iy T3(E)=R23R3i/Ri2 . (54) tan[+ ( v3+p3) ]=R 23R 3 i /R i2+ A, , (5&)

Each of Eqs. (54) taken separately defines a Rydberg
series of energies which, due to channel coupling, are
somewhat shifted from the positions of the noninterfering
resonances as defined by Eq. (51). Each branch of the
tangent function defines one (shifted) resonance position.
The BIC condition (54) is fulfilled whenever two shifted
resonance positions belonging to different channels coin-
cide. If we have a continuous parameter to vary the
separations of the thresholds I2 and I3 of the closed
channels, then the resonances of the upper channel 3
wander through the Rydberg series of autoionizing reso-
nances associated with channel 2, and a BIC will occur
whenever one resonance from channel 3 passes one of the
resonances associated with channel 2.

An interesting situation occurs when a resonance asso-
ciated with channel 3 lies at or just below the second
threshold I2. Since the width of this resonance is finite
and the separations (and widths) of resonances converging
to I2 become smaller and smaller near the series limit,
this one resonance of channel 3 will simultaneously inter-
fere with a large, in fact, infinite, number of resonances
associated with channel 2. Now the BIC condition (54)
will, in general, be fulfilled for at most one pair of reso-
nances, but approximate fulfillment of the BIC condition
may lead to anomalously narrow autoionization widths
for a whole series of resonances converging to I2.

Approximate fulfillment of the BIC condition (54) can
be expressed as

T2(E)=R23Ri2/R3i, T3(E)=R23R3i/Ri2+A, ,

(55)

where A, is small compared with unity. The expression
analogous to Eq. (35) for the width I „ofthe narrow reso-
nance in the vicinity of a BIC point is then

2a=~
2me

e2 me
+COI, + CO2(X +y ), (59)

where co=eB/2m, c is half the cyclotron frequency. The
azimuthal quantum number m and parity m are good
quantum numbers; in each m subspace we have a system
of coupled channels defined by the Landau quantum
number N for the motion of the electron perpendicular to
the direction of the field, while the motion parallel to the
field is governed by Coulombic potentials. For field
strengths near or greater than

80 ——m, e c/A' =2.35X10 6,
the energy between the thresholds of successive Landau
channels is greater than the Rydberg energy and we obtain
energetically well-separated Rydberg series of bound
states (N=O) and autoionizing resonances (N & 0). As the
field strength is reduced, the various Rydberg series begin
to overlap and interfere. '

Figure 5 shows the behavior of the energies and widths
of the lowest eight Landau excited states in the m =2+
subspace at field strengths at which this series of N=1
resonances is being perturbed by the lowest state of the
N=2 series. The top half of the figure shows the energies

but the magnitude of the energy range depends strongly
on the value of the effective quantum number v3 at the
second threshold I2. Close enough to threshold, however,
interference due to one perturber from channel 3 can al-
ways lead to a Rydberg series of anomalously narrow au-
toionizing resonances.

One physically real situation, where the perturbation of
a Rydberg series of autoionizing resonances leads to
BIC's, is, as recently shown in Ref. 10, the hydrogen atom
in a uniform magnetic field. For a large range of field
strengths B, this system is accurately described by the
one-electron Hamiltonian'
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FIG. 5. Energies and widths (in Rydberg units) of the lowest
eight Landau excited states in the m =2+ subpsace as func-
tions of the magnetic-field-strength parameter y=B)BO. The
energies (top half) are shown relative to the inelastic threshold
which lies 2y& above the ionization threshold (dashed line).
The widths (bottom half) are multiplied by the cube of the effec-
tive quantum number n,qq defined by Eq. (60). The results in
this figure were obtained by solving ten coupled Landau channel
equations.

0.04

2
En Iinel ~~+ eff (60)

In an unperturbed Rydberg series of autoionizing reso-
nances, I „n,rr is essentially independent of n [see Eq.
(53)].

Figure 5 clearly shows how, as the perturber wanders
downward in the Rydberg series of autoionizing reso-
nances with decreasing field strength, one resonance after
another is slightly pushed down in energy and becomes a
BIC for a given value of the magnetic field strength. The
effect that a perturber close to the inelastic threshold
causes several anomalously narrow widths simultaneously
can also be seen in Fig. 5, e.g., at 8 =0.08BO the widths
of the n=6, 7, and 8 states are very much smaller than
the widths expected from the I „neff scaling law.

The effect described here, namely the suppression of
autoionization due to perturbation of a Rydberg series of

of the resonances relative to the first Landau threshold
(the inelastic threshold) I;„,i, which lies 2fico=2(8/Bc)A'
above the ionization threshold. Below the ionization
threshold (dashed line), the energies correspond to the po-
sitions of pseudoresonant perturbations of the Rydberg
series of bound states. The bottom half of the figure
shows the widths multiplied by the cube of the respective
effective quantum numbers n, rr defined by

autoionizing resonances, has recently been observed exper-
imentally by Neukammer et al. in the [Sd3/pnd3/3] J p
series in barium, which is perturbed around n =30 by the
[Sd5/21315/2] J—Q state. Although there is no continuous
parameter in this system, the density of states is already
so high near n= 30 that the BIC condition (33b) is almost
fulfilled for some states. For the 'n=26 state, Neukam-
mer et aL observed a suppression of the autoionization
rate by almost three powers of 10.

Finally, we discuss what happens when the interference
of two perturbers occurs below the ionization threshold.
In this case we are not dealing with the interference of
two autoionizing resonances but of two pseudoresonant
perturbations. Just as the interference above threshold
leads to a BIC, the interference below threshold leads to
an infinitely narrow perturbation of the Rydberg series of
bound states. When a narrow perturbation wanders
through a Rydberg series of bound states, it leads to ap-
proximate level crossings. In the limit of small widths of
I of the pertuber, the magnitude of the anticrossings it
causes, i.e., of the minimal separations of adjacent energy
levels, is proportional to I'/ (see Ref. 14).

Thus a point of vanishing width I corresponds to a
point of vanishing anticrossing in the bound-state spec-
trum. However, the point of vanishing anticrossing need
not coincide with the point of closest approach of two ad-
jacent levels, so a vanishing width I for one value of a
continuous parameter will not, in general, lead to the ex-
act degeneracy of two bound states. On the other hand,
anomalously narrow widths of the pertruber persist over a
finite range of values of the parameter, and this leads to
anomalously small anticrossings, i.e., approximate level
crossings, in the neighborhood of the point of vanishing
anticrossing.

In the present example illustrated in Fig. S, the point of
vanishing width of the n=3 state actually occurs for an
energy below the ionization threshold and thus corre-
sponds not to a BIC but to a point of vanishing anticross-
ing leading to approximate level crossings in the bound-
state spectrum. In 1980 Zimmermann et al. ' discovered
approximate level crossings in the spectrum of the hydro-
gen atom in comparatively weak (laboratory) magnetic
fields. These approximate level crossings can be under-
stood as a consequence of an approximate separability of
the Hamiltonian at low field strengths. ' We now
present an alternative mechanism for generating approxi-
mate level crossings in the region of somewhat stronger
magnetic fields. The mechanism is the interference of
two perturbers and is not related to any exact or approxi-
mate symmetry.

V. SUMMARY AND CONCLUSION

The subject of this paper has been the interference of
resonances associated with different channels of a
coupled-channel Schrodinger equation. When two reso-
nances interfere, their interference affects their positions
and widths. If we have the freedom of varying the
separation of the noninterfering resonance positions as a
function of a continuous parameter, the interference ef-
fects lead to an avoided crossing of resonance positions.
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As shown by Eq. (26), the minimal separation of the reso-
nance positions is of the order of the coupling matrix ele-
ment

~

8'~~ ~. Also, the sum of the widths of the in-
terfering resonances is roughly equal to the sum of the
widths of the noninterfering resonances.

These results are quite well known. Less well known is
the fact that the distribution of the width among two in-
terfering resonances is extremely uneven. For a well-
defined separation of the noninterfering resonance posi-
tions, one of the resonances loses all width and becomes a
BIC. If the BIC condition is not fulfilled exactly,
anomalously narrow widths of one of the two resonances
are observed for a finite range of separations; this range is
at'least of the order of

~
W~~

~

and may be much larger if
the widths of the noninterfering resonances are very dif-
ferent [see Eq. (35)]. Which of the two interfering reso-
nances becomes a BIC at the BIC point and an
anomalously narrow resonance in the vicinity of the BIC
point depends on the relative signs of the matrix elements
coupling the various channels.

The essential features of the interference effects do not
depend on the absolute magnitudes of the widths of the
noninterfering resonances but only on their ratio. If the
widths of the noninterfering resonances are of the same
order of magnitude, then the BIC point lies near the
avoided crossing of the positions of the interfering reso-
nances; if the noninterfering widths are very different, the
BIC point may lie far from the avoided crossing.

Whether or not two resonances interfere is not directly
related to whether or not they overlap. "Isolated" reso-
nances, i.e., resonances whose separation is larger than
their widths, can show dramatic interference effects, while
the interference between two strongly overlapping reso-
nances may be negligible.

All the results mentioned above are derived by applying
Feshbach's theory of resonances to a system of two bound
states in closed channels coupled to an open channel. All
results remain valid if the effective potentials contain an
energy dependence to account for the coupling to other
states in the closed channels and to other closed channels.
The results derived in Sec. II and illustrated in Sec. III, in-
cluding the occurrence of exactly bound states in the con-
tinuum, are quite general features of interfering reso-
nances in a multichannel system with only one open chan-
nel.

If the bound states in the closed channels are coupled
not to an open channel but to a more or less dense spec-
trum of bound states, as may exist below the continuum
threshold of the "open channel, " then we are no longer
talking about resonances, but rather about "pseu-
doresonant perturbations" of the bound-state spectrum.
Instead of leading to a BIC, the interference of two such
perturbations leads to a perturbation of vanishing width
which corresponds to a "point of vanishing anticrossing"
in the bound-state spectrum. Near this point, approxi-
mate level crossings of the bound-state energies may
occur. How small an anticrossing actually is depends on
how close it lies to the point of vanishing anticrossing.

In a system of Coulombic channels, the coupling of a
Rydberg series of states in a closed channel to an open
channel leads to a Rydberg series of autoionizing reso-
nances. Interference of a resonance from a third channel
with any member of this series can lead to a BIC. Near
the series limit of the Rydberg series of autoionizing reso-
nances, i.e., near the inelastic threshold, the BIC points lie
very close and interference due to a single perturber can
affect several resonances simultaneously and may even
lead to a Rydberg series of anomalously narrow reso-
nances. Autoionization rates which are strongly
suppressed by such interference have recently been ob-
served in laboratory experiments on barium. The general
features of a perturbed series of autoionizing resonances
are nicely illustrated in the example of a hydrogen atom
in a uniform magnetic field.

The occurrence of BIC's and of anomalously narrow
resonances due to the interference of resonances in dif-
ferent channels is a very general effect that may be impor-
tant in many areas of physics. The fact that the effects of
interference on the resonance widths are so dramatic and
depend on the relative signs of the coupling matrix ele-
ments suggests that the identification of such interference
effects could play an important role in atomic, molecular,
or nuclear spectroscopy, or wherever the interaction be-
tween resonances might be important.
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