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Cyclotron motion in a microwave cavity: Lifetime and frequency shifts

Lowell S. Brown, Gerald Gabrielse, Kristian Helmerson, and Joseph Tan
Department of Physics, EM 15, -University of Washington, Seattle, Washington 98195

(Received 13 May 1985)

The interaction of a bound electron with the radiation field produced by the image charges that
represent a surrounding cavity produces a shift in its orbital frequency and in its radiative decay
time. We calculate the frequency shift and the change in the damping constant for a cyclotron
motion at the midpoint of a lossy, cylindrical cavity. A change in the cyclotron damping constant
has, in fact, been observed in the University of Washington g —2 experiments. These experiments
employ electrodes with a hyperbolic shape, but our calculable model should give a useful indication
of the size of the effects for them. The frequency shift can easily be so large as to have important
consequences for the g —2 measurements, and this systematic effect warrants a thorough experi-
mental investigation. As an intermediate step in this calculation, we also compute the corresponding
alterations for a charged particle in the midplane between two infinite parallel conductors.

I. INTRODUCTION

A charge accelerated in free space emits electromagnet-
ic radiation. The radiation can be substantially modified,
however, when the accelerated charge is within a conduct-
ing cavity, as pointed out long ago. The radiation of a
cyclotron motion can be strongly enhanced when the cy-
clotron frequency coincides with the frequency of an ap-
propriate eigenmode of the cavity. Resonant cavities are
often used in lasers to take advantage of the analogous
phenomenon. On the other hand, the radiation can be in-
hibited when the cyclotron frequency is near no cavity
mode to which it can couple.

Until recently, such inhibition of the radiation had not
been observed, though experiments to do so with Rydberg
atoms have been suggested and are now underway. The
first observation of inhibited radiation within a cavity, in
fact, took place with a cyclotron oscillator. The cyclot-
ron motion of a single electron, within the cavity formed
by the electrodes of a Penning trap, was observed to have
a radiative damping rate which was longer than that
occurring in free space. In addition, the damping rate was
observed to change as the cyclotron frequency was
changed, with the cavity left unchanged: The radiative
damping time changed from 4 times longer than the free-
space value to a value shorter than the free-space value.
A later confirming observation of inhibited radiation in a
different trap indicated a damping time nearly 10 times
longer than the value for free space.

The lengthening of the cyclotron damping time is very
important for the precision measurements of the electron
and positron cyclotron frequencies which are done within
Penning traps. The favorable feature of the lengthened
damping time is that it corresponds to a reduced cyclot-
ron linewidth, making possible, in principle, a higher-
precision measurement of the cyclotron frequency. On
the other hand, if the couplings between the cyclotron os-
cillator and the oscillators which represents the cavity
modes can cause a change in the damping rate, they can
also cause a shift in the cyclotron oscillation frequency.
Cavity-induced shifts in the cyclotron frequency are ex-
tremely undesirable for precision measurements and are a

I

principle focus of this work. To assess the accuracy need-
ed in the theoretical formula which relates the observed
cyclotron frequency co, to the cyclotron frequency co, in
the absence of the cavity, we note that the measured
anomaly is expressed as

g —2a=
2

where co, is the spin precession frequency. Thus if the
cavity frequency shift

~~c =COc COc (1.2)

is not accounted for, it leads to a systematic error in the
anomaly given by

Aa 1 ~~c
a

(1.3)

Since the present precision in the anomaly is
ha/a =4X10 and a =1.2X10, we see that the
current experimental precision is upset if the cavity shift
is larger than b,co, /co, =5X10 ' . A previous estimate
suggested that the cavity shift could be of about this size.
Our work shows that the situation may well be much
more serious.

The hyperbolic shape of the electrodes used in the ex-
periments, along with holes and slits in the electrodes,
makes it difficult to calculate the mode structure in these
traps. The mode structure of a cylindrical cavity, howev-
er, is well known. With this in mind, the possibility of
producing an electrostatic quadrupole potential with
cylindrical electrodes, which is of high enough quality to
allow trapping and monitoring a single particle, is being
investigated. We accordingly calculate the interaction of
a cyclotron oscillator with a cylindrical cavity, with the
cyclotron orbit located at the center of the cavity. This
detailed calculation provides, however, a useful indication
of the properties of cyclotron motion in a hyperbolic cavi-
ty as well.

The basic outline of the calculation is described in Sec.
II. The cyclotron motion gives a current which excites
the cavity modes. These cavity fields in turn act back
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upon the motion. In solving this coupled system a renor-
malization is required to avoid the infinities associated
with self-energies. To do this, we solve first the problem
of a cyclotron oscillator located between infinite parallel
plates in Sec. III and then consider the cylindrical cavity
in Sec. IV. By properly subtracting the parallel-plate con-
tributions from the cavity contributions we avoid the in-
finities. Both Sec. III and Sec. IV are divided into a part
A, which contains the necessary mathematical details, and
a part 8, which summarizes the results. An effort has
been made to make it possible to skip Secs. III A and IV A
if the details are not required. The radiative damping
widths and the corresponding shifts in the cyclotron fre-
quency are calculated as a function of the cyclotron fre-
quency. Both depend upon the quality factor Q of the
cavity, which has been included in an approximate but
sufficiently accurate fashion. In the frequency range
which corresponds to that being used for the precision
measurements, a Q value of 1000 yields a damping time
which can be as much as 10 times longer than that in free
space. At the same time, the fractional frequency shift
can be as large as 90)&10 ' which substantially exceeds
the present experimental accuracy which corresponds to a
shift of 5&&10 ' . For higher Q values the shifts can be
even larger. %'e should point out that the present accura-
cy in the theoretical value for the anomaly, including the
uncertainty in the fine-structure constant, is given by
b,a/a =140)&10 . Hence a frequency shift as large as
b,co, /co, =140)&10 ' would not be revealed by compar-
ing the experimental and theoretical values for the anoma-
ly.

Finally, we point out that while the frequency shifts we
calculate here affect the accuracy of the measurements of
the electron and positron magnetic moments, these shifts
are entirely different from recent claims ' of direct cavity
shifts in the spin magnetic moment of order 10 ' . These
claims led to a demonstration that the exact apparatus of
quantum electrodynamics reduces to the classical theory
used in this paper with no measurable shift in the spin
magnetic moment. The work of Ref. 5 also indicates how
our results can be extended to atomic systems. This may
be of interest for experiments presently in progress. A
brief account of the present work has been published. '

II. GENERAL FORMULATION

We are considering the classical motion of a charged
particle which is bound in the typical field configuration
of a Penning trap: a strong uniform magnetic field
aligned along the z axis superimposed over a weak electro-
static potential. Such a field configuration gives rise to
the free-space equation of motion

E~ (L )E~+ (&)E~ (2.4)

The longitudinal part ' 'E' is the gradient of the
radiation-gauge scalar potential, while the transverse part
' 'E' is the time derivative of the radiation gauge vector
potential. As we shall soon see, the major effect of ' 'E' is
to alter the electrostatic binding field by an insignificant
amount (in agreement with a previous estimate" ), while it

, is the effect of ' 'E', which corresponds to the effects of
the dynamical cavity modes, that can have significant
consequences.

The longitudinal piece ' 'E' is obtained from the altera-
tion brought about by the cavity on the static scalar po-
tential produced by the charged particle. Thus

'E'(r) = —Ve&'(r, r') ~, (2.5)

Here &'(r, r') is a solution to the homogeneous Laplace
equation. Adding to it the free-space Green's function
1/~ r —r'

~

produces the Coulomb Green's function ap-
propriate to the cavity, a function which vanishes when
either r or r' lies on the cavity surface. Since the charged
particle moves about a small orbit near the center of the
cavity, the first nontrivial term in the power-series expan-
sion of '~'E'(r) about r=O suffices. The symmetry of the
cavity gives ' 'E'(0) =0. Small imperfections make
' ~E'(0) nonvanishing, but this very small constant elec-
tric field is canceled by a very small shift in the equilibri-
um position'of the trapping potential. Thus the first non-
trivial term is a linear one,

3
' 'Ek(r)= g skirl,

m 1=1
where

(2.6)

Our interest is in the modifications of this motion when it
takes place about the center of an axially symmetric con-
ducting cavity, with the orbit size a very small in compar-
ison to the size d of the cavity. Neglecting insignificant
image magnetic forces, the presence of the surrounding
metallic cavity alters of the charged-particle equation of
motion to read

v —m, &&v+ VV(r)+ —,
'
y, v= E'(r) . (2.3)

Here E'(r) is the electric field at the position r(t) of the
charged particle which is produced by the effective image
charges that represent the cavity walls. It is the electric
field acting on the particle omitting the trap field
[—VV(r)] and also excluding the proper field of the par-
ticle itself. This proper field is accounted for by using the
observed (free-space) electron mass m and by employing
the free-space damping constant y, . It is convenient to
split the field E' into longitudinal and transverse parts,

/

v —co, )&v+ VV(r)+ —,
'
y, v=O,

m
(2.1)

2

[~k 1|l~'(r r') I, =,+~k~i ~'(r r )
I

'=.1 .
m

y, (co, )=4e co, /3mc (2.2)

where m, is the cyclotron frequency of the particle's rota-
tion in the magnetic field alone. The inclusion of the elec-
trostatic potential V(r) adds only very small accelerations
to this fast motion, and so it suffices to take the damping
constant to be that of a cyclotron circle,

(2.7)
The first term in the square brackets is symmetrical in the
vector indices k, l and traceless since &'(r, r') obeys the
Laplace equation. Moreover, this term shares the axial
symmetry of the trapping potential. Hence its effect is
absorbed by a small redefinition of this potential. Since
the Green's function is symmetric,
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&'(r, r') =W'(r', r), (2.8)

the second term in the square brackets is symmetrical in
the vector indicies k, l. This second term also has axial
symmetry, but it is not traceless. The scalar part

kl =~kl ~ (2.9)
3

+= 3' g IImm (2.10)

cannot be absorbed by a redefinition of the trapping po-
tential. The correction is, however, very small: The dou-
ble gradient of &'(r, r') is of order 1/d, where d is the
characteristic trap size. Hence

e aoe 1Q=
md d aomd

(2.11)

Here we have introduced the Bohr radius ao-5)&10
cm since the binding energy of the hydrogen atom
e /2ao-14 eV is about e times a typical trapping voltage
Vo (a voltage produced by batteries). Therefore

ao eVo

md
(2.12)

and we see that this correction is of order ao /d =10
relative to the strength of the trapping potential. Since
this is an entirely negligible correction, a more elaborate
evaluation is not necessary, and we turn to the potentially
important effects of the transverse electric field.

The transverse electric field may be expressed as the
time derivative of a vector potential and thus as

3
dt' g Dkt(t t';r, r(t—'))eut(t')Ic

Bt /=1
'Ek(t, r) =—

(2.13)

Here Dki(t —t';r, r') is the retarded, transverse, radiation
gauge Green's-function alteration brought about by the
cavity. Adding it to the free-space Green's function pro-
duces the full Green's function which obeys the relevant
boundary conditions on the cavity walls. Since the
charged particle is confined to a small region near the
center of the cavity, it suffices to set r(t) =O=r(t') in Eq.
(2.13). Only the fast cyclotron motion has any significant
correction from this field. Adopting complex coordinates
and Fourier transforming according to

u(t)=v„(t) ivy(t)-e—
with

(2.14)

Dkt(t —t', r, r') = e '"" ' 'D kt(~'r r ), (2.15)
2m

one finds that inserting the field (2.13) into the equation
of motion (2.3) yields the condition

c0 —c0~+t p~ /2= —cvroD zz(c0&0~0) ~ (2.16)

where ro e lmc =3X10 ' cm is——the classical electron
radius. The effect of the trapping potential is to replace
the cyclotron frequency t0, by a slightly modified frequen-
cy' tv,

' which appears on the left-hand side of Eq. (2.16).
The simplicity of the right-hand side of Eq. (2.16) results
from the axial symmetry which implies that D '(tv;0, 0) is

proportional to the unit dyadic in the x-y plane, with the
proportionality constant D ~ (tv;0, 0)=D zr (to;0,0).

In general, the Green's-function modification
D '

(tv;0, 0) is a complex number and thus the presence of
the cavity modifies the cyclotron decay constant away
from its free-space value y, as well as altering the reso-
nance frequency away from co,'. In the limit of a perfect
cavity with perfectly conducting walls, the imaginary part
of D ' (t0;0,0) cancels y, exactly. In this limit there is no
decay of the cyclotron motion because there is no dissipa-
tive process to absorb the energy.

To assess the size of the correction to the cyclotron fre-
quency given by the right-hand side of Eq. (2.16), we note
that simple dimensional analysis informs us that

D ~(to;0,0)=F(cod/c)ld, (2.17)

where F is a dimensionless function of the dimensionless
ratio cod/c=d/X. This function describes the retarded
propagation of the radiation field emitted by the motion
of the image charges that represent the cavity walls, and
thus one expects that F(cod lc) will be roughly of the or-
der of unity even for a large argument. Using the typical
values for a Penning trap ro /d = 1)& 10 ' and
cod/c =10, and taking F(cod/c)=1, we see that the
correction to the cyclotron frequency is roughly on the or-
der of one part in 10', which is almost as large as the
current precision of the geonium experiments. Moreover,
since y, /t0, —10 ', we also see that the damping con-
stant may be significantly altered. Clearly this effect war-
rants a more careful examination, to which we now turn.

Before passing to the quantitative treatment, some qual-
itative, clarifying remarks are in order. We first ignore
the renormalization problem so that the Green's-function
correction D ' (tv;0, 0) on the right-hand side of Eq. (2;16)
is replaced by the full Green's function and the decay con-
stant y, is omitted on the left-hand side. In this case we
may express the Green's function by a mode sum to ob-
tain

N —N~ =CO
co +lcoI ~ —N~

(2.18)

Here to& is the eigenfrequency of the Nth mode and I z is
the decay constant of this mode with Q~ ——co~ /I ~ the
corresponding quality factor of the mode. The coupling
constant A,z in the numerator is related to the square of a
wave function, and so it is a positive number, while the
sign of the damping term +icoI z in the denominator is
dictated by the causal requirement of decay rather than
growth in time. The formula (2„18)expresses the frequen-
cy shift of the cyclotron motion, which is essentially har-
monic, in terms of its interaction with the infinite number
of cavity modes of the radiation field, each of whose am-
plitudes is a harmonic oscillator. Thus formula (2.18)
represents the cyclotron frequency shift in terms of the
solution of an (infinite) set of coupled harmonic oscilla-
tors. A simple dimensional argument shows that A,~ is of
order ro ld c -(roid)co&. Therefore, away from any
cavity resonance to=co~, we have a small frequency shift
of the order (to —t0,')Ice-ro/d, in agreement with our
previous estimate. However, near a cavity resonance, we
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can have a frequency shift (from this one mode) as large
as (N —co' )/ct) +(rp /d )(co~ /I'iv )= +(i'p /d )Q~, wlllc11
is much larger. This frequency shift disappears exactly
on resonance, but in this case there is a large change in the
cyclotron decay constant of order (rp /d)Q~p~-y, Q~.
(In these last two estimates we have neglected purely nu-

merical factors which may be fairly large. )
The story we have just told suffers from a serious omis-

sion, the omission of the necessity of a renormalization.
Replacing the cavity walls with an absorbing material and
taking the limit of an infinitely large cavity must yield the
free-space limit. In this limit, the imaginary part of the
right-hand side of Eq. (2.18), the absorptive contribution,
must reproduce the free-space decay constant iy,—/2.
But in this limit, the real part of the right-hand side of
Eq. (2.18) is infinite since it contains the reactive effect of
the proper field of the charged particle. Clearly, this
divergence also appears in the original cavity configura-
tion. As is well known, this infinity is correctly dealt
with by removing the free-space reactive contribution of
the charged particle's proper field and employing the ob-
served free-space value of the charged particle's mass.
Thus the formal mode sum in Eq. (2.18) diverges, and it
must be renormalized by subtracting out the real part of
the free-space limit. Since this is a delicate operation, we
shall instead return to the previous formula (2.16) which
expresses the (complex) frequency shift in terms of the al-
teration D '

(co;0,0) of the Green's function brought
about by the presence of the cavity.

To have a tractable problem, but one which is of direct
experimental interest, we shall consider a right-
cylindrical cavity as illustrated in Fig. 1. We shall at first
neglect dissipation and treat the cavity walls as perfect
conductors. We shall later take account of dissipation by
replacing the individual cavity widths I ~ with an average
value I . Referring to the (formal) mode sum (2.18), we
see that since I «co~, this is tantamount to replacing
the frequency co by the complex number co+il /2. To

a

unambiguously determine the renormalized alteration
D ~(co;0,0), we note that the limit in which the cavity ra-
dius R is taken to infinity with the cylindrical side re-
placed with an absorbing material yields a geometry with
two parallel, infinite perfectly conducting planes a dis-
tance 2L apart. Thus we express the Green's function as
the sum of the Green's function for the parallel-plate
problem plus the solution to the homogeneous wave equa-
tion which corrects for the presence of the cylindrical
wall. Since the Green's function for the two-parallel-plate
geometry can be expressed as an infinite sum of image
contributions, ' the removal of the proper field term is
now trivial: one simply omits the direct contribution
from the sum.

We solve the simple parallel-plate problem in Sec. III.
This problem is of some interest in its own right. We
then go on to solve the cylindrical-cavity problem in Sec.
IV.

III. PARALLEL PLATES

Here we work out the (complex) shift in the cyclotron
frequency for a charged particle moving in the midplane
between two infinite parallel plates a distance 2L apart as
shown in Fig. 2. First we shall treat the plates as perfect-
ly conducting planes. Later on the dissipative effects of
plates with finite conductivity will be taken into account.

A. Calculation

First off, let us recall that, within a general conducting
cavity, the Green's function for the radiation gauge vector
potential obeys

CO
2 1—V — Dki(co;r —r') =4nl —V . V 5(r—r') .
2 p2

kl

(3.1)

We shall often represent the Coulomb Green's function by
an operator shorthand notation as used here,

M(r, r') = 5(r —r') .
p2

(3.2)

One must keep in mind, however, that W(r, r') is defined
so as to vanish when either r or r' lies on a cavity wall.

il z

X

PR

FIG. 1. Cylindrical cavity of radius R' and length 2L, with
its symmetry axis along the z axis and its center at the origin of
the coordinate system. There is a uniform magnetic field B in
the z direction, and the charged particle moves in a small orbit
about this field near the center.

FIG. 2. Two infinite parallel conducting plates at z=L and
—L. Small circle in the midplane (z =0) centered at the origin
of the coordinate system represents the trajectory of the electron
under a uniform magnetic field aligned along the z axis.
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d'k kkkr=4~ I (2m) k
e ik (r—r')

k (co—+i@) /c

(3.3)

Here the a~0+ defines the frequency contour integra-
tion which produces a causal, retarded response in time.
The Green's function for a single conducting plate is ob-
tained by simply adding a single image function to Eq.
(3.3). This image construction which is familiar in the
electrostatic case generalizes to the full electromagnetic
field since the retardation times to the plate from the
charge and its image are identical. For the case of two
parallel plates, the solution can be expressed in terms of
an infinite set of images as shown in Fig. 3. This again is
the same as the familiar electrostatic construction. Thus
we obtain

+ ce

D (co;0,0)= g ( —1)"F(2nL ), (3.4)

in which
~

~
~

k2 —ik z

F(z) =4m
3

1—
(2~) k k —(co+i@) /c

These boundary conditions must be used so as to ensure
that the tangential components of the radiation gauge
Green's function vanish on a cavity wall.

The free-space Green's function has the familiar,
Fourier-transform construction

D ki (co;I' —r )
EO)

F(z) &iso(z (/c 1+
c2 C

2 +
(coz) (coz)2

D ~(co;0,0)=2 g ( —1)"F(2nL) .
n=1

(3.7)

The sum entails the functions

00 ( 1)IE
Ci, (x ) = —2 g cos(nx )

n=1

and

(3.8a)

ao
( 1)n

Si, (x ) = —2 g sin(nx )
n=1

(3.8b)

for p = 1,2, 3. By writing the cosine and sine in Eqs. (3.8)
in terms of exponentials it is easy to see that the sums for
p = 1 are elementary. It is straightforward to compute

Ci(x)= ln[4cos (x/2)] . (3.9a)

The computation of S i (x ) is a bit tricky because one must
be careful to get the right branch of a logarithm. Bearing
in mind that Si(0)=0 and that Si(x) is periodic with
period 2m., one finds that

(3.6)

The Green's-function alteration caused by the two
plates —the Green's function with the self-interaction con-
tribution removed —is simply obtained by deleting the
n=0 term in the sum (3.4). Since F(z) is an even func-
tion, we have

(3.5) xSi(x)=x —2m.
2m 2

(3.9b)

The integrations involved in this Fourier transform are
elementary, and they give

o

where [y] denotes the integer part of y. The curve of
Si(x) versus x is of a sawtooth form, with the sign of
Si(x) flipping when x passes through an odd integer
number of m's. The sums for p=2 and 3 may be ex-
pressed in terms of integrals of Ci(x) and Si(x) since it
follows from Eqs. (3.8) that

4L

2L
and

C~(x) = —S~ i(x)
d

dx

Sz(x)=C& i(x) .
d

(3.10a)

(3.10b)

In particular, noting that C2(0)=g(2)=m. /6, one finds
that

o —2L

~ -4L

o —6L

C (x)= ——S (x)I
2 6 2 1

and then in turn, remembering that S3(0)=0,
1

S3(x ) = Si (x ) ——S,(x )
6 6

(3.1 1)

(3.12)

FIG. 3. Illustration of image charges induced by an electron
in the midplane of the parallel-plate configuration shown in Fig.
2. This infinite set of images alternating in sign and regularly
spaced by a distance 2L is used in the construction of the
Green's-function alteration caused by the two plates.

B. Results

We have now solved the parallel-plate problem. Recal-
ling Eqs. (2.16) and (2.2) we have
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co —co~ = — y~(ro)+romp(ro)
I

'
I

'
I

'
I

'
I

'
I

(3.13)

where

4' ro
y, (ro) =

3c

and

(3.14)

~O

3
CL

M

Xp(ro)= —roD' (co;0,0) . (3.15)

In the second line of Eq. (3.13) we have separated out the
imaginary and real parts. Explicit forms for Ip(co) and
Rp(ro) follow from Eqs. (3.6)—(3.15) and a little arith-
metic. They depend upon the dimensionless variable

coL 2L,
'll c

(3.16)

which is the (fractional) number of wavelengths at fre-
quency ro which fit between the plates. The forms are

M+ —,
' l' 3[0+-,']I (co)=y, (jg)

4g'3 4g

(3.17)

and

Rp(ro) =co —ln[4cos (ng')]
~o 1 2

L, 2

1 "
( —1)"+ g sin(2mn g)

2rr n i n

ao ( 1)n
[cos(2m.n g) —1]

(2nf) „ i n

(3.18)

The decay constant Ip(ro) given by Eq. (3.17) is plotted
in Fig. 4. With g & —,', less than half a wavelength fits be-
tween the plates. In this case electromagnetic waves can-
not propagate between the plates, the charged particle
cannot radiate, and Ip(co) =0. The decay constant Ip(co)
jumps discontinuously to 3y, (ro) and then decreases as g
increases past g= —,', which is the first threshold for prop-
agating waves. Further discontinuous jumps take place as
g passes through thresholds at odd half-integers. (There
are no thresholds at the integers since there is a node at
the midplane position of the charged particle when an
even number of half-wavelengths fit between the two
plates. ) As g becomes large, there is no obstacle to the ra-
diation of the charged particle, and Ip(co) approaches the
free-space value y, (co).

The real part of the frequency shift give~ by Eq. (3.18)
is sketched in Fig. 5. As illustrated in the figure, the
eigenfrequencies co are determined by the intersection of
the line y=ro,' —co and the curve y= —Rp(co). Several
roots appear if ro,

' is sufficiently large. This multiplicity

0 I ( I i I

0 I 2 3 4 5
(' = cub/Vrc = PL/X

FIG. 4. The decay constant II(m)/y, (co) given in Eq. (3.17)
plotted against g, the number of wavelengths at frequency co

that fit between the parallel conducting plates.

6 7

I

'

I ~
I I I

Y 2—

L

-2
0 2

I

5 6 7

Q = (u L /7r C = P. L / X

FIG. 5. A sketch for the real part of the frequency shift
given in Eq. (3.18). The eigenfrequencies co are determined by
the intersections of the curve y = —(L /ro)(L /mc )Rp(co) and the
line y =(L/ro)(g, —g'), where g, =co,L /mc. Cyclotron frequen-
cy was chosen so as to give g, =3. In order to illustrate the mul-
tiple roots that appear when the line intersects the curve, an ex-
treme ratio L/ro ———, has been used.

of roots, however, is a consequence of the idealization
which replaces a metallic plate by a perfectly conducting
plane. This idealization gives rise to the singular loga-
rithm in Eq. (3.18) which diverges when g is an odd half-
integer. (For these values of g the retardation phase ex-
actly cancels the alternating signs of the image charges
and the resultant infinite image sum involves 1/n which
diverges logarithmically. ) Power flows into real physical
plates rather than having a vanishing Poynting vector as
in the perfect conductor idealization. This dissipative ef-
fect can be modeled by diminishing successive pairs of
image charges by a constant ratio e " that is slightly less
than unity, with the nth image charge modified by the
factor e "". Since the ratio of the electromagnetic energy
flux into a cavity wall to the energy density near the wall
is approximately given by co5, where 5 is the skin depth of
the wall, we have roughly K=r05/c. Referring back to
Eqs. (3.6) and (3.7), we see that the dissipative effect can
be simply modeled by the replacement
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l
co~co+ I

2

in Xp(co), where

I =co5/L .

(3.19)

(3.20)

With co extended to a complex variable, the decomposition
into imaginary and real parts displayed in Eqs. (3.17) and
(3.18) is no longer useful. Instead, we simply use the com-
'plex form

Xp(co) = ln(1+e '" ')ro

L

IV. CYLINDRICAL CAVITY

We turn now to the problem which is our major in-
terest, the frequency shift and modification of the decay
rate for a small cyclotron orbit bound to the center of a
cylindrical cavity as illustrated in Fig. 1. We denote the
radius of the cavity by R, the length by 2L, and use a
coordinate frame whose z axis lies along the axis of circu-
lar symmetry and whose origin is at the center of the cavi-
ty. Again we shall first work with a perfectly conducting
cavity and later generalize to a dissipative cavity whose
walls have a finite conductivity.

I 0 00

L „
1 )

n e 2in c0L /c lC

2n Leo

C2

4nLco

A. Calculation

To construct the radiation gauge Green's function
D»i(co;r, r') for the cavity, we define

We now have

2

+ 4nL co
(3.21)

VJ ——V—a'
Bz

and note the formal operator identity

(4.1)

l lIp(co)—+Rp(co) = ——y, (co)+ico'ImXp(co+ iI /2)
2 C

+co ReXp(co+i I /2) . (3.22)

In Fig. 6 we plot the modified Rp(co), taking
5/L =2X 10 . Since the frequency shift is now always
very small, it is simply given by Rp(co,'). Note that this
shift vanishes at two points between successive odd half-
integer values of g, while Rp(co,')L/coro approaches —,

' ln2
when co~0 and vanishes when co~ po. The modified de-
cay constant Ip(co) is altered only slightly from the ideal
limit with no cavity dissipation shown in Fig. 4: The
sharp discontinuities in Ip(co) are smoothed and Ip(co)
now has a very small but nonvanishing contribution below
the first threshold g= —,'. Since with 5/L =2X10 these
alterations are hardly visible on the scale of Fig. 4, and we
do not give a separate plot of Ip(co) including the effects
of cavity dissipation.

(VXz)», (Vxz))+[VX(Vxz)]» ~, [Vx(Vxz)])
VJ V VJ

1
1 —V V

V2
kl

(4.2)

D»i(co;r, r') =(V X z)» z 4irGE(co;r, r')(V 'X z)t—VJ

+[VX(VXz)]» z z 4mGM(co;r, r')1

V VJ

x [V 'x(V'xz)], , (4.3)

one finds, using - naive operator manipulations neglecting
operator ordering, that the Green's-function equation (3.1)
is obeyed if GE and GM satisfy

This identity enables us to express the tensor Green's
function D»i(co;r, r') in terms of scalar functions
GE(co;r, r') and GM(co;r, r') that correspond to the TE and
TM decomposition of the cavity modes. Using V' to
denote a gradient acting to the left on r' and writing

( —V —co /c )GEM(co;r, r')=5(r —r') . (4 4)

3 4
3

CL

2

. ) ift'UUUUU V U
0 I 2 5 4 5 6 7

('= (uL/~C = 2L/X

FICx. 6. Plot of (L/corp)Rp(co) vs g given by—Eqs. (3.18)
and (3.22) for dissipative plates with 6/L =2X10 '. Note that
the multiple roots no longer appear.

We shall show below that this result of naive manipula-
tion is also obtained by a careful treatment. The boun-
dary condition that the tangential components of the elec-
tric field vanish on the cavity surface S requires that
D»i(co;r, r') vanish when r is at a point on S and k is a
component along S or when r' is at a point on S and I is a
component along S. Examining Eq. (4.3), one sees that
the boundary condition requires that GE(co;r, r') must
vanish when r or r' lies on the two end planes of the cavi-
ty while its normal gradient must vanish when r or r' lies
on the cylindrical surface. Conversely, the boundary con-
dition requires that GM(co;r, r') must vanish when r or r'
lies on the cylindrical surface with its normal gradient
vanishing when r or r' lies on the two end planes.

We employ cylindrical coordinates and construct the
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scalar Green's functions by the infinite series

G(co;r, r') = g —t(k„z)t(k„z') 3'(((in;p, p') .n (4.5)

Here t(k„z) is a sine or cosine obeying

d2
+k„' t(k„z)=0.

Z2
(4.6)

with the wave-number eigenvalues k„determined by the
boundary conditions

geneous counterpart of the radial Green's-function equa-
tion (4.14) are the modified Bessel function II

I
(pn p),

which is regular at P=O, and the modified Hankel func-
tion K

I I
(p„p), which vanishes exponentially as p —+ 00.

The boundary conditions on the cylindrical surface p=R
are obeyed by the functions

F Im I
(Pn P}=+

I
m

I

(P'n P}(E)

KI I(P„R)I
I

I(p„p), TE

tE(k„L ) =0, TE

tM(k„L )=0, TM

(4.7a)

(4.7b)

where the prime denotes the derivative. It will prove can-
venient to adopt the convention

and

I

(P„P)=&I
I
(P„P)(M)

KIm I(PnR)
IIm I(P'P)

IIm
I

PnR

(4.15a)

(4.15b)
tM(k„z) =kntE(knz) .

dz

Since
00

g —t(k„z)t(k„z') =Biz —z'),n

we have

( —&j +p„)&(p„;p,p') =o(p p'), —

(4.8}

(4.9)

(4.10}

In view of the Wronskian

Im I

(I2P)
d I

m
I

(Pp) Im I
(Pp) Im

I

(Pp)
dp dp

(4.16)
p

we see that the solutions to the inhomogeneous radial
Green's-function equation are given by

where (E,M) (E,M)+m (PniP~P )= Im
I
(Pnp&}FIm

I
(Pnp&} ~ (4.17)

(k2 2g 2)1/2

Since moreover

(4.1 1)

(4.12)

we may express the two-dimensional Green's functions as

00 13 (p„;p,p')= g e' (& &'S (p, „;p,p—'),
7rm= —00

(4.13)

where

d 1 d m 1+ 2 +12'„& (12„;P,P') =—&(P—P') .
dp p dp p P

(4.14)

We shall first solve this radial equation in the low-
frequency region where c() & m.cl2L. In this region all the
p„are positive, real numbers, and waves cannot propagate
in the radial direction. Thus the solutions to the homo-

X, [~' '(p, „;p,p) —&' '(0;p, p)].1

—Pn
(4.18)

The right-hand side of this equation clearly obeys the
correct boundary conditions, and-acting upon it with —Vz
produces GE(co;r, r'). Similarly,

where p& and p& denote, respectively, the lesser and
greater of p and p'.

Forrnal, abstract operator methods were used in the
construction (4.3) of the tensor Green's function. We
must now give an explicit realization of this construction
and show that the Green's-function equation (3.1) is
indeed obeyed. The action of the inverse Laplace opera-
tors in Eq. (4.3) must preserve the boundary conditions
defining the scalar Green's functions GzM. Hence one
must set

1
2 GE(co;r, r')—v,

00

tE(k„z)t~(k„z')—.=o I

00 2

2 2 GM(co;r, r') = g tM(k„z)tM(k„z') —2 2
[9" '(((2n;p, p') —S' '(0;p,p')]

[y(M)(kpptt)g(M)(()p pit)]1

n

(4.19)
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To establish that with these explicit forms we do solve the
radiation gauge Greens-function equation (3.1), we first
note that the Coulomb Green's function [Eq. (3.2)] has the
explicit construction

&(r,r') = g tE—(k„z)tE(k„z')S '(k„;p,p') .
OL

(4.20)

Note that this construction obeys the boundary condition
that W(r, r') vanishes on the cavity surfaces. The only
additional tool needed is the structure of the two-
dimensional Coulomb Green's functions 8( '(0;p,p')
which obey

—V'i9' ' '(0;p,p') =5(p —p'), (4.21)

1

2'
p 2p p+p

R

p p —2p'p R +R
R

(4.22)

With these results in hand, it is now a matter of straight-
forward, albeit tedious, algebra to verify that Eq. (4.3)
does actually satisfy Eq. (3.1).

If the boundary correction terms were deleted from
Eqs. (4.15) with the F I~™l(pnp) replaced by K I~ I

(pn p
the radial Green's function (4.17) would become that of
the cylindrical coordinate expansion of the parallel-plate
problem solved in the preceeding section. Hence we dis-
card the KI I(p,„p) from the F'I ' I'(p„p) functions so
as to obtain the alteration of the previous parallel-plate
problem which is brought about by the presence of the
conducting cylindrical wall. This, obviates the necessity of
removing the proper field contribution from the infinite
sums in Eq. (4.5), which is a delicate task. We denote the
remaining, cylindrical-wall contribution to the radial
Green'S funCtiOnS by 8 ~(E (pn;p, p') and, COrreSpOnding-

ly, to the radiation gauge Green's function by Dkt(co;r, r').
[The first logarithm in Eq. (4.22) is also deleted in the
construction of this function. ] Thus the (complex) fre-
quency shift for the parallel-plate problem given by Eq.
(3.13) is now corrected by the cylindrical-wall addition to
give the closed-cavity solution

co ~,' = — y, (co)+~[XI(~)+Xs(—~)]c 2 c

where

(4.23)

Xs(co) = —roD (co;0,0) . (4.24)

with the boundary conditions that the magnetic function
(M) vanishes on the circle of radius R while the normal
gradient of the electric function (E) is constant on this
circle. The familiar image technique yields

y(E, M)(0 p pi)

and

tM(k„z) = sin(k„z) . (4.25b)

In either case, the boundary conditions of Eqs. (4.7) re-
quire that

k„=(n+ —,
' )vrlL . (4.26)

Again referring to Eq. (4.3), we see that the evaluation of
D~(to;0, 0) entails only the linear terms in p and p' in

'(pn;p, p'). Since I
I I

(IJ, p) -p only
~

m
~

= 1

contributes with, for small p,

I((pn p)= —,'(Mn p . (4.27)

The m =+1 sum in Eq. (4.13) coupled with this small-p
behavior produces a factor of p.p' and it is now a matter
of straightforward algebra to compute the result:

ro ~ Ki (pnR )
Xs(~)=-

L n=o I((PnR)

k„c K((pnR ) K((k„R )

I((i(l„R) Ii(k„R)

K'i ( (MR ) K, (p„R )

I i (pnR ) I((PnR )
(4.29)

Next we note that, just as in the parallel-plate geometry,
thresholds appear in the sum (4.28) at co =kNc,
%=0,1,2, . . . . Near the Nth threshold p& is very small.
Using the small-argument limit of the Bessel functions
one finds that

Ki (PNR ) Ki(PNR )+ ~ 111p~R ~ co ~k~c
II (pNR ) I, (VNR)

(4.30)

which produces a logarithmic singularity,
i

Xs(~)- — ln(kN —~ yc )R, co-kNc .2 2 2 2

L (4.31)

The frequency shift for the cavity [Eq. (4.23)] involves the
sum of Xs(co) and the previously calculated parallel-plate
contribution Xl (co), whose real part is given in Eq. (3.18).
Looking back at Eq. (3.18), we see that the logarithmic
divergence in Xs(co) is exactly canceled by the logarithmic
divergence in Xp(co).

After passing the Xth threshold, one must make the re-
placement

(4.28)

Equation (4.28) is the major result of our work. We
turn now to discuss some of its features. First we note
that the sum of Eq. (4.28) converges very rapidly: For
large n, pn-kn-nm/L and we see that the sum is ex
ponentially damped,

tE(k„z)= cos(k„z) (4.25a)

Referring to Eqs. (4.3) and (4.5), we see that D (co;0,0)
involves t(0) for the TE modes and t'(0) for the TM
modes. Hence we need only the trigonometric functions

p'N liLCN l(CO IC kN)

and the Bessel functions become

Ii (PN R )= iJi (PNR )— ,

(4.32)

(4.33a)
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Ki(pivR ) = — H—'i"(p~R )
2

[J—i(p&R)+iNi(p&R )'j .
2

Thus, on passing the Xth threshold, we must write

(4.33b)
and

(M) 2 2 ~I 2~n I —kn +
R

rp k„c Ni(Pi) Pic
(M) 2 J (p )

7

(4.38b)

(4.39b)

KI (p,~R ) k~c K i (p~R )

I i (p&R ) co I,(p~R )
+ 2

N'i (p~R) k~c Ni(pivR)+
2 Ji(p, ivR) co Ji(p&R)

Using the Wronskian and other familiar relations
amongst Bessel functions, it is not difficult to prove that

2~ 2

L (ai —1)R Ji(ai)
and that

1+
2

(N+ —,
'

) n. c2

co I (4.34)
2 2 2

iMi 2 rp kc 2c 1
~n I = iM) 2 R2 J (p )2

t

(4.40b)

Since this continuation must be performed on all the
thresholds that lie lower than X, we see that the imagi-
nary part of Eq. (4.28) gives

Is(co) = —2 Im[coXs(ci) J

(n + —,
' )'ir'c'

1tcp g— 1+
L „0 coI.

(4.35)

The finite sums that appear here are well known, and it is
easy to prove that the cylindrical side correction Is(co) ex-
actly cancels the parallel-plate decay constant Ir(co)
which is given by Eq. (3.15). This, of course, must hap-
pen since we have no dissipation in our idealized cavity:
There is a frequency shift in the cyclotron motion but no
decay.

Finally, we note that there are poles in Xs(co) when the
frequency cp exceeds a threshold,

(E,M)g2

2 (EMi' 2 (4.36)

The frequencies ' 'con i are the eigenfrequencies of the
TE and TM normal modes of the cavity labeled by the in-
tegers n, l. In view of Eq. (4.34), we see that we have
poles corresponding to TE modes when p„R =o.~, where
aI are the roots determined by

which show that these squared coupling constants are
indeed positive. At first glance one might suppose that
the complete result for the closed cavity is obtained by
simply summing up all the TE and TM poles (4.36) as we
illustrated before in formula (2.18). However, both ' 'A, „i
and ™A, are roportional to l in the limit of large n and

2 2 2 2l while both ' co„i and ' 'con i behave as n /L +I /R
in this limit. Hence the double sum over n and l does not
converge but rather linearly diverges. This divergence re-
flects the fact that the proper field of the charged particle
must be removed. This we have done unambiguously by
expressing the frequency shift as the sum (4.23) of the
shift for the parallel-plate problem, where the proper field
was removed by deleting the no-image contribution, plus
the rapidly convergent sum (4.28) that yields the correc-
tion resulting from the cylindrical cavity wall.

I
'

I
'

I
'

I
'

I
'

I
'

I

Ji (al) =0 .
These roots give the TE eigenfrequencies

(4.37a)

2
(E) 2 2 I 2

Q)~ (= k~+ c
R

(4.38a)

Ji(Pi) =0, (4.37b)

Expanding J'i(p, „R) about this root, one finds that the
coupling of the mode is given by

rp Ni (ai) aic
Apg I — 7T (4.39a)

Ji (ai) R

Similarly, the TM mode eigenfrequencies are determined
by

7E
il I I I I I I I II II I I Ii I II II II I III II I IX I I IIII III II III II I II II II l I il illllllllllllllll IIIII milli Il IIIIII Illlllllll llll III IIllll III I IIIIIIIII

TM II i I I l I I I ill l I ['III I lllll III&IIl IIIIIII IIIIII IIIIIIII IIIIIIIIIIIII&IIIIIIIIIlll Illlllllllll lllllllllllllllllll&II II IIIHI&IIll

I ( I i I i I i I i I I I

0 I 2 5 4 5 6 7
Q = ~L/~c= PL/ X,

FIG. 7. Decay constant I(co)/y, (~) given by Eq. (4.41) for a
charged particle moving in a small orbit about the axis and cen-
tered in the midplane of a cylindrical cavity with 5/L =0.025
corresponding to Q =20 and an aspect ratio R /L =7 (thin line).
This is to be compared to the decay constant for the parallel-
plate limit (3.22) with 5/L=0. 025 (thick line). Frequency is
measured in units of g =coL /mc =2L /A, which is the number of
wavelengths that fit between the flat endcaps of the cavity.
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B. Results

Having now described the physical and mathematical
structure of our result, let us turn to its numerical conse-
quences. As we have discussed before, the effect of the
cavity. dissipation can be modeled by replacing the real
frequency co by the complex extension co+iI /2 T. hus we
numerically compute

co —co,
' = ——&(~)+R(~)

y,—(a))+co[Xp(f0+i I /2)+Xs(co+i I /2)],C

(4.41)

where Xp(co+i I /2) is obtained from Eq. (3.21) and
&s(co+ i I /2) is obtained from Eq. (4.28). As we
remarked before, the sum defining Xz(co) converges very
rapidly [cf. Eq. (4.29)j and so this numerical evaluation is
not difficult having in memory proper routines for the
Bessel functions. '

As a check on the calculation, we first plot the decay
constant and frequency shift for a cavity with a large
radius-to-height ratio, R/L =7, which should be close to
the simple parallel-plate limit. We do this for a rather
lossy case, I =co/Q, with Q =20, so that the cavity mode
structure is smoothed. Just as in the parallel-plate case, it
is convenient to measure the cyclotron frequency in terms
of the dimensionless variable g=coL/n. c =2L/1, which is
the (fractional) number of wavelengths that fit between
the two flat endcaps. The decay constant is compared to
the parallel-plate limit in Fig. 7 and the frequency shift is
compared to the parallel-plate limit in Fig. 8. We see that
the limit is indeed approached for higher frequencies.

Having made this check, we now turn to exhibit the re-
sults for the Penning trap with cylindrical geometry. It
has the aspect ratio R/L=1. 186. So as to exhibit the
general features of our result, we first choose a low quali-
ty factor Q=50 and examine a large range 0&/&7. 5.
The decay constant I(co) is plotted in Fig. 9. At lower

TABLE I. Cavity mode structure for R/L =1.186.
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'
I

'
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I
I

'
I

'
I

'
I
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FIG. 8. Fractional frequency shifts corresponding to the de-

cay constants plotted in Fig. 7.
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FIG. 9. Decay constant I(co)/y, (co) for a charged particle
moving in a small orbit about the axis and centered in the mid-
plane of a cylindrical cavity with Q =50 and an aspect ratio
R /L = 1.186. The ticks place the TE and TM cavity mode fre-
quencies.

$=2L /A,
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FIG. 10 Fractional frequency shift in the cylindrical cavity
of Fig. 9.
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with perfect geometry. Actual cylindrical Penning traps
contain holes and slits, and their quality factors are diffi-
cult to calculate accurately. Thus, although one could
alter the individual modes in the interval 3.5 &(&4.5 by
putting in the exact widths of Eqs. (4.42), this is not war-
ranted by the uncertainty in our knowledge of the widths
of the experimental traps. Thus, we use the simple substi-
tution described above to compute the decay constants
and frequency shifts plotted in Figs 11, 12, and 13 for
' 'Q = 100, 1000, and 10000. As the quality factor Q in-
creases, the mode structure becomes, of course, more
prominent. At higher Q the decay constant is sharply
peaked at the resonant mode frequencies, with, for exam-
ple I(ro) varying from 0 06y, ( .)roto 24y, ( )cowhen
' 'Q= 1000.

To set the scale for the frequency shifts, we note that in
the experimental traps ro/L =8X10 ', while, as dis-
cussed in Sec. I, the current experimental precision in the
g —2 measurement is equivalent to a shift in the cyclotron
frequency given by hco, /ro, =5 X 10 '2. We see from the
figures that, on this scale, very large shifts occur in the vi-
cinity of the normal mode frequencies. For example, with
'E'Q = 1000, one can have shifts as large as
b,co, /co, =70X 10 ', although for the most part the

/

shifts are on the order of b,ro, /ro, =8X10 ' . The
presently employed Penning traps have a ring-to-endcap
distance ratio of v 2. To model this, we plot in Figs. 14
and 15 the cavity shifts for a cylindrical cavity with the
aspect ratio R /L = 1.5, again with '@'Q = 1000 and

'Q=500. Although the mode structure is slightly dif-
ferent, the shifts are about the same size as those in the
cavity with the R/L =1.186 aspect ratio. In view of the
uncertainties in the theoretical value of the anomaly dis-
cussed in Sec. I, a frequency shift as large as
hco, /ro, = 140X 10 ' would not be revealed by compar-
ing the experimental and theoretical results for the anom-
aly. We conclude that an experimental search of this sys-
tematic effect should be made to confirm the present
value of the g factor of the electron.
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