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A set of deterministic continuum equations is proposed to represent diffusion-limited aggregation. A
solution using a Green’s-function method gives growth very similar to discrete simulations. The growth
equations have no external noise. The relationship to viscous fingering and other growth processes is ex-

plored.

Irreversible aggregation of particles into clusters has re-
cently attracted a good deal of attention.! When clustering
is limited by diffusion a fractal object can be produced, as
was first pointed out by Witten and Sander.?? The model
they introduced, diffusion-limited aggregation (DLA), is

very simple: Random walkers accrete on a cluster one at a

time by sticking. Despite its simplicity, the model has de-
fied detailed analysis: None of the standard techniques of
statistical physics seems applicable and no convincing first-
principles derivation of, say, the fractal dimension exists.

In order to make some progress, it is natural to try to re-
place the discrete DLA model by a continuum theory in or-
der to focus on the long-range scaling properties which are
the central feature of fractals. One set of attempts along
these lines has been given.* In this approach the density of
the growing cluster is replaced by a continuous, coarse-
grained function, and the equation governing the probability
density of the random walkers is replaced by its average.
The result of this kind of mean-field treatment is a smooth,
spherical object with fractal dimension D =d — 1, where d is
the dimension of space. This is probably as good a result as
should be expected in a mean-field treatment, but it is not
DLA.

To go further, it is necessary to attempt to isolate the
essential features of the DLA model. Two separate roads
seem open: On the one hand, we could attempt to add
noise (associated with the random arrival positions of the
discrete accreting particles) to the deterministic equations of
the mean-field theory. Some numerical work along these
lines has been done.” However, there are two objections to
this sort of approach: (i) As a DLA cluster grows, we
might expect that the growth of large features should corre-
spond to adding many particles. Unless subtle correlations
are important, it seems that the replacement of the motion
of the walkers with its average should be justified. That is,
the noise terms should become unimportant. (ii) Experi-
mental evidence has recently appeared to show that DLA-
like objects can be grown in Hele-Shaw cells via viscous
fingering. The arrangement differs from the classic work of
Saffman and Taylor® in such a way as to allow repeated
splittings of the fingers. This sort of work was first reported
by Paterson’ and later in more detail by Nittmann, Daccord,
and Stanley® and Ben-Jacob er al.’ In this case the motion
of a continuous fluid has no obvious discreteness and no
large noise source, suggesting that DLA is not noise driven.
In fact, in Ref. 9 it was suggested, on the basis of observa-
tion, that a transition of the pattern from orderly to fractal
could be seen as a result of the onset and proliferation of
tip-splitting instabilities. External noise only need serve to
nucleate the growth.

We are thus led, in this work, to investigate analytically
the other obvious road: We suggest that DLA is the result
of a deterministic process, that it is the chaotic solution to a
set of growth equations (without external noise) which are
sensitive to initial conditions. We formulate here such a set
of equations and solve them numerically.

Our formulation is in terms of the motion of the interface
of the aggregate as fed by the incoming random walkers.
The incoming walkers have density u(x,¢). We concentrate
on the interface motion to avoid unphysically long “‘tails’’ in
the coarse-grained density which probably lead necessarily to
mean-field results.’ In terms of the Saffman-Taylor prob-
lem, we follow Paterson'® in identifying u(x,¢) with the
pressure field of the viscous fluid which is being moved by
the less viscous fluid.

In either case, we have, for a two-dimensional system, in
dimensionless units, the set of equations previously pro-
posed?® for the average growth:

V2u=0, (1a)
v,=—0-Vul/dmr, ' (1b)
u(Ry)=0, ' (10
ulx)=1-«(x,) , (1d)
u(xp)=1. (1e)

The field u is held constant at 0 at some large distance R,
from the interface and at 1 in the interior of the region en-
closed by the interface; k(x;) represents the curvature of
the interface at a point x;, and v, its normal velocity.
Equation (1b) has the obvious interpretation that the flux
of arriving walkers moves the interface. The form of Eq.
(1d) is certainly appropriate for the Saffman-Taylor prob-
lem, but it is not clearly applicable to DLA. In fact, the
boundary condition for DLA simulations involves only a
short-distance cutoff corresponding to the particle size a. As
we will see, we can change the form of Eq. (1d) without
seeming to change the physics of the solution much. How-
ever, we do need some cutoff —otherwise the interface
develops unphysical cusps.!! A solution to Eq. (1) by direct
means (say, by relaxation methods) would be difficult.
However, it has recently been shown!? that a more efficient
solution can be given by converting to the integro-
differential equation:

1+ o0 f ik x)222 6 (xx) = [ 6 G xDua (2D,
: )
G(x,y)=In(x,y)?+In(R2y/y*—x)*—In(R$/y*) . 3
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Here G(x,y) is the Green’s function for the 2D Laplace
equation. The integral on the left-hand side of Eq. (2) is
the potential due to a dipole layer of strength —k/4w,
* which ensures a discontinuous jump in the u field from 1 in
the interior to 1 —k(X,) on the interface. Parametrizing the
interface by 6(s), the angle that the normal to the curve at
a distance s along the arc length makes with respect to a
fixed direction in space, and Sy, the total arc length, we
have the following equations of motion for 8(s) and Sr:

0(s)=—9v,/ds , (4a)
Sr= [ dsc(ua(s) . (4b)

We invert Eq. (2) numerically to obtain v, by discretizing
and converting to a matrix equation. Then we use Eq. (4)
to step the interface forward in time.

Although Eq. (2) is a more efficient way to generate an
evolving interface than relaxation schemes, the computation
is limited by the magnitude of the arc length S;. This be-
comes evident with a linear stability analysis of a slightly de-
formed disk. Following Mullins and Sekerka,!? we set

u=R+38,cosmb , (5)

where outside the disk, u is a solution to the Laplace equa-
tion
u=AIn(r)+ B+ Ccosmb/rm . 6)
Using the boundary conditions Eqs. (1c) and (1d) together
with the interface velocity Eq. (1b) gives, to order §,,,
(5,/0m) _ (m+DIn(Ry/R)
(R/R) R-1
The critical radius Rc below \which the structure collapses
due to the effect of surface tension is 1 in our units. The

smallest unstable structure that one may expect to find in
the growing interface is obtained from Eq. (7) for m=2:

Rsé6ln(Ro/R)+1~10 i (8)

(m—l) 1-m (7)

This places natural limitations on the number of grid points
required when we discretize the arc length: They should be
placed no further than Ry units apart. Since the number of
grid points L is a measure of the size of the matrix to be set
up in Eq. (2), one reaches a computational limit for a
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FIG. 1. Growth of a fourfold symmetric structure with N=1.

The x and y axes are in units of capillary length.

moderate-sized computer when L —4000 for a fourfold
symmetric object. A typical structure at this limit is
displayed in Fig. 1, expressing the difficulty of generating a
structure anywhere close to physical realizations of muiti-
branched fluid flow patterns or DLA.

However, suppose we arbitrarily modify Eq. (2):

. nIG _
l+4’n_fdx:< on fdev,, . C))

The motivation for this replacement is clear for DLA since,
in that case, large curvatures k > 1/a are forbidden, but
smaller ones have no effect. For large N we approach this
limit. For fluid flow, however, Eq. (1d) is physically correct.
In order to get some idea of the relationship between
solutions for different N (where N is an odd integer), we re-
peat the linear stability analysis to get the following resuit:

Sm/Om _ m(m+1)In(RY/R")
R/R RN—1

(m=-D|1- (10)

That is, we have effectively rescaled the length in the prob-
lem from R to R". (All lengths are measured in terms of
the capillary length for the fluid flow problem, or a for
DLA))
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FIG. 2. (a) Growth of a fourfold symmetric structure with N =1 and an initial condition R (1+35,,cos48). R =216 and 5, =0.05. (b)

N =3, and an initial condition R (1+35,, cos48). R =6 and 3, =0.05.

3, =0.05. The x and y axes are in units of capillary length.

() N=5, and an initial condition R (1+85,, cos48). R =3 and
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FIG. 3. (a) Growth of a fourfold symmetric structure with N =3. The x and y axes are in units of capillary length. (b) Scaling of area

with the radius of gyration.

There are a number of interesting features of Eq. (10).
As N approaches infinity, Eq. (10) approaches the zero
surface-tension limit of DLA,3 and Rg approaches the lower
bound of unity. In fact, as we will see, one approaches the
DLA limit for fairly small values of N. The lower bound of
Rs prevents the formation of cusps and eliminates numeri-
cal problems. It also assures the accuracy of the numerical
results for grid points no closer than some large fraction of
unity, permitting numerical solutions which would otherwise
be difficult.

Although the scaling that results from Eq. (10) is based
on a linear analysis, it appears to hold approximately even
in the nonlinear regime. To show this, we have considered
the tip-splitting instability for three appropriately scaled ini-
tial conditions R (1+3,,cosm@) with m=4, §,=0.05, and
R =216, 6, and 3 corresponding to N=1, 2, and 3. The
results are displayed in Fig. 2. Note that the three struc-
tures are qualitatively very similar. The computer time re-
quired to generate the structures corresponding to N=3,5
is an order of magnitude less than for N=1, and up to 2
orders of magnitude for larger structures.

We can now address the question of the kinds of struc-
tures that Eq. (1) generates. Values of N up to 5 are suffi-
ciently large to elucidate the problem. Beginning with a
fourfold symmetric initial condition with R =20 and
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8,=0.05, we solve Eq. (1), using Eq. (9), for N=3,50n a
Ridge-32 computer. We obtain the results displayed in Figs.
3(a) and 4(a). The existence of a ramified structure is clear
with successive tip splittings, as is the similarity between the
numerical results and the patterns observed in a Hele-Shaw
cell in experiments of Ben-Jacob et al.® and Paterson.” We
think that if we could grow the structure further, we would
obtain the wispy structure of DLA. Note, for example, that
the thickness of the branches in Figs. 3 and 4 does not
seem to increase as fast as the size of the structure. We be-
lieve, though we cannot prove, that eventually even for
N =1 we will approach the fractal limit.

We can calculate the fractal dimension of the objects in
Figs. (3a) and (4a) by measuring the scaling of the area
with the radius of gyration R,:

A—~RP . 68))

We find D=1.75 and 1.72 for Figs. 3(b) and 4(b), respec-
tively. The fractal dimension may also be obtained by not-
ing (cf. Ball and Witten)'*

u(r') ~In(r'/Ro)/In(Ry/Ry) ,

(12)
—‘%~R£—1Rg~IVu ds ~ 1/In(Ry/ Ry)
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FIG. 4. (a) Growth of a fourfold symmetric structure with N =35. The x and y axes are in units of capillary length. (b) Scaling of area

with the radius of gyration.
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Upon integrating

t — RD
n(RJR)+1/D R 13
where Ry is 5000. Equation (13) gives values of D of 1.75
and 1.76, respectively, in satisfactory agreement with the
other estimate. )

Finally, we can examine the role of imposed anisotropy.
If we model the anisotropy!® by modifying the boundary
condition:

u(x,)=1—x—v,,f(0)'.
(14)
f(8)=p(1—cosmh)

This modifies Eq. (2):

1+Zl;fdxk%%=fdx

Starting with an initial condition of R =200, §, =0.05, and
m =4 with an anisotropic strength 8=0.004, we obtain the
structure in Fig. 5. The anisotropy is responsible for the
parabolic tip solution and the side branching instability typi-
cal of crystalline dendrites in this case, as in the solutions to
the boundary-layer!® and geometrical !¢ models, as well as in
the experiments of Ben-Jacob et al.® The tip velocity is ob-
served to oscillate with a periodicity defined by the onset of
the side branches, and the tip-splitting instability is
suppressed.

In summary, we have tried to show that a model closely
related to DLA is sufficiently unstable to give fractal
growth, and that the stochasticity of the aggregation process
does not seem to play an essential role. The numerical
results for the fractal dimension and the general appearance
of the structures obtained are reminiscent of computer
simulations of DLA and experiments of the viscous finger-
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FIG. 5. Growth for N=1 with anisotropy. The x and y axes are
in units of capillary length.

ing process. We have tried to shed light on the problems
with the continuum approximation of DLA; we have also
introduced a nontrivial scaling that has made reasonable nu-
merical solutions tractable. Note that even if one declines
to accept our risky assumption that the N =1 case is similar

" to the others, we have demonstrated that for some short-

range cutoffs we can make DLA-like objects. Finally, we
confirm in our nonlocal treatment the role of anisotropy in
dendritic solutions, as shown previously in local models!5: 16
and for one nonlocal case by Kessler, Koplik, and Levine.!?
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