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The extended hydrodynamic modes recently discussed by de Schepper, Cohen, and collaborators using an

approximate hard-sphere kinetic equation are computed here with use of approximate hard-sphere general-

ized hydrodynamic equations. The theory presented here is completely analytic and reproduces the results

of de Schepper etal. for dense hard-sphere fluids reasonably well. The connection to previous theories
based on generalized hydrodynamics is discussed.

In some recent papers de Schepper' and co-workers dis-
cussed short-wavelength collective modes in hard-sphere
fluids. They used the revised Enskog kinetic equation to
calculate the extension of the usual hydrodynamic modes to
large wave numbers k. These authors showed that not only
do collective modes exist at large wave numbers, but in
dense hard-sphere fluids the neutron scattering structure
factor S(k, to), with to the frequency, can be quantitatively
represented for 0 & ka & 15, with o- the molecular diame-
ter, as a superposition of three extended hydrodynamic
modes, a heat mode, and two sound modes. They therefore
concluded that S(k, to) for neutron scattering is a simple
extension of S(k, co) for light scattering.

Related work has been done by Alley, Alder, and Yip. 4

They used computer molecular dynamics for hard-sphere
fluids to determine the wave-number-dependent transport
coefficients that should be used in hard-sphere generalized
hydrodynamic equations.

In this Comment I establish the connection between the
kinetic theory results of de Schepper et aI. , the results of Al-
ley etal. , and the method of generalized hydrodynamics. '
In particular, I show here how the results of de Schepper
and co-workers can be understood with use of a simple but
approximate set of generalized hydrodynamic equations.

The basic idea is as follows. First, note that the revised
Enskog equation used by de Schepper et aI. is exact for hard

spheres at short times. Its use for longer times is ad hoc
but qualitatively correct. Even at short times all of the im-
portant excluded volume correlations in the hard-sphere
fluid are present. The proposal here is to use a similar
short-time approximation at the level of generalized hydro-
dynamics. That is, a short-time approximation is used to
evaluate explicitly the wave-number- and frequency-
dependent transport coefficients that appear in generalized
hydrodynamics. It will be argued below that this is a
reasonable procedure for dense hard-sphere fluids.

To proceed I use the standard projection operator5
method to derive generalized hydrodynamic equations for
the equilibrium time correlation functions in a hard-sphere
fluid. The method is identical to that given else~here, ex-
cept the time dependence is generated by the pseudo-
Liouville operator for hard-sphere particles. 7 The resulting
equations contain a frequency-independent 0 matrix and a
frequency-dependent memory kernel. 5 In the short-time ap-
proximation used here the memory kernel vanishes. The
net result is a closed set of generalized hydrodynamic equa-
tions for the time correlation functions of mass density p,
longitudinal momentum density I, temperature T, and
transverse momentum density t, (i =1,2). Denoting nor-
malized time correlation functions in Fourier-Laplace (z)
space by G p(k, z), n, P=p, l, T, t; the equations of motion
are
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Here jI(ko ) is the spherical Bessel function of order i, n is
the number density, m is the mass, P = (ksT) ', with T the
temperature, X(o.) is the radial distribution function at
contact, S(k) is the static structure faction, and
iE =Cpm'/4m n cr zX (o.) is the Enskog mean free time
between collisions. '~ It should be remarked that Eqs. (1)
can also be obtained from the results of Alley and Alder, ~ if
only the collisional contributions to the transport coeffi-
cients are retained in their generalized hydrodynamic equa-
tions.

Examining Eqs. (1), we next discuss their validity. In the
limit of small k, Eqs. (1) reduce to the usual linearized hy-
drodynamic equations for hard spheres with the exact ther-
modynarnic coefficients. The transport coefficients are
given by their Enskog values if one retains only the col-
lisional contributions. Physically, this is expected, since it
is these contributions that are instantaneous in hard-sphere
systems and hence survive in the instantaneous limit. We
conclude that Eqs. (1) are reasonable only for dense hard-
sphere fluids, since it is only for dense fluids that the col-
lisional contributions represent important contributions to
transport. Further, it is reasonable to think that these equa-
tions are even more realistic as k and z increase. This is
supported by the results of Alley et al.4 These authors used
computer molecular dynamics to establish that for inter-
mediate values of k the k-dependent transport coefficients
are well approximated by their collisional contributions.

The generalized hydrodynamic equations given by Eqs.
(1) define an eigenvalue problem that can be solved analyti-
cally. I will use the terminology shear, heat, and sound
modes to identify the five hydrodynamic modes for large k,
in order to maintain continuity in k. The solution involves
a cubic equation, since Eqs. (la) —(1c) are coupled together.
Explicit results for the extended hydrodynamic eigenvalues
are given in Fig. 1 for a reduced density n o- = 0.88
(up/v=0. 625, with up the volume of close packing and u

the volume per particle) and for 0 ( ka ( 10. I used the
Percus-Yevick representation (with an approximate Verlet-
Weiss correction) for S(k).9 From these results the hydro-
dynamic eigenfunctions can be explicitly determined. As
an example, the quantity 2~2(k) =MH(k) calculated by
de Schepper and Cohen' is given in Fig. 2. MH(k) essen-
tially determines the amplitude of S(k, m) for neutron
scattering from dense hard-sphere fluids. These results will
be discussed in more detail belo~.

A standard approximation made when discussing effects
on the molecular length scale is to neglect temperature vari-
ations or fluctuations. '0 In view of the results given
above, where the heat mode was shown to exhibit a dramat-
ic softening near kyar =6.8, one might think that the most
important physical effect was being neglected. To show that
this reasoning is not correct, I have solved Eqs. (1) neglect-
ing terms involving temperature fluctuations, GTp(k, z).
There are then only four hydrodynamic modes with the two
shear modes not affected by this approximation. The
remaining two modes are sound modes for small k and the
explicit expression for their associated eigenvalues can be
easily determined from Eqs. (1a) and (lb), neglecting

0

-0.5

—I.o0 IO

Gr&(k, z). These two eigenvalues are graphed, for
nrr3=0. 88, in Fig. 3.

The propagation gap becomes considerably larger than the
full solution illustrated in Fig. 1. In the propagation gap one
of the sound modes, z+(k), is very strongly damped, while
the other, z (k), softens appreciably. In Fig. 4, we graph
z (k) in the gap, zH(k) from the complete solution, as
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FIG. 2. AH as a function of kcr for hard spheres at density
na 3 = 0.88.

FIG. I. Eigenvalues z&(k) of Eqs. (I) as functions of ka for a
hard-sphere fluid at a density ncaa =0.88, typical for liquids. i
stands for heat (0), shear (t&), and sound ( ks) modes. Positive
value refers to the absolute value of the imaginary parts of z, (k)
and negative values refer to real parts.
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FIG. 3. Extended sound eigenvalues as functions of ko- when
temperature fluctuations are neglected. The fluid density is
n~ = 0.88 and the notation is as in Fig. l.

well as an approximation for zH(k), for k not too small,
that follows from the revised Enskog kinetic equation,

z„(k)= — [1—gp(k ~) + 2g, (k~) ]-Dk2 —1

S(k} (2)
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FIG. 4. Comparison between the extended heat mode of Eqs. (1)
( ); approximation for this mode for k not too small, given by
Eq. (2) ( —~ —~ ); and the soft approximate extended sound mode
in Fig. 3 ( ———). The hard-sphere fluid density here is
no.3 = 0.88.

Here D=3tE/2Pm is the Enskog self-diffusion coefficient.
For a range of k values these eigenvalues are all essentially
identical. This implies that for a range of k values, tem-
perature fluctuations can be neglected and the most impor-
tant aspect of the extended hydrodynamic modes, the
softening of the heat modes, is still effectively present.
Physically this is because for these values of k the heat

mode in the complete solution is mainly determined by
number density and longitudinal momentum density Auc-
tuations.

This Comment is concluded with a few remarks.
(1) Clearly, the most important aspect of these results, il-

lustrated in Fig. 1, is the softening of the heat mode near
ko = 6.8. It is due to both the peak in S(k) near ka- = 6.8
and the fact that the heat mode has become essentially a
density mode which decays via self-diffusion [cf. Etl. (2)] on
these length scales. It should be noted that to obtain these
results both k-dependent thermodynamics as well as k-
dependent transport coefficients are needed. This softening
leads to a very slow relaxation time for dynamical processes
taking place on a molecular length scale. This slow mode
can be used as an input to theories which include mode cou-
pling effects. Such theories have been used to understand
qualitatively the anomalous long-time tails" ' and shear-
dependent viscosity' ' observed in computer simulations.
Furthermore, a theory for the glass transition observed in
computer simulations of simple liquids has recently been
developed based on the softening of the heat mode. ' In
the language used here, this soft mode is also the cause of
the de Gennes minimum observed in neutron scattering. '

The results for the extended heat mode given here are in
quantitative agreement with those of de Schepper et al. , ex-
cept near k=0.

It is tempting to interpret the softening of the heat mode
as being due to slow structural relaxation in a dense fluid,
although other interpretations are possible. 4 One can inter-
pret the minimum value of ~zH(k) ~

for k not small as being
present due to an elementary rate process by which struc-
ture can relax. Furthermore, for ko- &6.8 the k depen-
dence of this slow mode is essentially given by the self-
diffusion hydrodynamic mode. ' This is the other process by
which structure can relax. One then obtains a physical pic-
ture essentially equivalent to that used by Montrose and Li-
tovitz'7 in their phenomenological treatment of structural
relaxation in very dense liquids. In the language of kinetic
theory this mode for ko- & 6.8 acts very much like a slowly
decaying kinetic mode.

(2) The results for the extended sound modes given in
Fig. 1 are also in good agreement with the recent results of
Zuilhof, Cohen, and de Schepper except near ka- =8,
where our results show a smaller damping. Related to this
is that AH2(k) given in Fig. 2 is slightly larger near ko- =8
than the kinetic theory results previously reported. '

Zuilhof et al. have interpreted the presence of a propaga-
tion gap as being due to a competition between elasticity
and dissipation. The structure of the theory presented here
confirms this picture. The disappearance of propagating
modes in. a dense fluid at 1arge wave numbers is certainly
not surprising physically; it is easy to imagine an effective
pinning or trapping of a sound wave on a molecular scale.
The reappearance of the propagating modes for larger k is

- somewhat more surprising. Physically, it is similar to the
depinning of sound waves in a porous medium at large fre-
quencies, where the effective viscosity or damping becomes
smaller. '

(3) de Schepper, Van Rijs, and Cohen's have recently
pointed out that the usual small wave-number Navier-
Stokes equations also exhibit a propagation gap if these
equations are assumed to be valid for large wave numbers.
They have studied in detail the conditions needed for the
gap to appear by adjusting the phenomenological parameters
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in the hydrodynamic equations.
(4) The shear or viscous mode eigenvalues in Fig. I are

also in qualitative agreement with the results of de
Schepper, Cohen, and Zuilhof' for ka. & 10. It is interest-
ing to note that propagating shear modes in dense hard-
sphere fluids at large k are not predicted by the theory
presented here, although they are observed ~ in computer
simulations of dense hard-sphere fluids. Further, distinct
shear waves are not a consequence of the revised Enskog
kinetic equation. ' It appears, " ' at least for hard-sphere
systems, that mode coupling effects are needed to account
theoretically for .the shear waves observed in computer
simulations. Here it should be noted that these mode cou-
pling calculations are not the usual ones, where only long-
wavelength effects are taken into account. They also take
into account effects on a molecular scale. The important
physical point is that the softening of the heat mode on a
molecular scale introduces a slow relaxation time into the

-discussion of dynamical processes in a dense fluid. In the
formalism used in this paper these mode coupling effects
were neglected when the short-time approximation for the
memory kernel was used.

(5) With the results given here, the dynamic structure
factor S(k, a&) can be easily computed. Explicit results will
not be given here, since we would essentially reproduce the
results of de Schepper et al. ' It is worthwhile remarking,
ho~ever, that for most values of k the dominant contribu-
tion is simply the extended heat mode. This follows not
only because this mode is the slowest relaxing mode, but
also because its amplitude is much larger than that of the
sound modes. It is also interesting to note that for inter-

mediate values of k, the amplitude of one of the extended
sound mode's contribution to S(k, eo) is negative. Physical-
ly this is not a cause for concern, since for these wave
numbers the modes are not separated and the total S(k, co)
is still positive.

(6) Previous experimental workers have concluded that
propagating short-wavelength collective modes do not exist
in simple classical liquids. This seems to be in conflict
with the results reported here and elsewhere. To under-
stand that it is not, we first note that the propagating modes
discussed here are very strongly damped at large k and
hence are not true collective modes. Secondly, the lack of
distinct side peaks in neutron or Raman scattering experi-
ments does not imply the absence of propagating modes. It
only implies that if they exist they are sufficiently broad that
the side peaks overlap with the central line.

(7) In using a short-time approximation to obtain Eqs.
(I), we have effectively retained only what is usually denot-
ed as the 0 matrix in the generalized hydrodynamic litera-
ture. 5 For continuous potentials this matrix does not con-
tain dissipative terms. For hard spheres this is not the case.
It is a subtle problem to take the hard-sphere limit of the
usual generalized hydrodynamic equations for continuous
potentials. Here this technical problem is avoided by con-
sidering hard-sphere particles from the very beginning.

The author is much indebted to E. G. D. Cohen and
R. Zwanzig for helpful discussions. This work was support-
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Ohio.
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