
PHYSICAL REVIEW A VOLUME 32, NUMBER 1

Wideband photon counting and homodyne detection
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Homodyne detection has been proposed as a means of detecting squeezed coherent radiation.
Here the response of a balanced homodyne detector to wideband squeezed coherent stat'es is present-
ed. In order to carry out the analysis the theory of wideband photodetection is reviewed and in or-
der to determine the ultimate performance limits of photoemissive detectors small terms of order
Ace/coo that are usually neglected, where coo is the optical carrier frequency and Ace is the electronics
bandwidth, have been kept. It is shown that the ultimate noise reduction that can be achieved in the
noise-power spectrum of a hornodyne detector, detecting squeezed coherent radiation, is a factor of
2 worse when photoemissive detectors are used instead of power flux detectors.

I. INTRODUCTION
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FIG. 1. A balanced homodyne detector.

At present there are a number of experimental ef-
forts' under way directed toward the generation of
squeezed coherent radiation at optical frequencies. Such
radiation exhibits quantum fluctuations which are re-
duced below those of vacuum fluctuations for one of the
two quadrature components of the field amplitude. "' By
virtue of its ability to detect one amplitude component of
the incoming light, homodyne detection has become the
method of choice for exhibiting this reduction in quantum
fluctuations. ' In homodyne detection the signal light is
combined, via a beam splitter, with intense local oscillator
light oscillating at the carrier frequency of the signal
light. This light is then directed to a photodetector.

The signal delivered by the photodetector results from
the constructive or destructive interference of the signal
light with the local oscillator light at the photodetector.
Noise from intensity fluctuations of the local oscillator
may be avoided by using a balanced configuration ' in-
volving two photodetectors and a 50%-50% beam splitter.
Such a balanced homodyne detector is depicted in Fig. 1.
In this configuration, fluctuations in the local oscillator

intensity give rise to a common mode signal which is
eliminated by measuring only the difference in the photo-
currents generated by the two photodetectors. In contrast,
signal light which interferes constructively with local os-
cillator light at one photodetector will interfere destruc-
tively at the other photodetector and hence give rise to a
difference mode signal.

Theoretical investigations of the quantum-mechanical
behavior of balanced homodyne detectors have primarily
been restricted to single-mode analysis. In order to avoid
potential noise sources near dc, such as 1/f noise, or as a
matter of convenience, experiinentally one is likely to look
at frequency components of the homodyne detector's out-
put at 10 MHz to 1 GHz. For such an experimental situ-
ation a multimode or wideband analysis of homodyne
detection is more appropriate. A wideband analysis of
photodetection and homodyne detection has been carried
out by Yuen and Shapiro. '" They introduce a photon-
units field operator from which they construct an effec-
tive photon-flux density operator for the photodetector.
Although photon-flux density operators constructed in
such a manner behave properly when integrated over
volumes large compared with the wavelength A, of light or
times long compared with the optical period A, /c, ' it is
not apparent that such operators adequately describe the
photoemission process on the finite time scales relevant in
wideband homodyne detection.

In this paper an alternate approach to wideband photo-
detection is taken. Since Fermi's golden rule calculations
such as those performed by Glauber' ' lead to expres-
sions for the emission probability P(t) that are bilinear'
in the vector potential A(r, t),

t
P(t)= J dt' I dt"S(t' t")A (r, t')A (r, t"—), (1.1)

we will search for a sensitivity function S(r) such that
P( oo ) is the number operator. The sensitivity function is
in general nonlocal. As a matter of convenience a number
of local approximations of S(r), such as 5(r), d5(t)/dt,
and d 5(t)/dt have been employed in the literature.
Most recently such an approximation was implicitly made
by Bondurant' in his treatment of wideband photodetec-
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tion. In this paper the local approximation will be avoid-
ed.

The approach taken here also differs from usual treat-
ments of photoemission in that the rapidly oscillating
terms of (1.1) will be kept. In conventional treatments the
product A (r, t')A(r, t") in (1.1) is replaced by
A' '(r, t')A'+'(r, t") where A'+' and A' ' are the posi-
tive and negative frequency parts of A, respectively. The
rapidly oscillating terms are neglected on the grounds that
for long observation times they average to zero. These
terms may be rigorously neglected when calculating the dc
response of a photodetector In. wideband photodetection
a finite time scale, the inverse bandwidth of the electron-
ics into which the photocurrent is injected, is introduced.
In this case the rapidly oscillating terms will give finite,
although usually small corrections. In particular, it will
be shown that for a homodyne detector with a local oscil-
lator frequency coo the rapidly oscillating terms will give
corrections to the power spectrum of the detector's output
at co that are of order (co /coo) .

Although even for fast photodiodes colcoo will be of or-
der 10, this term must be included if one wishes to
determine the ultimate performance of wideband homo-
dyne detectors. At microwave frequencies, assuming
mixers constructed from superconductor-insulator-
superconductor (SIS) junctions operated in the photon-
assisted-quantum-tunneling mode can be described by a
photoemissive process, ' an m/mp larger than 0.1 is con-
ceivable for a mixer with a 1-GHz intermediate frequency
(IF) bandwidth.

After having constructed the photoemission rate opera-
tor for a unit-quantum-efficiency photodetector, the re-
sults will be extended to photodetectors with less than unit
quantum efficiency using techniques introduced by Yuen
and Shapiro. ' The response of a balanced homodyne
detector to wideband squeezed coherent states is then cal-
culated in the final sections of this paper.

II. THE WIDEBAND UNIT-QUANTUM-EFFICIENCY
PHOTODETECTOR

In this section, wideband photoemission theory will be
reviewed and a general expression for the photoemission
probability for a wideband photodetector will be obtained.
To this end, consider the photoemission process of a

bound electron moving in some potential well. The
electron's Hamiltonian H may be decomposed into the
form H, +Hz where Hl is the interaction Hamiltonian
for the electron coupled to the electromagnetic field. As-
suming that the electron interacts with electromagnetic
radiation via the minimal coupling interaction, and
neglecting the A term, Hl in the interaction picture us-
ing the notation of Kimble and Mandel' can be written in
the form-

iH, (t' to)/—A iH, (t—' to) lii-

Pl
(2.1)

where p is the electron's momentum at tp when the in-
teraction is turned on and r is the average coordinate of
the bound electron. The transverse vector potential
A(r, t) can be split into positive A'+'(r, t) and negative
A' '(r, t) frequency components

A(r, t) = A'+'(r, t)+ A' '(r, t),
where

(2.2)

A' '(r, t) =
2&E'p

1/2 3d k t t(k r—cukt)—
~k,s~k, se

r ~k

(2.3)

A'+'(r, t) = [A' '(r, t)] (2.4)

t
U(t, to)=1+ J H)(t')dt'+. . .

i% 'o
(2.5)

To be more specific, let the electron be initially in its
ground state

I

0'0) and let
I

a ) denote the initial state of
the radiation field, then

I
i ) =

I
Vo)

I

a ). Let the final
state

I f ) consist of the radiation field state
I

b ) and the
electron sitting in an energy eigenstate

I
'P(E, Q)) where

0 labels quantum numbers other than the energy. The
transition amplitude is then

Let
I

i ) denote the initial state of the entire system at
t =to. The transition amplitude to some final state

I f )
is given by

&f I
U(i, t, ) Ii)

where the unitary operator U(t, to) has the form

(2.6)

I

response of a wideband photodetector and hence will be
kept in the following analysis. The transition probability
that the electron will be excited out of its ground state is
given by

s (r)=& 1&f I

U(t to) I i & I'
f

(2.8)

At this point, in the usual treatments of the photoemis-
sion process' ' the negative frequency A' '(r, t) of
A(r, t) is neglected on the grounds that it gives rise to a
rapidly oscillating term whose contribution to the integral
(2.6) becomes small when the time interval t to becomes—
iong compared with an optical period. In fact, one has
rigorously

The term A' '(r, t) can be completely neglected when
evaluating the dc response of a photodetector. However,
this term may contribute significantly to the video

where the generalized sum is carried out over states
I f )

in which the electron is not in its ground state
I $0). The

transition probability, realizing that the sum in (2.8) is
carried out over a complete set of photon states, can be
put into the form
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'2

(2.9)
I

p(t)=g f dt' f dt"k „(t' —t")(A„(r,t')A, (r, t")),
0 0

where the expectation value ( Az(r, t')A„(r,t") is evaluat-
ed over the initial state of the field

i
a ). Assuming that

the excited electron is detected with unit probability, the
sensitivity function k &(r) is given by

k „(r)= f dE fd Acr(E, Q)(P(E, Q)
~

P
~
qp) (yp i P„~q(E, ~) )e (2.10)

where cr(E, O) is the density-of-states function. For a
photodetector consisting of M independent bound-
electron systems the sensitivity function (2.10) is multi-
plied' by M.

From (2.9) it is convenient to introduce the photon-
counting operator P(t) whose expectation value gives the
mean number of photons p (t) counted in the time interval
t —tp,

A(z, t)=a f ~, [A(co)e +H.c.],
c (co —coc )

(3.1)

where co, is the cutoff frequency for the lowest waveguide
mode, a is a normalization constant, and the photon
creation and annihilation operators satisfy the usual com-
mutation relations

P(t)=g f dt' f dt" k,„(t' t")A„—(r, t')A, (r, t") .
0 0

(2.11)

[A (co),A(co')] =0,
[A(co), A (co')]=5(co—co') .

(3.2)

(3.3)

The rate of photoemission tp(t) is given by the time
derivative of p(t). It is useful therefore to introduce the
photoemission rate operator W(t):

W( )
dP(t)

dt
(2.12)

The photocurrent operator Iz(t) is then given by

I~(t) =eW(t) . (2.13)

III. THE PHOTODETECTOR EMBEDDED
IN A WAVEGUIDE

For conceptual and computational simplicity, the
behavior of a photodetector embedded in an optical
waveguide is considered in this section. Such a system
could be realized experimentally. Furthermore, one ex-
pects that the behavior of this system will not be much
different from the more usual experimental situation of a
Gaussian light beam directed toward a photodetector and
focused in such a way that a minimum in the beam waist
occurs at the photodetector's surface. In order that one
need only deal with one waveguide mode, the waveguide is
taken to be constructed such that all but one of its modes
have cutoff frequencies well above optical frequencies. In
this case the equations of Sec. II can be simplified to
equations that depend only on the z coordinate. The field
operator for the field propagating towards the photodetec-
tor becomes

The properties of the photocurrent delivered by the photo-
detector to the external world can be determined .by
evaluating various moments and correlation functions of
I~(t) for the incoming optical field state.

Having obtained the general form for the photon count-
ing operator (2.11) for a unit quantum efficiency (in the
sense that every photoelectron emitted is detected), an
idealized system for which (2.3), (2.10), and (2.11) can be
greatly simplified will now be considered, namely a photo-
detector embedded in a waveguide.

K= f dcoA (co)A(co) .

One has P ( oo ) =N when

1
k (co) =

&
tt (co —cop —cot )Q(co„—co+cop)

(2rca)

(3.6)

X [(co—cop) coc]—
where the waveguide cutoff frequency co, has been chosen
to lie below the photodetector's cutoff frequency co~, and
u (x) is the Heaviside unit step function

1, x)0
0, otherwise . (3.8)

Without loss of generality the photodetector will be locat-
ed at z =0. The time tp at which the photodetector was
turned on will be taken to be —oo. The photon-counting
operator then becomes

t
P(t) =f dt' f dt "k(t' t")A (t')A (t"—), (3.4)

where A (t) =A (O, t) is the field operator at the location of
the photodetector. From (2.10) one sees that the
photodetector's sensitivity function must have the form

k(r)= f dcok(co)e (3.5)

where because (3.4) must be Hermitian, k(co) must be
real.

The function k (co) will now be determined by the con-
straint that it describe a wideband unit-quantum-
efficiency photodetector that absorbs every photon in the
frequency range mi to co„and is transparent to photons
outside this range. After waiting a sufficiently long time
for all the photons in the optical waveguide to arrive at
the photodetector, such a photodetector should report the
total number of photons in the frequency range col to co„
that were in the waveguide, that is P( oo ) should be equal
to the number operator
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k(r)= dao(co —co, )' e
(2m.a )

(3.9)

Since the photoemission-rate operator W(t) is the time
I

Substituting (3.7) into (3.5) one obtains the following form
for the response function of a unit-quantum-efficiency
photodetector that absorbs every photon incident on it in
the frequency range m„)m )~~.

derivative of the photon-counting operator (3.4) one has

W(r) =f dr'[k(r r'—)A (r)A (r')+k(r' t)A—(t')A (t)] .

(3.10)

Breaking A {t) into its positive A'+'(t) and negative
A' '(r) frequency components, Eq. (3.10) can be written
in the form

W(t)= f dt'h(r —t')[A' '(r)A' '(r')+A' '(r)A'+'(t')+A' '(t')A'+'(t)+A'+'(t')A'+'(t)]

+f dh'Ik(r —r')[A'+'(r), A' '(t')]+k{r'—r)[A'+'(r'), A' '{r)]j, (3.1 1)

where

h(r)=k(r)+k( —r) . (3.12)

The commutators can be evaluated using (3.1) and (3.3).
In particular

H(co)= f H(t)e' 'dt,

Ip(cu)= f I~(t)e' 'dt,

Eq. (3.17) can be put into the form

00I(t)= f dco[H(co)Ip(co)e '"'+H. c.] .
2& 0

(3.19)

(3.20)

(3.13)

The integral containing the commutators vanishes as can
be established by noting that for a k(r) of the general
form (3.5) one has

d~k ~ e '"'=0 (3.14)

for ~&0. Hence it has been shown that W(t) can be
written in the normal ordered form

W(t) = f dr'h (r t')—
x [A'-'(r)A'-'(r')+A'-'(r)A' (+r')

+A' '(r')A'+'(r)+A'+'(r')A'+'(r)].

(3.15)

It will now be shown that, due to the finite response
time of the electronics into which the photocurrent is in-
jected, the photodetector is blind to the terms
A' (t)A' '(t') and A' '( ')Ar'+'( )rin this expression.
The operator for the photocurrent generated by the pho-
toemitter is obtained by multiplying the photoemission-
rate operator by the charge of the- electron:

The filter function H(co) will have a high-frequency cut-
off coy due to the finite bandwidth of the electronics. As
an example, consider the photodiode detector in Fig. 2.
The photodiode is modeled as a current source Iz(t). This
photocurrent is in parallel with the diode's capacitance C.
The signal is delivered to an amplifier or recorder having
an input impedance R. The response function for this
system is

H(co) = 1

1 —i coAC
(3.21)

The circuit thus has a characteristic cutoff frequency
co/=1/RC determined by the RC time constant of the
electronics. Above this frequency the response of the elec-
tronics to the photocurrent falls off with frequency as
1/co. The cutoff frequency for fast photodiodes lies typi-
cally in the range of 100—1000 MHz, more than 5 orders
of magnitude below visible light frequencies. Further-
more, when other effects such as lead inductance and am-
plifier bandwidths are included the high-frequency falloff
H(co) will be much greater than 1/cu.

From Eq. (3.16) and (3.19) one has

I~ (r) =e W(r) . (3.16) Iq(co) =eW(co) . (3.22)

This current is filtered by the response function H (t) of
the electronics into which this current is injected. The
operator I(t) for the current ultimately detected is given
by

The Fourier component W(co) of W(t) can be obtained
from (3.15) and has the form

I(t)= f dh'H(r' r)I~(r'), — (3.17) OUTPUT

where in order to be causal the response function must
satisfy

Ip(t) C::
AMPLIFIER

/77 /77

H(r' r)=0 for r'&t . —

Introducing the Fourier transforms

(3.18)
FICx. 2. The ac equivalent circuit of a photodiode whose pho-

tocurrent I~(t) is delivered to an amplifier having an input im-
pedance A. The current source I~(t) is in parallel with the
diode's capacitance C.
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W(co) =f dc@'F(co,co')A (co')A (co+co')
~c

tl (co —2co~ )
+

2
'

X f dc' F(co, —ci) )A (~—~ )A (~ ),
C

Although the terms neglected by using (3.29) generally
turn out to be small, it will be shown in later sections that
these terms are finite in the case of wideband homodyne
detection and must be kept if one wishes to determine the
ultimate performance of a homodyne detector responding
to squeezed coherent radiation.

where
2&a

F(co,co') =
r 2 2)1/4[( + I)2 2]IIO

(3.23)
IV. PHOTODETECTORS WITH LESS THAN UNIT

QUANTUM EFFICIENCY

i (r»+co—')~+ eire r)'
0

(3.24)

(3.25)

where it is understood that 2', lies above the passband of
H(t). From this expression it is immediately seen that
(0

~

I"(t)
~

0) =0, that is, when no photons are present no
photocurrent is delivered by the detector. Throughout the
rest of this paper W(t) will be taken to be

t
W(t) =f dt'h(t t')—

X [A ' '(t)A ' + '(t') +A ' '(t')A ' + '(i)]

(3.26)

with the understanding that 2', will lie above the
detector's passband. It will also be convenient to take
H (co) to be a step-function filter of bandwidth b,co so that
(3.20) can be written as

I(t) = f den[ W(co)e '"'+ H. c.],0
(3.27)

where

W(co) = f dc@'F(co,co')A (co')A(co+co') (3.28)
CO

and it is understood that Ace ~ 2~, .
Equation (3.26) will be used as the basic model for a

photodetector in the remainder of this paper. Although
this expression is bilinear and normal ordered in A' '(t)
and A '+ '(r), it differs from the expression one would have
obtained had one followed the usual custom of neglecting
the negative frequency component of A (t) in Eq. (2.6). In
particular one would have obtained

t
W(t) =f +dt'f k (t t')A ' '(t)A '—+'(t')

+k(t' —tlA' '(t')A'+'(t)] . (3.29)

It is now readily apparent that if the filter function H (co)
cuts off in such a manner that the electronics cannot
respond to signals at frequencies above twice the
waveguide cutoff frequency co„the second term of (3.23)
does not contribute to I(t) since the Heaviside function
u(co —2', ) is zero over the passband of H(co). Hence
one may write

I

I(r)=e f dt'H(t' t) f —dt"h(r' t")—
X [A ' '(t')A '+'(t")

+ A
' '(t")A '+ '(t')],

In this section, a photodetector with less than unit
quantum efficiency will be modeled. Less than unit quan-
tum efficiency results from the presence of loss mecha-
nisms by which photons can be absorbed in a photodetec-
tor without generating an observable photocurrent. By
the fluctuation-dissipation theorem there must be equili-
brium noise fluctuations associated with this loss. It will
now be determined how this noise effects the
photodetector's performance.

As shown in Fig. 3, a detector with less than unit quan-
tum efficiency can be modeled by a unit-quantum-
efficiency detector in front of which one has placed a
beam splitter that only lets a fraction g of the incoming
light pass to the detector. In order to prevent photons
from entering the photodetector via the other port of the
beam splitter a blackbody absorber has been placed at that
port. The blackbody absorber will be a source of equili-
brium noise which at optical frequencies will consist
essentially of vacuum fluctuations for a room-temperature
absorber. Let As(t) denote the incoming light and Az(t)
denote the equilibrium radiation emitted by the absorber.
Assuming a frequency-independent reflectivity, the light
field A (r) entering the detector is given by

As(t)+(1 —rj) Aiv(t) . (4.1)

Employing the optical waveguide model of Sec. III, the
fields As(t) and A&(t) both have the form (3.1):

BEAM
SPLITTER I

N

I

BLACKBODY
ABSORBER No. l

AS

IDEAL
PHOTODFTECTOR

BLACKBODY
ABSORBER N0. 2

FIG. 3. Simulating a photodetector with less than unit quan-
tum efficiency via a unit-quantum-efficiency photodetector and
a beam splitter. Blackbody absorber 1 prevents stray light from
entering the photodetector via the unused port of the beam
splitter. , Blackbody absorber 2 absorbs those photons of the in-
coming signal Aq that are not counted by the photodetector.
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A~ (t)=a f 2 2 1/4
As(~)e' ',

p (
2 2)1/4

(4.2)

[A]v(co), A]][(co')]=0,
[A]v(co), A]v((o')] =5(1o—(p') .

(4.5)

(4.6)

A]'v '(t) =af, »/„A]v(~)e'"',
p (

2 2)1/4 Because the two light fields Az(t) and A&(t) are indepen-
dent, one has

where the creation and annihilation operators have the
usual commutation relations [As([o),A]v(tp')] = [Ag(co), A~(co')] =0 . (4.7)

(4.3)

(4.4)
I

t
W(t) =rt f dt'h (t —t')[A s[](t)A~[+](t')+As[ '(t')A~[+'(t)]

Substituting the positive and negative frequency com-
ponents of (4.1) into (3.26) one has

t
(1—q)' f dt'h(t t')[A~—(t)A&+ (t')+A& (t)A&+ (t')+A& (t')A&+ (t)+A& '(t')A~+'(t)]

+(1—21) f dt'h (t t')[A—~ '(t)A~+'(t')+A]I '(t')A~+'(t)] . (4.8)

Such an approach, in which (4. 1) is substituted into the expression for a unit-quantum-efficiency photodetector in order
to obtain the response of a photodetector with quantum efficiency 21, has been used by Yuen and Shapiro. ' The second
and third terms of (4.8) arise from the presence of the equilibrium noise field. The first noise term arises from the in-
terference between the vacuum field and the signal field. The second noise term is a dark current term which counts the
photons emitted from the blackbody absorber or loss when the absorber's temperature is greater than zero. %hen the
equilibrium noise field consists of vacuum fluctuations the expectation value of the two noise terms vanish and the ex-
pectation value of the photoemission-rate operator becomes

(4.9)

As expected, the mean counting rate is reduced by the efficiency factor 21. The first noise term of (4.8), which represents
the interference of the vacuum field with the signal field, contributes to the variance or fluctuations about the mean
counting rate ( W(t) ) as can be seen by evaluating ( W (t) ):

tf d('h(& )([&g '((—)Az+'((')+Ay '((')A]+'(()]
)

t
+21(1—q) f dt' f dt"h(t —t')h(t t")—

&& j(A,[ ](t)As+'(t'))[A]'v+'(t'), A]I '(t)]+(As '(t)As+'(t))[A]I+'(t'), A]'v '(t')]

+ (A' '(t')A'+'(t') ) [A'+'(t), A' '(t)]

+ (A' '(t')A'+'(t) ) [A'+'(t), A' '(t')] I . (4.10)

Since the commutators for the noise field operators are nonzero, vacuum fluctuation noise contributes significantly to the
variance of W(t) for quantum efficiencies 21 less than unity.

The photodetector with less than unit quantum efficiency modeled here will be used in Sec. V to discuss balanced
homodyne detection.

V. BALANCED HOMODYNE DETECTION

The balanced homodyne detector is depicted in Fig. 1. Incoming signal light Az(t) is combined with local oscillator
light ALQ(t) via a 50%-50% beam splitter. The two resulting beams are directed to two photodetectors. It is the differ-
ence mode current generated by these two photodetectors that is measured. In this section the operator for this differ-
ence mode current is constructed and some of its properties discussed. In order to simplify the analysis it is assumed
that both photodetectors have the same quantum efficiency q. Let As(t) and ALo(t) denote, respectively, the field
operators for the incoming signal and the local oscillator light. At the 50%-50% beam splitter these two light beams are



32 WIDEBAND PHOTON COUNTING AND HOMODYNE DETECTION 317

combined to produce two light beams A 1(t) and Az(t) directed towards photodetectors 1 and 2, respectively. The uni-
tary transformation performed by the 50%-50% beam splitter is taken to be

A 1(t)= [AS(t)+A 1 Q(t)],
1

v2

A2(t)= [As(t) —ALQ(t)] .1

v'2

(5.1)

It is immediately apparent from this transformation that when the local oscillator light and signal light interfere con-
structively at photodetector 1 they interfere destructively at photodetector 2. This interference gives rise to the differ-
ence mode photocurrent. Let A»(t) and AN2(t) denote, respectively, the equilibrium noise fields associated with the
losses in the photodetectors 1 and 2, then the photoemission-rate operator Wi (t) for photodetector 1 can be written as

t
W, (t)= dt'h(t t') ~—[A'Lo'(t)A'L+o'(t')+ALQ'(t')A'„+o'(t)+As '(t)As+'(t')+As '(t')As+'(t)]

00 2

+~[As '(t)A L+o'(t')+A Lo'(t)As+'(t')+As '(t')A L+Q'(t)+A Lo'(t')As+'(t)]

1/2

+ [AS '(t) AN1'(t')+ AN, '(t)AS+'(t') +AS '(t')AN+, '(t) +AN1'(t')AS+ '(t)]

1/2

+
2

[ALO (t)AN1 (t )+AN1 (t)ALO (t )+ALO (t )ANi (t)+AN1 (t )ALO (t)]

+ (1—g)[AN1'(t)AN1'(t')+AN, '(t)AN+, '(t')] (5.2)

A similar expression can be obtained for the photoemission-rate operator W2(t) for photodetector 2. By detecting the
difference mode current, that is, measuring Wi(t) —W2(t), the terms bilinear in ALQ or As will cancel since they give
rise to common mode signals. Hence the homodyne detector becomes insensitive to fluctuations in the local oscillator in-
tensity A LQ'(t)A LO'(t). Introducing the common mode ANS(t) (symmetric mode) and difference mode ANA(t) (antisym-
metric mode) noise operators

1
ANs(t)= [AN1(t)+AN2(t)],

2
(5.3)

1
ANA(t) = —[AN1(t) —AN2(t)]v'2

the difference mode photoemission-rate operator

WD(t) = W, (t) —W, (t)

can be put into the form

WD(t) = f «'&(t —t') In[As-'(t)ALQ'(t)+ALQ'(t)As+'(t )+A,'-'(t )A'„o'(t)+A';,'(t )A,'+'(t)]

+'11' '(1—9)' '[ALO (t)ANs (t )+ANs (t)ALQ (t )+ALQ (t )ANS (t)+ANS (t )ALQ (t)]

+ 9 (1—/) [As (t)ANA (t )+A NA (t)AS+ (t )+As '(t')ANA (t)+ A NA'(t')As+'(t)]

+(1 g)[A NS (t)A NS (t )+A NS (t )A Ns (t')+A NA (t)ANA (t )+A NA (t )A NA (t)] I

If the noise consists of vacuum fluctuatioris, the expectation value of 8'D becomes relatively simple:

t
( WD(t) & ='t1f «'Ii(t —t')&As-'(t)ALo (t )+ALQ As (t )+As (t )ALQ (t)+ALQ (t )As (t) ~

(5.4)

(5.5)

(5.6)

This is just the expectation value of the difference mode signal generated by the interference of the signal light with the
local oscillator light. The first two noise terms of (5.5), due, respectively, to the interference of the local oscillator light
with the symmetric noise field and the interference of the signal light with the antisymmetric noise field, will contribute
to the expectation value of ( WD(t) ).

It will be convenient from now on to work with the difference mode current operator
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Ado

ID(t) = dco[WD(co)e '"'+H. c.],
2m'

where the Fourier transform WD(co) of (5.5) is given by

WD(co) =f dco'F(co, co') {11[Az o( co') As( co+co')+ As( co') A Lo( co+co')]

+g'~2(1 —g)'~ [A LQ(co')ANs(co+co')+A Ns(co')ALQ(co+co')]

+q'~ (1—ri)' [A (co')AN (co+co')+A (co')As(co+co')]

+ ( 1 7 )[A Ns (~ )A Ns ( co +~ ) +A NA (~ )A NA ( co +co )] I

(5.7)

(5.8)

It will now be assumed that the local oscillator light is in a spectrally pure coherent state
~

LO & specified by

A Lo(co)
I
Lo &

=Ae '('@co—cop)
I
Lo & (5.9)

where A is a positive real number specifying the local oscillator s field amplitude, P specifies the local oscillator s phase,
and cop is the frequency of the local oscillator light. In terms of the local oscillator s power PLo, A is given by

' 1/2
GATI LQ

%coo
(5.10)

The expectation value of 8'n(co) with this local oscillator state 1s

( Wz(co) & =Ari(F(co, cop)e'&As(cop+co)+F(co cop —co)e '~As(cop —co) & . (5.11)

Hence

Aco

( Ju(r)) =r)d I d f[F( ruo)e'erudsru( o+or) rtuF(ruro —ru)e u'~ds(oro —ru)]e ' '+Ho)) .
2m

(5.12)

The expectation value of ID(t) is

2

2
Eco 2

(ID(t) & =g A f dco{[F(co,cop)e'~As(cop+co)+F(co, cop co)e 't'A—s(cop co)]e ' '+—H. c. I
2m

8' Aci)

+g(1 —1))A dco[F(co,cop)F*(co,cop)+F*(co,cop co)F(co, co()—co)—]

2

+1) f dco f dco' f dco"f dco"'(F(co, co')e '"'Az(co')

X [F(co",co'")e '" 'As(co" +co"')5(co+co' co'")—

+F (co,co )e As(co )5(co+co —co —co )]

+F"(co,co')e' 'AJ (co+co')

&( [F(co",co"')e ' 'As(co" +co"')5(co' —co"')

+F*(co"+co'")e' 'As(co"')5(co co" co"')]& . (5—13)—

The first two terms of this expression are proportional to the local oscillator power 2 . The last term is independent of
the local oscillator and can be made negligible for sufficiently large local oscillator power. From now on it will be as-
sumed that the last term of (5.13) can be neglected. Equation (5.13) then reduces to
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'2 '2
(I2 (t) ) =~2A ~ f dcoI [F( co, cop)e'~As( cop+co) +F( co, cop —co)e As(cop —co)]e +H c ]

2m

+q(1 —q)A f dco[F(co,cop)F (co,cop)+F (co cop co)F(co cop
2m

(5.14)

The second term arises from the noise associated with the
losses of the photodetectors with less than unit quantum
efficiency. By comparing (5.11) with the first term of
(5.14) one sees that a homodyne detector measures the
operator

Is(t) = f dcot [F(co,cop)e'~As(cop+co)

+F(co, cop —co)e ~As(cop —co)]e

and

(ID(t)) =qA
2m'

X f dco[
I
F(co cop)

~

2+
~

F(co coo co)
~

2—] .

(5.20)

+H.c. ) . (5.15)

As(t) =As(t)cos(coot +p)+ As (t)sin(coot+/) (5.16)

where the two field component operators As(t) and As'(t)
are given by

In order to get some insight into the physical quantity this
operator represents, consider the incoming field operator
(3.1) written in component form:

So, although the mean difference mode current ID(t) is
zero, the shot noise or fluctuation in this current is not.
This shot noise arises from the interference of the local
oscillator light with the incoming vacuum fluctuations,
and the vacuum fluctuations associated with the losses of
the photodetectors. In Sec. VI will be described states of
the radiation field, called squeezed coherent states, whose
fluctuations in As(t) and ID(t) are less than those of the
vacuum state.

As(t)=a f dco
A (coo+co)e'&

[( + )2 2]1/4

A (co11—co)e
+ 2 2 )y4 +

[(cop—co) —co ]

VI. WIDEBAND SQUEEZED COHERENT STATES

In Sec. V the component operators As(t) and As'(t) for
an optical field were introduced. These observable opera-
tors are noncommuting having the commutation relation

(5.17) [As(t), As'(t)]

Eco
As'(t)=a f iA(cop+co)e'~

[(~ +~)2 ~2]1/4

iA (cop —co)e
+ 2, e '"'+ H. c.

[(~0—~) —~.1

Aco '1=2la dc'I 2 ~

~
~

~

~

2 ~ C2
I I2[(co +co) —co ]

1+
[(cop—co) —co, ]2 2 ]. /2

and thus satisfy the Heisenberg uncertainty relation

(6.1)

(I,(t)) =o (5.19)

(5.18)

where the integration has been restricted to the detector
bandwidth. It is readily apparent that As(t) and As'(t)
are Hermitian and hence, in principle, observable opera-
tors. The component operator As(t) has a form similar to
Is(t). When the bandwidth b,co is made sufficiently nar-
row such that [(cop+co) —co, ]'/ can be approximated by
(cop —co, )'/ and F(co,cop) and F(co, cop —co) by F(O, cop),
the operators I~(t) and A~(t) are in fact proportional to
each other. Hence it has been shown that a balanced
homodyne detector measures one field component of the
incoming field. The particular component it detects is
determined by P, the phase of the local oscillator light.

Before describing the response of a balanced homodyne
detector to squeezed coherent radiation, it will be useful to
compute the response of the detector in the absence of in-
coming light, that is, when the incoming light is described
by the vacuum state. From (5.12) and (5.14) one has

Eco 1b As(t)AAs(t) &a f dco
[( + )2 & ]1/2

1

[(~ ~)2 2]1/2

(6.2)

(o~ A, (t) ~o)=o,

(o
~
A,"(t)

~

o) =o .
(6.3)

The variance of these operators for the vacuum state does
not vanish, and in particular,

This implies that there is a trade off in the precision with
which one can simultaneously measure As(t) and As'(t).
Since Az(t) and As'(t) are linear in the creation and an-
nihilation operators their expectation values vanish for the
vacuum state:
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1

[(~ + )2 2]1/2

1

[(coo—co)' —co, ] /

(0
~
[As(t)]'

~
0) = (0

~

[As"(t)]2
~
0)

r

Ado=a'f
i
G(co)

/

—
f
M(co)

i

=1

G (co)M( —co) =G( —co)M(co) .

From these two expressions one can readily show

(6.6)

(6.7)

(6.4)

Since EAs =—[((As) ) —(As ) ]' one sees from (6.3),
(6.4), and (6.2) that the vacuum state is a minimum uncer-
tainty state for the field component operators. In this sec-
tion some states of the radiation field, called squeezed
coherent states, will be introduced which have less fluc-
tuations in As(t) than the vacuum state, but because of
(6.2) such states must have greater fluctuations in As'(t)
than the vacuum state has. Squeezed coherent states, also
referred to as two-photon coherent states" and squeezed
states, ' ' can in principle be generated via a number of
physical processes and devices, ' among them being de-
generate parametric amplifiers and degenerate four-wave
mixers. Caves has recently reviewed the properties of
wideband squeezed states and developed a mathematical
formalism to conveniently deal with them. For the pur-
poses of this paper, the squeezed-state "generator or
"squeezer" will be regarded as a black box with an output
port which is capable of performing the following canoni-
cal transformation ' on incoming quanta A;„(coo+co):

A, (~,+~)=G(~)A,„(~,+~)+M(~)A,„(~,—~),
(6.5)

As(~o —~)=G( ~)A .(—~0 co)+M—( co)A;. (—~a+co),

where As(coo+co) denotes the annihilation operator for the
quanta leaving the output port of the squeezer. Since
both Az and 3;„must satisfy commutation relations of
the form (3.2) and (3.3), one requires

/
G(co)

f

'=
[
G( —co)

[
',

i
M(co)

i

= [M( —co)
i

(6.8)

that is, the norms of G and M must be symmetric func-
tions of co. If light described by a coherent state is fed
into the input port of the squeezer, the light delivered to
the output port is in a squeezed coherent state. For sim-
plicity, we will restrict ourselves to the case when the light
fed into the squeezer consists only of vacuum fluctua-
tions, that is, when the input port of the squeezer is ter-
minated by a cold blackbody absorber. Then

A;„(coo+co)
~

0) =0 (6.9)

(sv
i
As(t)

i
sv) =0

and similarly

(sv
i

As'(t)
i
sv) =0,

(6.10)

(6.11)

that is, the mean amplitude of the two quadrature com-
ponents of the squeezed vacuum is zero. The mean-
square fluctuation of As(t) about its mean value is given
by

for all co. The squeezed vacuum or light delivered to the
output port of the squeezer will be a multiphoton state.
By substituting (6.5) into (5.17) a few of the properties of
the squeezed vacuum state

~

sv) can be calculated. In
particular, since As(t) after substituting (6.5) into (5.17) is
linear in A;„(co)and A;„(co),one has

(sv
~
[As(t)]

~

sv) =a f dco
1 1

[(coo+co) —co, J'/ [(coo—co) —co, J'/

[(coo—co) —co~]' [(coo+co) —coc ]'
X

~
G(co)

~
+ M(co)

~

+4
2 2, ,2 2 2, /2 Re[6(co)M( —co)e '~]

[(coo+co) —coc] ' +f(coo.—co) —coc J

(6.12)

The quantity inside the integral of (6.12) is the power
spectrum of As(t). Dividing this power spectrum by the
vacuum power spectrum of As(t) given in (6.4), one can
construct the normalized power spectrum

S(co)=
~

G(co) ~'+ IM(co) ~'

[( )2 2]1/0[( + )2 2]1/4

[(~0+~)' —~'] '"+[(~o—~)' —~,' l
'"

the output port unchanged. The output light then con-
sists of vacuum fluctuations and

S(co)=1 (6.14)

as it should for a noise-power spectrum normalized to the
vacuum noise-power spectrum of As(t) When co is .small
compared to ~0 and ~, the normalized power spectrum
can be written in the form

&&Re[6(co)M( —co)e '~] . (6.13)

When M(co) =0 the transformation (6.5) with (6.6)
reduces to the identity transformation and the light
delivered to the input port of the squeezer comes out of

S(co)=
i
G (co)

i + i
M(co)

i

2 2
CO COO

+2 1 ——

2 2
+-

2(coo —co~ )

)& Re[6 (co)M( —co)e2'&] . (6.15)
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IM(~)
I

=
I
G(~)

I

1
2+2

I
G(co)

I

Eq. (6.15) can be put into the form

(6.17)

If the phase P is chosen such that

Re[6(co)M( —co)e '~]= —
I
G(co)

I I
M(co)

I
(6.16)

and
I

G (co)
I

is made large, so that by Eq. (6.6)
I

M(co)
I

can be expanded as

ation depends on the detector bandwidth.
The results of this section can readily be generalized to

an arbitrary squeezed coherent state produced by sending
coherent radiation into the input port of the squeezer.
The normalized noise-power spectrum of As(t) will still
be given by (6.15), however the expectation value of Az(t)
will no longer be zero as it was for the vacuum state. The
response of a wideband homodyne detector to wideband
squeezed coherent states will now be determined.

&2&2
S(co)= 2 + ~ ~ I

G(co)
I4

I
G (co)

I
(coo —co, )

(6.18) VII. HOMODYNE DETECTION OF WIDEBAND
SQUEEZED COHERENT RADIATION

2 2

I
G(co)

I

2cooM
(6.19)

As
I

G(co)
I

is made large, S(co) first decreases and then
increases. The minimum occurs when Having defined the squeezed vacuum state

I
sv ), one

can now calculate the response of a balanced homodyne
detector to such a state. By substituting (6.5) into (5.11),
one has

The smallest value that S (co) takes on at co is then (sv
I
ID(t)

I
sv) =0, (7.1)

670CO CO

Smin(~ )
(cop —co& ) cop

(6.20)

It is seen from (6.20) that the extent to which the fluctua-
tions in Az(t) can be reduced with squeezed vacuum radi-

I

2

that is, the mean difference mode current generated by the
balanced homodyne detector in response to an incoming
squeezed vacuum state is zero. The mean-square fluctua-
tion of the difference mode photocurrent, using (6.5) and
(5.14), is given by

(sv
I
ID(t)

I

sv)=gA — J dco[ IF(co,coo)
I

+ IF(co,coo co)
I
]-

2m
'I

X v)[ I
G(co)

I
+ IM(co)

I
2]

F(co,coo)F*(co,cop —co)G (co)M( —co)e '&

+ 4gRe
I
F(co,cop)

I
+

I
F(co, cop —co)

I

+ 1 (7.2)

+1—q .

The quantity inside the integral can be recognized as the power spectrum of the difference mode current. As was done in
Sec. VI, it is convenient to normalize this power spectrum with respect to the power spectrum for the vacuum state
which is given by (5.20). The normalized noise-power spectrum for the difference mode current SD(co) is given by

F(co coo)F*(co, coo —co)G(co)M( —co)e '~
SD(co)=r)[

I
G(co)

I
+ IM(co)

I ]+4m( Re (7.3)
I
F(co,coo)

I + IF(co, coo —co)
I

This quantity is readily measurable experimentally by
feeding the difference mode current from the balanced
homodyne detector into a spectrum analyzer and compar-
ing the spectrum obtained for squeezed vacuum light with
the base line spectrum obtained in the absence of signal
light. The term 1 —g in (7.3) is a noise floor below which
S~(co) cannot be reduced. This noise comes from the
losses associated with the photodetectors. This noise floor
approaches zero as the efficiency of the photodetectors
approaches unity. For simplicity, throughout the rest of
this section a unit quantum efficiency will be assumed,
then (7.3) reduces to

SD{co)=
I
G(co)

I
+ IM(co)

I

—2D(~ ~o)
I
G(co)

I I
M(co)

I

where

(7.5)

This expression is quite similar to that given in (6.13) for
the normalized power spectrum of the As(t) component
of the signal field. For a particular frequency co, squeez-
ing is optimized when the local oscillator phase P is
chosen such that

2
I
F(co coo)

I I
F(co,coo —co )

ID(co,cop) =
I
F(co,coo) I'+ IF(co,coo co)I'—(7.6)

In order to determine the frequency dependence of
D(co,cop) it is useful to Taylor-series expand F(co,coo)
about ~=0:(7.4)

SD(co) =
I
G(co)

I +
I
M(co)

I

T

F(co,coo)F*(co,cop —co)G(co)M( co)e '~—
+4 Re

I
F(co,cop)

I
+

I
F(co, coo co)I—
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aF(~,~p)
F(co,coo) =F(0 coo)+

c)F(co, cop )
Re

COp

a) =o (coo coc )
2 2 (7.18)

c) F(co,cop)

2 BC02
Q) + 0 ~ ~

co=p
(7.7)

Using Eqs. (3.24), (3.12), and (3.9), one can show that the
first term of the Taylor-series expansion is given by

Hence to order co one has

2cO pter
2 2

D( co, coo) = 1 — + ' ' '

(cop —co~ )

Equation (7.5) can now be written in the form

(7.19)

F(O,cop)=1 . (7.&)

It is convenient to break the other terms of the Taylor-
series expansion into their real and imaginary parts, so

F(co,cop)= 1+(A +iB)co+ co +. . . , (7.9)
(C+iD)

2

SD(co) =
~

G(ct7)
~

+
~

M(co)
~

2~o

(cop —co, )
/

G(co)
/ f

M(co)
/

(7.20)

where

c)F(co,cop)
A =Re

BCO co=p
(7.10)

Expressed in this form one can exploit the relation be-
tween F(co,cop) and F(co,cop co). In Pa—rticular, from
(3.24) one can show

F*(co,cop co) =F( ——co,cop),

Comparing this expression with that of Eq. (6.15) when
(6.16) holds, one sees that the expressions are very similar,
except for a numerical factor of 4 difference between the
coefficients in the cu term in the large parentheses. Max-
imum squeezing now occurs when the gain is set at

2 2

(7.21)
46)COp

The minimum value that SD(co) takes on is then

where use has been made of the fact that h (r) is real:

(7.12)

2' pCO
(7.22)

as can be seen from (3.12) and (3.9). Using (7.11) and
(7.9), being careful to keep all terms, of order co, one can
put D (co,cop) into the form

D( ,coco)p=1 —2A co +cr(co ) . (7.13)

Thus, in order to determine the frequency behavior of
D(co, cop) to order co, one need only evaluate A. From
(3.24) one has

c)F(co,cop)
Re

co=p

ma Cup
2

dvA 7 cos cop7
(cop —co~ )

h(r)=h( —r) . (7.15)

Using (3.12) and (3.9) the integrals in (7.14) can readily be
evaluated:

drh(r)cos(copr) = (cop —co, )'~
—OO 27TQ

(7.16)

dr rh(r)sin(coor) =— (7.17)
277.c2

2 (co co )
1/2

so

7TQ 00

+ 2 2,&2
dr rh (r)sin(coor), (7.14)

(cop —co& )

where the limits of the integration have been extended to
—co by exploiting the fact that, from (3.12), h(r) is an
even function of ~:

Comparing this with Eq. (6.20) one sees that a balanced
homodyne detector's ultimate performance is a factor of 2
worse than that of the ideal measuring device for measur-
ing one of the amplitude components of a radiation field.
It has been shown in the preceding paper ' that the ideal
measuring device for measuring an amplitude component
of the radiation field can be realized by replacing the pho-
toernissive detectors in the balanced homodyne detector
with bolorneters or other devices that measure the opera-
tor E' '(t)E'+'(t), that is, the instantaneous power. For
such a device Eq. (6.13) will hold. One could ask how the
results of this paper might have changed had one followed
the usual practice of neglecting the' rapidly oscillating
terms in the transition amplitude for photoemission, that
is, if instead of starting with Eq. (3.4) one had started
with

P(t) = f dt' f dt" k(t' t")A' '(t')A'+—'(t") . -
(7.23)

In this case the term proportional to co in the large
parentheses of (7.20) would have been absent. For fast
photodiodes operating at optical frequencies co/mp will be
of the order of 10, hence the co term will be too small
to be of any consequence. If one uses SIS junctions' to
perform homodyne detection at microwave frequencies
(tens of GHz) and uses a 1-GHz bandwidth for the out-
put, then co/cop will be. of the order of 10 ' and hence the
co term will be observable. Although the effects neglect-
ed by using (7.23) rather than (3.4) are generally very
small, these effects must be included if one wishes to
determine the ultimate performance possible for systems
employing squeezed coherent states and homodyne detec-
tors.
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VIII. CONCLUSIONS

A photoemission rate operator appropriate for a unit-
quantum-efficiency photoemissive detector has been con-
structed. This operator has been generalized for the case
when the photoemissive detector has less than unit quan-
tum efficiency. The resulting operator was used to dis-
cuss wideband balanced homodyne detection. The noise-
power spectrum for the difference mode current of the
balanced homodyne detector was computed for the case
when the incoming signal consisted of a wideband
squeezed coherent state. These calculations were carried
out without making local approximations to the sensitivi-
ty function and without neglecting rapidly oscillating
terms in the photoemission amplitude. In real photo-

detectors the absorbing atoms are distributed over a finite
thickness. The electromagnetic field amplitude will ex-
ponentially decay as it penetrates this medium and the ab-
sorbing atoms will emit vacuum fluctuations. It is not
clear to what extent these processes will modify (3.26).
Hence it may be useful to extend the analysis of this paper
to more realistic models of photodetectors following the
lines of approach recently taken by Bondurant. '
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