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Wave function for a system with a nonlocal potential determined from its phase shifts
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The wave function for a system with an energy-independent nonlocal potential is determined from its
phase shifts to a good approximation, using a fixed-energy inversion method.

[T+ V (E,r) lg(r) =EP(r),
where

([((r) = f(r)P(r), with f(r) 1 as r

(2)

(3)

If, in particular, we assume a linear energy dependence for
the ELP5

Vq(E, r) = Vo(r) +EWO(r), (4)

then the energy dependence can be eliminated by
transforming (2) to

[f '(T+ Vo+EWO)f ']Q=Ef

using (3) and setting

f (r) =1—WD(r)

%'ith the effective mass

( (.)=[I—IVO(r)]p,

(5) reduces to a wave equation with a velocity-dependent
potential,

[ [p,'(r) ] '('( I(V'/2) [(—M, (()]

+ [p/I(, '(r) ] Vo(r) ]p(r) = E([((r), (8)

An inversion scheme' has recently been developed to
determine an 1-independent local potential from the phase
shifts at fixed energy. In nuclear scattering the interaction
is in general nonlocal as a consequence of the Pauli princi-
ple. For such nonlocal interactions the inversion method
can be employed to determine an l-independent equivalent
local potential (ELP) from the phase shifts at a given ener-
gy. 3 4 The ELP is then in general energy dependent.
Although an ELP and the corresonding nonlocal interaction
are equivalent on the energy shell (phase-shift equivalence),
this is not the case for off-shell processes (no wave-function
equivalence). It would therefore be of considerable interest
to extend the inversion scheme such as to yield, besides the
ELP, also the "nonlocal" wave function. This is the subject
of the present article.

An energy-independent nonlocal potential V(v(r, r') asso-
ciated with a nonlocal wave function ([((r) satisfying

( —A2V'/2((, )(]((r) +&f V~(r, r')([((r')dr'=E([((r), (1)

is associated with an equivalent local potential VJ. (E, r) with
a local wave function P(r) satisfying

which represents a particular form of (1).
In this case we can thus determine the velocity-dependent

potential, and the associated nonlocal wave function, exactly
from our knowledge of the ELP, which is in turn obtained
by inversion of the phase shifts. However, it is not enough
to determine VL(E, r) of (4) at a single energy. We also
have to calculate BVL, (E,r)/BE= Wp(r), which requires a
knowledge of VL, (E,r) in a neighborhood of energies around
the fixed E.

The simple model (4) does not generally represent nu-
clear scattering, but it has proven to be approximately appli-
cable over limited energy ranges. Moreover, it has recently
been shown by Horiuchi " (see also, de Forest' and Rook' )
that in the Wentzel-Kramers-Brillouin (WKB) approxima-
tion to energy-independent nonlocal interactions, the damp-
ing factor f (r) of (3) is given by

f (r) = I —B VL, (E,r )/BE (9)

where ((((E,r) is calculated from the equivalent local poten-
tial VL, (E,r), as determined by inversion of the phase shifts.

An important check on the ((((E,r) is to what extent they
fulfill the "orthogonality condition" for the exact ((((E,r)

[u((E(,r ) u((E2, r ) —u((E(, r )u((Eg, r ) ]dr

4o (E ) (E ) (11)
2 1

which in the limit E2 E~ = E, reduces to

QOO B Vl. (E,r)
4 0 0

[u( (E,r) ((((E,r)]dr = —J — '
v( (E,r)dr

(12)

' [These relations follow from the application of Green's
theorem to the nonlocal and equivalent local Schrodinger
equations and the condition that u((r) u((r) for r oo.]

The wave functions ((((E,r) of (10) satisfy (11) to second

Relation (9) is valid for~any form of energy dependence of
VL(E, r) in the WKB approximation, and it is exact for the
linear case (4), cf. Fq. (6). This indicates that the rela'tion

(9) is likely to be a good approximation in general. There-
fore we propose to extend the inversion scheme to nonlocal
energy-independent interactions, by assuming that the "in-
verted" nonlocal partial wave function ((((E,r) is given, in
terms of the local wave function ((((r), . by

u((E, r) = [1—B VL, (E,r)/BE]' v((E, r),
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TABLE I. N-a phase shifts at five energies (expressed in units of MeV). At 25.0 MeV we also give the
phase shifts corresponding to the parametrized 5 function used in the fitting procedure of the inversion
scheme, see Ref. 2.

22.5 23.75 25.0 25.0
(fit)

26.25 27.5

0
1

2
3
4

88.54
60.15
14.06
2.43
0.38

86.77
59.71
15.04
2.75
0,45

85.08
59.23
15.97
3.07
0.53

85.08
59.23
15.97
3.08
0.53

83.47
58,72
16.85
3.41
0.62

81.92
58.20
17.69
3.75
0.71

order in E2 —Et and (12) exactly.
If the nonlocal interaction is itself energy dependent ("in-

trinsic" energy dependence), our inversion method is not
applicable. However, there are many cases in nuclear phys-
ics where the intrinsic energy dependence can be neglected,
e.g. , in the renormalized version of the resonating group
method for the scattering of two clusters at lower energies,
where the spurious linear-energy dependence has been
transformed away to obtain wave functions with the correct
probability interpretation. For nucleons it has been found
that the intrinsic energy dependence is only important below
100 MeU. 9

To test the proposed method for the determination of
nonlocal wave functions from the phase shifts, we consider
the nucleon —alpha-particle (N-n) interaction of Lassaut and
Vinh Mau, ' " derived in an antisymmetrized folding model
for a variety of effective nucleon-nucleon forces. This in-
teraction is real and energy independent below E, =20
MeV, where the lowest inelastic channel opens in the N-o.
system.

We consider the N-o. potential generated by the Serber
force. Its parameters are given in Table I of Ref. 10. Our
choice is motivated by the fact in this case our inversion
method achieves the required high degree of accuracy, while
the WKB approximation of Percy and Buck'2 (Horiuchi~) is
inaccurate. This makes it a more stringent test for our pro-
posed method, which combines an exact quantal inversion
(for the ELP) with an approximate (WKB) relation for the
damping factor.

We calculate the phase shifts SI of the nonloca1 N-n po-
tential exactly, without the customary Percy-Buck approxi-
mation of replacing R = ~r r+')/2 by R = (r +r')/2, at five
laboratory energies E~ = 22.5 to - 27.5 MeV, in steps of
DE=1.25 MeV. This step size proved to be optimal to
reconcile the conflicting requirements of the accuracy of the
inversion and the numerical differentiation of VL, (E,r). The
phase shifts hl to be inverted are given in Table I ( we ig-
nore the weak inelasticity between 25 and 27.5 MeV, which
is irrelevant for our purposes). For the inversion we em-
ployed the mixed rational-nonrational method of Ref. 2.
The quality of our fit is shown in Table I for the energy
E~ = 25.0 MeV.

To check the accuracy of our inversion we reconstructed
the direct potential'o VD(r) from its phase shifts at E~ = 25
MeV. The result is shown in Fig. 1. It is seen that the
reconstruction is quite accurate for r & 0.4 fm, but less so
for smaller distances. The effect of the small discrepancy
for r 0.4 fm is of course magnified in the numerical dif-
ferentiation of Vl. (E,r), which becomes unreliable in that

region. It is seen from Fig. 1 that the ELF of Percy and
Buck' is quite inaccurate for N-o. scattering. In Figs. 2 and
3 we show the exact nonlocal wave function ui(r) in com-
parison to the equivalent local function u~(r) and the "in-
verted" nonlocal function ul(r) at EN=25 MeV for 1=0
and I, respectively. These results confirm that u~(r) = u~(r)
to a high degree of accuracy, particularly for the p waves.
The accuracy for s waves, though less impressive, is still
quite adequate. Because of the inaccuracy of VL(E, r) for
r & 0.4 fm we have not plotted uo(r) for r & 0.2 fm. If we
compare these wave functions with u~(r) it is clear that the
inclusion of the damping factor f (r) is essential.

The wave functions u~(r) satisfy (8) with Vo(r) replaced
by VL(E, r) —Ed VL, (E,r)/BE. Both the effective mass and
the potential are now (weakly) energy dependent. It has
previously been shown that any nonlocal wave equation can
be exactly transformed to such a velocity-dependent form. '

In this case Vo(r) must be replaced by VL (E,r) —E [ I
—f (E,r)] in (8).

We have demonstrated that our extension of the inver-
sion method to energy-independent nonlocal interactions is
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FIG. 1. The approximate ELP of Percy and Buck (———) com-
pared to the exact ELP obtained by inversion ( ) for the N-o.
potential of Lassaut and Vinh Mau, see Ref. 10, at E~ ——25 MeV.
The direct potential (—. — ) and its reconstruction by inversion
( ) are also shown.
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FIG. 3. The same as in Fig. 2 but for I =1.

FIG. 2. The equivalent local s wave function vo(r) (— — } and
the "inverted" nonlocal wave function uo(r) (———) compared
to the exact nonlocal wave function uo{r) ( ) at E~ = 25 MeV.

practical in the context of nuclear physics. The method
should also be applied in other fields like atomic and molec-
ular physics.

For nonlocal interactions with an intrinsic energy depen-

dence the phase shifts do not contain enough information.
Properties of the potential itself must be considered in this
case. We refer to attempts which have been made to disen-
tangle the intrinsic energy dependence from the nonlocality
by means of a dispersion relation. '
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