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Generalizations of the diffusion-limited aggregation model are considered in order to simulate
pattern formation during solidification. The two-dimensional clusters grown on a seed particle are
initially circular but at later stages the process crosses over into dendritic growth. The effects of an
anisotropic surface tension are studied by assuming that the sticking probability of the particles de-
pends on the local orientation of the interface. Directional solidification is simulated by the deposi-
tion of particles undergoing biased random walks. Linearly stable patterns are generated if the basic
features of the directional solidification experiments are taken into account. The resulting patterns

are very similar to those observed experimentally.

I. INTRODUCTION

The formation of patterns by growing interfaces is one
of the main processes in a wide range of phenomena in
science and technology. Such behavior is exhibited during
solidification, when the crystalline phase is growing in su-
persaturated vapor or undercooled melt.! Examples of
formation of solidification patterns include the evolution
of a snowflake in the atmosphere or directional solidifica-
tion in a number of metallurgically important situations.?

During crystal growth in an undercooled melt the tem-
perature gradient acts as a nonlocal destabilizing force
which amplifies the growth at places where the crystal
bulges into the cooler regions of the liquid phase. On the
other hand, the surface tension, which is related to the lo-
cal surface energy, favors minimum surface area, or in
other words, flat interfaces. The patterns emerging from
the originally homogeneous phase are results of the com-
petition of these forces.> The process of solidification is
described by nonlinear partial-differential equations and
both the analytical and the numerical treatments of these
equations are extremely difficult. As a result, many of
the questions concerning pattern formation have not so
far been satisfactorily answered. The marginal stability

hypothesis*—® provides a rule for the selection of a partic-.
p p

ular tip shape through the parameters of the problem;
however it has not been proved yet. One possible way to
examine the above questions is through the study of
model systems which produce patterns.”~!©

Several simplified models have been introduced recently
in order to make the originally very complex mathemati-
cal problem tractable. One class of these models is based
on the assumption that the motion of the surface is mere-
ly determined by local properties. In the boundary-layer
model of Ben-Jacob et al.® the characteristic decay length
of the diffusion field is assumed to be much smaller than
the local radius of curvature of the interface. The local-
evolution model of Brower et al.’ is based on the purely
geometrical aspects of moving boundaries. Some of the
results obtained from this approach!! are not in accor-
dance with the marginal stability hypothesis. Although
the local models have succeeded in explaining a number of
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important features of dendritic growth they do not take
fully into account the nonlocal character of the diffusion
field surrounding the growing crystal and effecting the
solidification process. Consequently, in many cases they
lead to nonphysical results (overlap of the dendrites) for
long times. ‘

To simulate the behavior of the solidification front in
the presence of nonlocal driving forces one needs new nu-
merical methods and models. The diffusion-limited ag-
gregation (DLA) model!? of Witten and Sander seems to
be particularly appropriate for treating the effects of the
nonlocal diffusion field. In the Monte Carlo simulations
of this model, randomly branched, fractal'® clusters are
generated as diffusing particles launched from distant
points stick to the surface of the growing cluster when
they arrive at a site adjacent to the aggregate. In its origi-
nal form, however, DLA did not produce regular den-
dritelike patterns, because the surface effects were not tak-
en into account in a way consistent with the differential-
equation approach. In a recent paper (Ref. 7) a simple
generalization of the diffusion-limited aggregation model
was introduced in which the stabilizing force of the sur-
face tension was accounted for through a local-curvature-
dependent sticking probability. The simulations of this
model produced nearly regular patterns showing that this
generalized DLA process is suitable for studying the for-
mation of solidification patterns. Very recently Kadan-
off'* proposed another generalization of the diffusion-
limited aggregation model in order to simulate pattern
formation in hydrodynamics.'>'® A more traditional
method, namely, the numerical solution of the original
differential equations, has also been explored recently by
Kessler et al.'® who applied the contour-dynamics
method to the two-dimensional dendritic crystal growth.

In this paper the aggregation approach (Sec. II) is used
to generate solidification patterns. In Sec. III results are
presented for dendritic growth with an anisotropic surface
tension. Directional solidification is studied in Sec. IV.
The conclusions are given in Sec. V.

II. MODEL

The motion of the solidification front is determined by
the diffusion field at the point x at time ¢, u (x,t), which
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satisfies the equation
Au(x,t)=0 (1)

if we assume that the interface moves slowly. As it was
discussed by Witten and Sander!? and by Kadanoff'* the
probability that a randomly walking particle released far
from the surface is at the point x at time ¢ obeys the
discrete version of Eq. (1). Therefore, the diffusion-
limited aggregation models are potentially good candi-
dates for obtaining solidification patterns. Equation (1),
however, should be solved by taking into account that the
interface temperature T, is related to the melting tem-
perature T); through the following form of the Gibbs-
Thomson relation'’

Tin=Tp(1—yK/H) , (2)

where v is the surface tension, K is the local curvature of
the interface, and H is the latent heat. (The other boun-
dary condition, heat conservation at the interface, is not
expected to play an important role from the point of view
of our approach.)

To simulate the effects of the Gibbs-Thomson condi-
tion we modify the original DLA model and assume that
the probability of sticking to the surface of the aggregate
depends on the local curvature of the interface.” Accord-
ing to the boundary condition (2), if K >0 (the surface
bulges into the undercooled liquid), T, becomes smaller
than T, and the local temperature gradient will be de-
creased. This effect slows down the local growth rate. In
order to account for this stabilizing property of the sur-
face tension we define a sticking probability which is
smaller at the places where K >0 and as a result we ex-
pect the aggregate to grow slower at these sites (a particle
which does not stick to the surface diffuses away).

As the measure of the local surface curvature at the
point x in the two-dimensional simulations one can use
the number of particles (N;) which belong to the aggre-
gate and are within a cell of size L XL centered at point
x. Assuming that the characteristic changes in the shape
of the surface take place on a larger scale than L, the
quantity n; —n, can be regarded as a rough estimate of
the average local curvature. Here n; =N;/L? and
no=(L —1)/2L, where ny corresponds to a flat interface
touching the point x at which the particle contacts the
surface. Therefore, our rule for the sticking probability is
local only in the sense that it depends on an average local
curvature (just as the surface temperature in the continu-
um models), but it is not completely local because not
only the nearest neighbors in the aggregate are supposed
to affect the growth at a given site. This is in the spirit of
the Gibbs-Thomson condition: it considers an interface
with a well-defined curvature, although real nonfaceted
crystal interfaces are rough at the molecular level and are
smoothly rounded only on a macroscopic scale. Another
way of determining the local surface curvature by directly
calculating the second derivative of the interface at the
point x was recently proposed by Kadanoff.!* We use n;,
for estimating K because this approach is simpler and
provides reasonable estimates as well.

Next we need an expression for the dependence of the

sticking probability p(n) on the curvature K, which is
represented in our approach by the normalized number of
particles n within the box surrounding the place of arrival
at the interface. One of the simplest choices is

p(n)=A(n —ny)+B, (3)

‘where A and B are constants. It is possible to establish

a connection between our approach and the Gibbs-
Thomson relation by writing (3) in the form
p(n)=B[1—A4/B(ny—n)], which is the same as (2) with
B=Ty, A/B=y/H, and ny—n =K. In the simula-
tions, if (3) gives p(n)> 1, then p(n)=1 is used. For the
case when the sticking probability given by (3) is less than
a small constant C =0.01, the value p(n)=C is used to
keep the growth process going on even for small #n, thus
saving computer time. However, the parameter C does
not play any significant role and it is enough to change ei-
ther A4 or B to see crossover from the random-fractal into
the snowflake-growth regime.

The size of the cell L at the surface in which the num-
ber of particles belonging to the cluster N; was counted
was equal to 9 or 11 in most of the cases. In this way
every time a particle touched the surface, 81 or 121 sites
were checked in order to get information about the local
surface curvature. In the stochastic model of Rikvold'®
the occupation probability of a given site was directly pro-
portional to the number of occupied nearest neighbors of
that site. This, however, turned out to be not enough to
simulate the main effects caused by the surface, and the
compact, irregular clusters he obtained were results of the
finite screening length used in that model.

A simulation using condition (2) for the sticking proba-
bility in general leads to nonfractal clusters in the sense
that the particle density inside the hull of the clusters is
approximately constant. The surface of these clusters,
however, is still quite ramified and they also contain a
considerable number of defects resulting in an average
density which is definitely less than one. Therefore, an
additional rule was used to obtain clusters which have a
well-defined surface and a density close to one.” This goal
can be achieved by the following process. After a particle
has been allowed to land it is relaxed to one of its neigh-
bor sites. The new position is chosen in such a way that it
has the highest number of occupied nearest neighbors
(lowest potential energy). This process simulates a micro-
scopic phenomenon, namely, the dynamic reshuffling of
molecules at nonfaceted solidification interfaces.

In summary, the rules of the model are the following:

(i) Random walks by the particles (as in DLA),

(i) Sticking to the surface of the growing cluster with a
probability depending on the local interface curvature,

(iii) Relaxation to a position with the highest number of
occupied nearest neighbors.

Application of the above model to the solidification
problem has a number of advantages. The numerical
method is simple and effective, and relatively complex
geometries can be generated easily. Second, the fluctua-
tions which are always present in a thermodynamical sys-
tem (and play an important role during the growth pro-
cess) are included in a natural way through the random
walks of the particles. Finally, the model can easily be
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modified in order to take into account various experimen-
tal conditions. For example, the effects of an anisotropic
surface tension or a temperature gradient imposed upon
the system can be directly simulated.

III. DENDRITIC GROWTH

In order to simulate dendritic growth the model

described in Sec. II was used with a single seed particle on
a square lattice. The process starts with a growing, nearly
circular cluster since at this stage the surface-area-
minimizing effect of the curvature-dependent sticking
probability dominates the growth. Above a certain
characteristic radius 7, (depending on the parameter 4, a
quantity analogous to the surface tension), however, this
circular shape becomes similar to a square with rounded
corners. This effect is caused by the underlying lattice.
The cluster prefers to grow layer by layer and on a square
lattice this process inevitably results in a biased, square-
like pattern. At later stages of the growth process the
corners of this square (“bulging” into the “undercooled”
region) become unstable and start growing faster than the
straight edges of the cluster. On these growing dendrites
new unstable regions appear and become dendrites them-
selves as well. In general, large values of A result in more
symmetric patterns, larger r. (smaller curvatures), and a
smooth surface.

In order to demonstrate how the initially structureless
behavior crosses over into dendritic growth in Fig. 1 we
show the number of surface sites N; versus the number of
sites in the cluster N in a log-log plot. For relatively
small sizes the slope of the straight line connecting the
data is approximately equal to 5 in accordance with the
growth of a circular cluster. At later stages, however, the
number of surface sites becomes linearly proportional to
N (resulting in a slope nearly equal to 1) which corre-
sponds to the development of dendrites.

At the further stages of the growth process, however,
another crossover is likely to occur. Since the rule is
essentially local, as the size of a cluster increases, its struc-
ture is expected to approach the random-fractal geometry
of a diffusion-limited aggregate. On the other hand this
crossover to the fractal structure takes place on a length
scale which is outside of the region studied in the present
work.

As was discussed in the first paragraph of this section,
the symmetry properties of the lattice on which the
growth process takes place have an effect on the shape of
the resulting cluster. This fact, however, is not the only
way through which anisotropy can influence the results.
The role of an anisotropic surface tension has been the
subject of recent publications.!®!%2° It has been shown
that also in the local-evolution approach stable dendritic
growth could be observed only if the anisotropy of the
surface tension exceeded a critical value.”’ In addition,
the numerical integration of the solidification equations
led to the same conclusion.!”

The effect of an anisotropic surface tension can be in-
vestigated in the present model by introducing a sticking
probability p,, depending on the local slope of the sur-
face. If we are interested only in the qualitative conse-
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FIG. 1. Dependence of the number of surface sites N, on the
number of particles in the cluster N. The change in the slope of
the curve indicates the crossover from compact to dendritic
growth.

(a)

FIG. 2. The effect of a sticking probability depending on the
local orientation of the surface. In (a) a cluster of 21000 parti-
cles is shown with no anisotropy of the surface tension (sticking
probability). Only the surface sites (those which have less than
four occupied nearest neighbors) are plotted. (b) shows a cluster
of 25000 particles generated using a condition for the sticking
probability which enhances growth along the axes of the square
lattice.
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quences of the anisotropy, we can use a construction simi-
lar to that which was used for estimating the curvature.
Again, the square cell of size L X L is considered, and the
number of occupied sites (normalized by L) along its left,
right, top, and bottom edges, n;, n,, n;, and n,, respec-
tively, is counted. It is easy to see that the quantity
S=|n—n, |+ | n—ny| is related to the local slope. If
S=1, the vector normal to the surface at point x is ap-
proximately directed along one of the main axes of the
square lattice, while for S~2 it is directed along one of
the diagonals. Therefore, we can use for the slope-
dependent  sticking  probability = the  expression
Pan(n)=p(n)p, with p,,=[1—D(S —1)]% where D and
a are parameters. For D >0 and a >0 this expression
provides an enhanced growth along the main axes of the
square lattice. :

In Fig: 2(a) a cluster of 21000 particles is shown. This
pattern was obtained using the parameter values 4 =4.0,
B =0.5, and D =0 and allowing a third-nearest-neighbor
relaxation. Although the geometry of the cluster reflects
the symmetry of the underlying lattice, this feature is not
pronounced and something like a tip splitting of one of
the dendrites can also be observed which is due to the lack
of the anisotropic surface tension. The overall appearance
of this cluster is similar to the ice crystals which can be
found in glacier cavities.?! The splitting of the dendrite
tips is a more common phenomenon for the clusters
which are grown using smaller values of 4. There seems
to exist a critical value for the surface-tension-like param-
eter A for which the anisotropy of the lattice itself pro-
vides stable dendritic growth.

In Fig. 2(b) a cluster of 25000 particles is shown which
was generated for 4 =3.25, B=0.5, L =4, D =0.125,
and a =2. This pattern exhibits a number of properties
typical of dendritic solidification. The four main den-
drites develop side branches and the growth process ap-
pears to be stable in the sense of the absence of any tip
splitting. However, this cluster is still not as regular as
most of the solidification patterns observed in the experi-
ments.?>?3 This is due to the fluctuations which are rela-

tively large for small surface tension. For larger values of -

A more regular patterns are expected to grow in this
model. On the other hand, we had to keep A relatively
low in order to have larger curvatures and more complex
patterns in our medium-scale simulations.

IV. DIRECTIONAL SOLIDIFICATION

In this section we consider a version of the model in
which the particles are deposited onto a line?*—2¢ instead
of a single particle in order to simulate the conditions of
directional solidification experiments.?”?® During these
experiments the working material (usually a long rod or a
thin strip) is drawn with a given velocity through a fixed
temperature gradient. The sample is molten at the hotter
edge of the system and frozen at the opposite side, so that
the solid-liquid interface appears in between. The tem-
perature throughout the region is changing approximately
linearly with the distance z measured from one of the
edges of the experimental cell. These experiments result
in linearly stable, cellular solidification patterns in accor-
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dance with the theoretical results.??—3!

As was discussed in Ref. 7, if the rules described in Sec.
II are applied to the case of the deposition along a line,
quasicellular patterns emerge from the simulations. The
very early stages of the process can be related®? to the
Saffmann-Taylor instability.'!> The dependence of the
characteristic wavelength of the patterns on A has been
shown* to be consistent with the predictions of a linear-
stability analysis of the flat interface.'> This correspon-
dence, however, breaks down at the later stages of the
growth process and the nearly cellular pattern crosses over
into a dendritic structure as demonstrated in Fig. 3.
Therefore, the originally quasiperiodic interface is not
stable.

The temperature gradient imposed onto the system in
the directional solidification experiment results in a per-
manent flow of heat from the hotter to the cooler part of
the system. In addition, the frame of reference is moved
with a given velocity in the z direction, and Eq. (1) for
this case takes the form '

Au +(2/A)(%u /9z)=0, 4)

where A is the diffusion length. In order to account for
the second term in (4) we introduce a biased random walk
by increasing the probability of jumping in the direction
of the interface or “downward,” pgyown, With respect to the
probability of jumping “upward,” p,,. The simulations
for several values of the ratio R =pgown/Pyp result in pat-

‘terns which are more regular for R > 1 than for the un-

biased case. In fact, these patterns look very similar to
those observed in the experiments of Heslot and Lib-
chaber?® on directional solidification of thin samples of
succinonitrole. This is demonstrated in Fig. 4, where both
the simulation and the experimental results are shown.

A more careful study of the aggregation process with a
bias on the random walks shows, however, that R >0 it-
self is not enough to account for all the effects caused by
the temperature gradient and the moving of the working
material. Although the growth of the fingers seems to be
much more stable for R >0 than for the nonbiased case,
it is still expected that after a long time the solidification
front becomes less regular and some of the fingers start
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FIG. 3. This figure shows a pattern which was obtained by
deposition of 45000 particles on a line of 500 seed particles and
using 4 =3.0and B =0.5. Although at the earlier stages of the
simulation a cellularlike pattern can be observed (Ref. 7), for a
greater number of particles the process crosses over into dendri-

tic growth.
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FIG. 4. This pattern was generated using 4 =6.0 and
B =0.5 in the expression (3) and biased random walks with a
ratio of downward to upward jumps of R =1.1. The insert
shows the experimental results of Heslot and Libchaber (Ref.
28) on the directional solidification of succinonitrole.

growing faster than the neighboring ones. The picture
then probably changes into a pattern analogous to the in-
terface shown in Fig. 3. This is indicated by the fact that
the envelope of the solidification front in Fig. 4 is wavy.
The reason for this phenomenon is that we have not yet
taken into account that there is a relatively sharp region
in the system where the temperature changes from
T <Ty to T>Ty and that the solidification front
develops in this region. It is, however, possible to simu-
late this feature of the directional solidification experi-
ment as well. We achieve this goal by assuming that the
sticking probability of the particles depends on the posi-
tion of the surface on the lattice changing linearly with z,
where z is the distance from the line on which the parti-
cles are deposited. Correspondingly, we define a
z-dependent sticking probability p,(n) assuming that

pPn)=pn)+E(z,—z), (5)

where z, is the z coordinate of the most advanced part of
the solidification front and E is a parameter used to simu-
late the effects of the temperature gradient. The condi-
tion (5) for E > 0 leads to an aggregation process in which
the most advanced fingers grow somewhat slower (being
in a “warmer” environment), while the others (having a
higher sticking probability for those z values) have a
better chance to advance. As a result, the envelope of the
solidification front is more balanced and a linearly stable
pattern develops during the simulation in accordance with
the theoretical and experimental results. A pattern gen-
erated using biased walks and the expressions (3) and (5)
for the sticking probability is presented in Fig. 5. The
values of the parameters in this simulation were 4 =3.5,
B =0.2, E=0.02, and R =1.05. The tips of the fingers
are situated approximately at the same level just as ob-
served in the experiments.

V. CONCLUSIONS

Several generalizations of the diffusion-limited aggrega-
tion model have been applied to the problem of pattern
formation during solidification. It has been shown that
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FIG. 5. The interface of a deposit which was obtained using
the expressions (3) and (5) with 4 =3.5, B =0.2, and E =0.02
for the sticking probability and biased random walks with
R =1.05. This is the most complete simulation of the direction-
al solidification, with a linearly stable solidification front.

the aggregation model proposed in Ref. 7 produces pat-
terns which have properties consistent with the experi-
mental observations. These patterns emerge from an en-
tirely-random process which leads to either fractal objects
or to nearly regular solidification patterns depending on
the value of the parameter A corresponding to the surface
tension.

Studies of the growth process started from a seed parti-
cle show a crossover from compact to dendritic growth
which can be demonstrated by plotting the number of sur-
face sites versus the number of particles in the clusters.
The introduction of a sticking probability depending on
the local orientation of the surface results in more stable
growth and relatively well-defined side branches appear-
ing on the main dendrites. There seems to exist a critical
value for the parameter 4 beyond which the anisotropy of
the underlying lattice becomes the source of stable dendri-
tic growth.

Two-dimensional directional solidification can be simu-
lated by the process of deposition on a line. The patterns
obtained from the simulations are linearly stable and very
similar to the pictures observed in the experiments on suc-
cinonitrole. The characteristic wavelength of the solidifi-
cation front can be controlled by both the surface-
tension-like parameter 4 and the parameters E and R
corresponding to the temperature gradient imposed onto
the experimental system.

The cluster shapes generated in the simulations report-
ed in this paper are less regular than most of the solidifi-
cation patterns which can be found in nature or obtained
in the related experiments. There are indications that the
role of elementary fluctuations of size comparable to the
lattice constant is decreased if the simulations are made
using parameter values corresponding to a larger surface
tension (smaller curvatures). In this case, however, many
more particles should be incorporated into a cluster in or-
der to get relatively complex patterns. Work along this
line is in progress.
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