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The issue of diffusion on fractals is addressed with stress on the question of how to generalize the
diffusion equation for Euclidean lattices to the case of fractal lattices. Such an equation is proposed
on the basis of scaling arguments. The solutions of this equation are interpreted as analytic en-

velopes of the exact probability distribution P(r, t) which is far from smooth. In fact it is shown
that P(r, t) has discontinuities which appear self-similarly on all length scales. The exactly soluble
examples of Sierpinski gaskets embedded in general dimension d are analyzed. The predictions of
the diffusion equation (involving no free parameters) are in very close agreement with the results of
numerical simulations. A renormalization-group theory for the Green s function is developed to
support the diffusion equation and to shed light on the nonanalyticities in P (r, t).

I. INTRODUCTION

where r is measured in the Euclidean space. The index 8
is in general nonzero (in contrast to Euclidean lattices
where 8=0). Together with D it determines the scaling
exponent for the conductivity (see below, Sec. III), and the
density-of-states exponent ' for small eigenvalues e:

p( e') E (1.2)

where x=D/(2+8) —1. The "fracton" or "spectral" di-

The problem of diffusion on fractal structures' is close-
ly related to other "linear" problems on fractals such as
the Schrodinger equation, the equation for mechanical vi-
brations, the laws of electrical conductivity, etc. A rela-
tion with the localization problem has also been suggested.
Thus, besides being of intrinsic importance (e.g., interest-
ing applications to transport in porous media and per-
colation networks ) the study of diffusion on fractals
sheds light on all these related problems as well. The aim
of this paper is to present a theory of the probability dis-
tribution P(r, t) for a random walker on a fractal lattice;
in particular a generalization of the Fickian diffusion law
for Euclidean lattices to fractal lattices is presented. The
equation is derived on the basis of scaling arguments, and
is supported by a renormalization-group analysis and by
numerical simulations on some simple fractals amenable
to exact theory. For these examples, solutions of the dif-
fusion equation are obtained with no free parameters;
close agreement with numerical simulations is found.

The main results previously derived concerning dynam-
ics and transport on fractals are briefly outlined in the fol-
lowing. Given a fractal of dimension D embedded in Eu-
clidean space of dimension d, the mean-square displace-
ment after time t of a random walker on the fractal
obeys'

( r2(t) } t2/(2+8)

t3P(r, t) 1 () D & t) "dP(r, t)
Bt rD —' tjr t)t

The envelope P(r, t) will be shown to be an excellent fit to
P(r, t). For the exactly soluble examples we calculate the
number K, so that Eq. (1.4) contains no free parameters.
The solution of Eq. (1.4) is

p( )
2+8 1

I (D/(2+ 8) ) K (2+8)'t

2+8
Q exp

K(2+ 8)'t

D/(2+ 8)

mension d is defined by p(e)-e"/ ', it is the effective
dimensionality of reciprocal space for a fractal (cf.
p-e"/ ' for Euclidean lattices). From (1.2) one findsd:—2D/(2+8). The index 8 arises also in the probability
to return to the origin P (O, t},

P(() t) t D/(2+8)—

and other statistical properties such as the number of dis-
tinct sites visited. The reason that D must be supple-
mented by 8 to determine all these dynamical properties is
that the latter depends on features of the topology of the
fractals (such as connectivity, etc.) which are not in one-
to-one correspondence with the mass scaling (as deter-
mined by D).

In the following we wish to go beyond these scaling
laws to generate a theory for the probability density P (r, t)
where P (r, t)dr is the probability per site that at time t the
walker is in the shell between r and r+dr around the ori-
gin. We shall show that P{r,t) is highly nonanalytic, and
in fact contains discontinuities on all length scales. How-
ever one can consider the envelope of this quantity, P(r, t),
and argue that the dynamics of P(r, t) are well approxi-
mated by the differential equation
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From this solution one finds immediately

("(t)& = [K(2+e)'t]'"'+"
XI ((D+2)/(2+8))ll (D/(2+8)) (1.6)

II. ANALOG OF FICKIAN DIFFUSION
ON FRACTALS

In Euclidean spaces the probability distribution for a
diffusing particle obeys the equation

=KViP(r, t), (2.1)

and P(0,t)-t /' +@ in agreement with Eqs. (1.1) and
(1.3). It is clear, however, that Eq. (1.5) contains much
more information; this will be examined below.

The arguments for Eq (1..4) are presented in Sec. IL In
the same section we consider also the family of 1-
dimensional Sierpinski gaskets9 for which we calculate the
number K. The idea behind this calculation is a compar-
ison of the steady-state currents predicted by Eq. (1.4)
with a source at r =0 and sinks at the boundaries to a
direct and exact calculation of the same currents. In Sec.
III we present a renormalization-group theory for the
Green's function. This theory is used to support the argu-
ments of Sec. II and to shed light on the nonanalytic
properties of P(r, t). In Sec. IV we present a number of
numerical simulations on d-dimensional Sierpinski gas-
kets. Comparisons of P(r, t) and P(r, t) for d=2, 3,4 are
presented, as are plots to demonstrate the self-similar na-
ture of the singularities in P(r, t) on all the (available)
length scales. The paper concludes with a discussion in
Sec. V.

where N(r) is the number of sites belonging to the fractal
in a shell at radius r, per unit shell thickness. To obtain a
differential equation for P(r, t) from (2.3) and (2.4) we re-
quire in addition a constitutive relation equating J(r, t)
with the gradient of P(r, t) multiplied by a conductivity.
However both the conductivity and N(r) are not expected
to depend smoothly on r for any lacunar fractal. In fact
these are expected to fluctuate around a smooth scaling
law with the fluctuations persisting on all length scales.
In consequence we anticipate similarly singular behavior
for P(r, t) {as is borne out by numerical simulation in Sec.
IV) whose gradients are therefore not defined. However,
we propose that the usual such relations exist for p(r, t),
the smoothed envelope of p(r, t):

J(r, t) =cr(r )
dP(r, t)

r
(2.5)

and

I3M(r t) 8 ~~

Bt Br
(2.6)

where J(r, t) and o(r) are the envelopes of the current and
conductivity, respectively. In general we expect depen-
dences on the angular variables also to appear in (2.5): the
right-hand side of (2.5) has been approximated by
preaveraging over these variables. Thus o(r) is th. e total
conductivity at r (i.e., the integral of the radial conduc-
tivity over a shell), and the terms involving derivatives of
the probability with respect to angular variables vanish
due to the "spherically" symmetric initial conditions.

Just as we defined envelopes for J and o, so we define

N(r) and M(r, t) to be the envelope of N(r) and M(r, t),
respo:tively. The envelope analog of Eqs. (2.3) and (2.4)
are

where K is the diffusion constant. For 5 function initial
conditions one can transform to spherical coordinates and
integrate out the angular degrees of freedom. The result-
ing equation is

M(r, t) =P(r, t)N(r) .
Substituting Eqs. (2.5) and (2.7) in (2.6), we get

(2.7)

dP(r, t) K 8 e i BP(r, t)
dt r"—' Br dr

(2.2)

BP(r t) N i 8 dp(r t)
(2.8)

where all the constants have been absorbed in E. We turn
now to the question as to what the analog of Eq. (2.2) for
fractal lattices is.

The smoothed N(r) is determined by requiring that the
number of sites in a ball of radius L that belong to the
fractal will equal L . This means that

N(r) =Dr (2.9)

M(r, t) =P(r, t)N(r), (2.4)

A. Scaling argument

We shall consider an origin r =0 and hyperspherical
shells of radius r in the embedding d-dimensional space.
Let M(r, t)dr be the probability to find a diffusing particle
in the shell between r and r+dr By conserv.ation of
probability

BM(r, t)
(2 3)

Bt

where J(r, t) is the net radial current through the shell.
Let us define the average probability density per site
P(r, t) by

Note that this equation implies an appropriate choice of
the dimensionless variable r [i.e., f N(r)dr =CL with
C =1]. To. smooth o(r) we first defme the conductivity
per site by

o(r) =K(r)N(r) (2.10)

and recall the equivalence of the stationary electrical con-
ductivity problem and the stationary diffusion problem.
Fix a potential P at the origin and a zero (ground) poten-
tial at the shell of radius r The total integ. ral resistance
R(r)=P/J. Let us now assume the smooth envelope of
the resistance scales according to R(r)-r . Then the en-
velope &(r) at the shell r is given by
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o(r)-[M(r)/Br] '-r' (2.11)

A smooth N(r) and a smooth o(r) imply a smooth K(r)
which obeys

K(r) r2 a—D— (2.12)

Denoting 8 as
8=D+a —2,

we find finally

(2.13)

K(r) =Kr (2.14)

where K is a constant. Using (2.14), (2.10), and (2.9) in
(2.8), we arrive at the desired equation (2.4). The solution
(2.5) agrees with the form suggested in Ref. 10. Note that
the index 8 reflects the anomaly in conductivity which
derives from the anomalous fashion in which conductors
are combined to form a fractal lattice. For Euclidean lat-
tices the conductivity o. scales with X where X is the
number of conductors put together to form a shell. In the
fractal lattice we put Dr ' conductors together but get

0

FIG. 1. The Sierpinski gasket and the coordinate system used
in this paper. P is a potential at the top triangle whereas zero is
the potential at the bottom triangles. ro is the overall size of the
gasket.

~( r ) r er D —i —
( r D —1 )(D —i 8) /(D —i j—

~(D —& —8)!(D—& )

(2.15)

(2.16)
P(r)=P 1—

rp

' 2+8—D

(2.18)

B. Determination of X

Once D and 8 are known, the only quantity to be deter-
mined in Eq. (1.4) is K. We shall demonstrate its calcula-
tion for the Sierpinski gasket. The idea is to match the
steady-state properties of Eq. (1.4) with an independent
calculation of the steady-state properties of the gasket.
The calculation can be done for the gaskets embedded in
d dimensions. In the text we treat d =2 and in Appendix
A the case of general d.

1. Steady state solutions of E-q. (14).
for Sierpinski gaskets

Consider a gasket embedded in two dimensions as
shown in Fig. 1, with a potential (source) P at the top and
zero potential (sinks) at the bottom. We seek the steady-

state solution for P(r), which is found from
I

8 K D i eBP(r)Kr
Br Br

(2.17)

subject to the boundary conditions P(0) =P, P(ro) =0.
The solution of Eq. (2.17) is

In other words, on the fractal the conductors are put to-
gether such as to leave holes on all length scales; as a re-
sult the conductivity grows more slowly than N. We note
that the index 8 which reflects this anomaly is precisely
the one responsible for anomalous diffusion, cf. Eq. (1.6).
Indeed the scaling law (2.10) is the expression of this
equivalence. The same law has been argued for in a dif-
ferent manner in Ref. 11, while a similar relationship is
proposed in Ref. 12, involving the exponent which deter-
mines the scaling of the coupling constant rather than the
resistance.

To get the steady-state current we recall the basic equa-
tion (2.5) which together with (2.9), (2.10), and (2.14) im-
plies that

~~@D —1 —8 (2.19)

Equation (2.18) in (2.19) leads therefore to

J= QKD (2+8 —D)ro— (2.20)

2. Independent calculation ofJ

To calculate the current J independently we have to in-
troduce a coordinate system for the gasket which facili-
tates analysis. ' In a gasket with 3" triangles, the triangles
are labeled by i =gk oak3, ak =0, 1,2, see Fig. 1.
Coven the inner length scale, the diffusion occurs by hop-
ping from site to site with a diffusion equation

I/WQ»= —4Q»+g Qe where Q» is the probability to
be in the site p and the q runs over four nearest-neighbor
sites . W is the conductance of a bond. By summing over
the three vertices that belong to a given triangle we can
derive the equivalent equation in the triangle representa-
tion

P;=W gP 3P;— (2.21)

Now P; is the probability to belong to the ith triangle at
time t. The factor of 3 reflects the fact that triangles have
three neighbors rather than four. We shall solve the fol-
lowing problem given a gasket with 3" triangles and po-
tentials Po, Pi, Pz at the boundary points. We seek the
currents jo, j~, j2 that flow out of the outer three vertices.
Describing
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0o jo
J—= Ji

or

Z (&)H —iz (2.29)

The recursion relation (2.22) therefore has the solution

we define the conductance matrix LT" by
[(5)H —IZ + 3]—i (2.30)

(2.22)

The C3 point-group symmetry of the gasket dictates
that cr" has the structure

and in particular ai ——(Zi+ —,
'

) '. It is easy to see how-
ever that the ( n = 1)-gasket (three sites) dictates a i ———2,
b, =1 from which Zi ————,'. Reinserting W we finally
find

LT"= b„a„b„ (2.23)

48
3 —3( —', )"

(2.31)

a„=—2b„. (2.24)

In order to calculate j we shall now derive a recursion
relation for a„and solve it. To do so we consider an
(n+I)-gasket (i.e., with 3"+' triangles) which comprises
three n-gaskets as shown in Fig. 2. We are now interested
in the currents fiowing into the vertices 00, 11, and 22
under the boundary conditions

r

b„ b„ a„
r

In steady state the rate of change of mass in the gasket
must vanish, i.e., the sum of the currents must vanish.
For the special case sI}o——pi ——$2, the currents are all equal
by symmetry, and thus they all vanish. Then (2.23) gives

4'
3(

5 )n

For large n this simplifies to

(2.33)

Equation (2.27) determines Lr" and we can now find the
currents for any boundary conditions. In particular we
want to compare with Sec. II B 1 and we pick

0 (2.32)

0

The total current flowing out of the bottom vertices is cal-
culated now from (2.22), (2.23), and (2.31) with the result

J„=Tts—, W( —, )" . (2.34}
fi (( 11 (2.25)

22

The calculation of cr" +' is presented in Appendix A.
The result is the recursion relation (obtained after setting
W =1 for convenience)

We can now compare Eq. (2.34} to (2.21) and calculate K
and 8. On the n-gasket ro ——2", i.e., we choose lattice
spacing equal to unity. This choice is required to be con-
sistent with (2.9), since there are precisely 3 sites in a gas-
ket whose edge ro measures 2" lattice spacings. Thus

6a„
a„+1—— ———2b„+110—3a„

with Y„'=1/a„. Equation (2.26) reads

5 I
Yn+1= 3 Yn —

2 ~

(2.26)
$KD(2+8 D)(2") —=P W( —')" . —

From this 8 is firstly obtained. Since

2D —8—2
5

and D in the present case is ln3/ln2, we find

(2.35)

(2.36)

Denoting further Z„=I'„——,
' we have

5
ZS+1 3 Zyg (2.28)

1n5

ln2
(2.37)

in agreement with previous derivations of 8.3 4 Using this
in Eq. (2.35) we find

tFI

gO

Jo K=4W/3D(2+8 —D) . (2.38)

We therefore have no free parameter in Eq. (1.4) for the
present case. The calculation of K for the general d-
dimensional case is presented in Appendix A. The final
result is

28'd
(d+1)D(2+8 D)— (2.39)

FIG. 2. A 3"+'-gasket constructed from three 3"-gaskets.
$00, p~~, and p2q are the boundary potentials. jo, j~, and j2 are
the currents leaving the boundary points.

C. Numerical tests of steady-state properties

We can test the predictions of Eqs. (2.18) and (2.20)
directly by numerical simulations. Such tests are both il-
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FIG. 3. The comparison of theory (0) and simulation (+)
for the stationary probability distribution along the edge of a
d =2, 3 -gasket with boundary conditions (1,0,0).

luminating and important in view of the role that steady-
state properties play in determining the parameters of Eq.
(1.4). We have performed such simulations for d =2,3,4.
In Fig. 3 we present the steady-state function P(r) along
the edge of the d =2 Sierpinski gasket for boundary con-
ditions as in Fig. 1. The circles represent the theoretical
prediction Eq. (2.18), and the pluses symbolize the numer-

ical value of P(r). It appears that P(r) approximates
P(r) extremely well, except that there appears hardly no-
ticeable steps in P(r) It is ou. r contention that these steps
are in fact nonanalicities that repeat self-similarly on all
length scales. Support of this contention will be supplied
in Sec. IV in the context of the time dependent P(r, t).

The results for d =3 and 4 are similar to d =2 except
that the steps are more pronounced. In Sec. IV this ten-
dency is also observed for p (r, t}.

FIG. 4. The four triangles that are explicitly considered in
the renormalization-group theory.

G; i ——QG; i
P

(3.2)

where the initial conditions are P; (0)=5; i . With thelp lp, j~'
notation i(, =3—e, e=E/JY, and 5; i ——gP; i these
read (cf. Fig. 4)

(3.3a}

(3.3b)

where the sum is over the neighbors k which are nearest
to i. With initial conditions on the triangle j, which on
the (n}-lattice is composed of jo, j), j2, we derive new
equations for G; i which is defined by

III. RENORMALIZATION THEORY
FOR THE GREEN'S FUNCTION

FOR SIERPINSKI GASKETS
(3.3c)

In order to support Eq. (1.4) beyond numerical simula-
tions (which are presented in Sec. IV) we present here a
renormalization-group theory for the Green's function
G; J(t) which is the probability to be at a triangle i at time
t with initial conditions P;(0)=5,i, on a gasket of 3 tri-
angles. In the text we present the theory for the gasket
embedded in two dimensions; Appendix 8 deals with the
general case of gaskets in d dimensions.

We shall derive a recursion relation for G i'(t) on the
n-gasket, by relating it to G~"; ~i"(Pt) In doing so. we
shall make full use of the coordinate systems shown in
Fig. 1. Consider four neighboring triangles in the
(n —1)-lattice, denoted by i, k, I, I (see Fig. 4). On the
n-lattice each of these consists of three triangles which we
denote as i~, i~=3i+a, etc. , with a=0, 1,2 (Fig. 1). De-
fining Gi"'(E) to be the Laplace transform of G,i", we see
from Eq. (2.21) that generally speaking

e}=G;,"i (~}+Gk",i (~}+Gk"i (~}+5k

(3.3d)

(3.3e)

where

(3.3f}

Next we multiply, say, Eq. (3.3c) by (I+A, ) and add it to
Eq. (3.3d). We find

(A, +i(,—1)G,"J) (e)= (1+k)[Gg'"J~ (e)+G,"i~ (e)]

+G)~i, (&)+(1+i).)5),,J +5),i
(3.4)

3— G(~i (E)=QGk i (E)=5~i (3.1) G)"i (e) =QG)"'i (e) . (3.5)
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Similarly we calculate

(A,2+A, —l)6,"j) = (1+k)[6,"j) (e)+6',"j) (e)]

+6'"'j +(1+A,)5; 1 +5, j (3.6)

(A, +A+1)6( j) (e)= (1+A)[Gg j) (E)+Gt j) (e)]

+6k("'j (e)+(1+A,)5;, j +5k, j .

(3.7)

63;(t)= —,6;(t/5) .

A solution of this equation is

(3.16)

A. Comparison with the diffusion equation

We are now in a position to compare the predictions of
Eq. (1.4) with the results for the Green's function (3.14)
and (3.15). In particular it is important to check whether
Eq. (1.5) is a solution to the fixed-point equations (3.14)
and (3.15). To see that this is indeed the case pick, for ex-
ample, j=0 (i.e., initial conditions at the top of the gas-
ket). In two dimensions Eq. (3.14) reads

Adding up Eqs. (3.4), (3.6), and (3.7) we find

(A2 —A, —3}G ",' (e}=6(",' (e)+6("' (e)

+Gk"'j (e)+(1+A,)5g j
+&t,,j,+4.,..+&,,; . (3.8)

6 (t) C (
~ n5 n /C t)/t)n3/)ns (3.17)

Of course this solution matches the initial conditions
G;(t =0)=5;. Since for the gasket the distance from the
top in the embedding space satisfies r ~i '" +" (cf. Fig. 1),
Eq. (3.17) can be rewritten as

We now denote 6(r, t) =C3exp( —r s i/+4t)/t)n3/(n5 (3.18)

(3—e') =(A2 —A, —3) (3.9)

and notice that 5; j =35;j. The crucial step now is to
compare Eq. (3.8) and (3.1) and see that the system (3.8)
has the same structure as a sum of systems (3.1). Thus

(3.10)

where q is nearest neighbor to i.
At this point we want to use Eq. (3.10) to compare with

the diffusion-equation approach. The latter is expected to
be applicable for i and j that are far apart. We then have

and

(3.1 1)

(3.12)

6(n) (~) G(n —1)(5 2)E' —E' (3.13)

On the infinite lattice, where boundary conditions can
be neglected, we expect the Green's function to be the
fixed-point function 6; j(e) of the recursion relation
(3.13). Furthermore, since we are interested in long times
we can consider the limit e—+0 to find that Eq. (3.13)
predicts that

G3; 31(t)= —,
' 6;*j(t/5) . (3.14)

This result is valid for the embedding dimension d =2.
The generalization to d dimensions is presented in Appen-
dix 8 with the final result

G(g+ i); (g+ i)~ (t)= Gg I (t /d +3) . (3.15)

in our coordinate system. Remembering that A, =3—e we
get finally

In d dimensions, where r ~i '" +"( +",Eq. (3.18) reads

6(r t) g ex ( r)n(d+3)/)n2/g t)tin(d+))/In(d+3)

(3.19)

Remembering that the gaskets are characterized in d di-
mensions by [cf. Eqs. (A14) and (A15)]

D =ln(d + 1)/ln2, (3.20)

2+8=In(d +3)/ln2, (3.21)

we see that Eq. (1.5) agrees exactly with Eqs. (3.18) and
(3.19) in two and in higher dimensions. We have to bear
in mind, however, that Eq. (1.S) is only meant to be an en-
velope to a possibly very singular function 6 (r, t).
Indeed, Eq. (3.15) relates only points iJ to points
(d + 1)"i,(d + 1)"j. In the numerical simulations shown
below we shall find that P(r, t) is very far from being
smooth and appears to have discontinuities on all length
scales. These discontinuities have self-similar appearance
as discussed at some length in Sec. IV. As will be shown,
however, Eq. (1.5) provides an excellent envelope approxi-
mation to P(r, t).

It is slightly more difficult to test the predictions of Eq.
(3.15) for j&0 against (1.5) because it is harder to
transform from i to r in the general case, and (1.5) is valid
in r space. For this reason we test Eq. (3.15) for general
i,j numerically in Sec. IV.

IV. NUMERICAL SIMULATIONS

Here we present typical comparisons of P(r, t) to P(r, t)
obtained numerically for Sierpinski gaskets at d =2,3,4.
Figure 5 shows P(r, t) versus r along the edge of the d =2
gasket with 5-function initial conditions at the top, at two
different times. P(r, t) is computed from Eq. (1.S). The
quality of the envelope approximation is apparent. The
same quality pertains to d =3,4 as shown in Figs. 6 and
7. We reiterate that no free parameters exist in Eq. (1.5).

Similar to Fig. 3, P(r, t) seems to exhibit steps or
discontinuities that are already apparent in Fig. 5 but be-
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FICx. 5. Typical plots of p(r t) vs r along the edge of a d =2 3 -gasket with 5-function initial conditions at the top and W=0.25.
(a) t =3000 and r in dimensionless units. Numerical simulations plotted with crosses, analytical predictions with open circles. (b)
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come more pronounced at d =3,4 (Figs. 6 and 7). These
discontinuities are in fact self-similar and related to the
underlying self-similarity of the fractal object. To see this
we present plots of log~o[P(r, t)/P(0, t)] versus —r + /t
for d =2, 3, 4 in Figs. 8(a), 9(a), and 10(a). If it were not
for the nonanalyticity, we would have expected to see here
straight lines [cf. Eq. (1.5)]. Figures 8(b)—8(d), 9(b)—9(d),
and 10(b)—10(d) show blowups of Figs. 8(a), 9(a), and
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FI&. 7. Same as Fig. 5, but for a d =4, 5 -gasket. (a)
t =3500, W= 8. (b) t =7000. The discontinuities in P(r, t) be-

come even more apparent.
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V. DISCUSSION

0

-1 — (0 )

I
0

I

(b) op
p

p

10(a), respectively. We see that down to the smallest
available scale the structure appears self-similar. Notice
that in all cases r is halved in each blowup. Accordingly
r + is scaled down by a factor of (1+3) [cf. Eq. (A15)].

So far we compared theory and simulation along the
edge of the gasket. The scaling prediction (3.15) can be
tested for arbitrary sites as well. Figure 11 displays
lnG(0, j,t) versus lnj for d =2 where t=5"X40 and
J=3 Jp n = 1,2, . . . , 6. Curves for six different jp values
which are picked from internal points in the gasket are
shown. According to Eq. (3.15) a slope of —1 is antici-
pated for all these curves. Such a line is drawn for com-
parison. All six curves support the scaling prediction very
closely.

The central statements of this paper are as follows.
(i) For a random walk on a fractal we do not expect the

probability distribution P(r, t) to be a smooth function of
r. For self-similar fractals we expect P(r, t) to have
discontinuities self-similarly on all length scales (cf. Figs.
8—10).

(ii) Notwithstanding these discontinuities, we can ap-
proximate P(r, t) very well with an envelope function
P(r, t) which solves a diffusion equation which is our sug-
gestion for the generalization of Fickian diffusion to frac-
tal lattices.

(iii) The anomaly in diffusion is characterized by the
exponent 8 which is the same exponent that governs the
scaling of the conductivity. It is our conjecture therefore
that in all cases where the conductivity scales as a power
law, a diffusion equation of the form (1.5) should yield a
good envelope description of P(r, t). One should stress
that an experiment to measure the scaling of conductivity
is an equilibrium experiment, which seems considerably
easier than any dynamical experiment.

As a final note we comment that the simulations at
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FIG. 11. Numerical test of the scaling prediction Eq. (3.15).
See text for explanation. The notation is 0, j0=5' + jo=11;
X,jp = 15; +, Jp = 1 1; 0, jp =29 0&p =33. '
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d =2,3,4 showed that the entire function P (r, r) oscillated
periodically in time with period d +3 about the envelope
P(r, t).

We found that these oscillations increase in amplitude
with increasing d just as the discontinuities in space do.
In this sense P(r, t) is the smoothed out version of P(r, t)
both in space and time.

choose a special arrangement of boundary potentials like
the one shown in Fig. 12. The potential is 1 at the "top"
and zero at d bottom sides. By symmetry (see Fig. 12)
there are only three unknown potentials, P~, Pz, arid Ps.
Note that this remains true for any d with these boundary
conditions. Taking now the conductivity w as unity (we
reinsert w at the end}, we see that in the steady-state
Kirchhoff's laws imply:
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APPENDIX A: DETERMINATION OF E
FOR GASKETS IN d DIMENSIONS

Qn [1+(d —1)P )]=P t Pz,—

Q~
a„Ps— [Pz+(d —2)$3]=0 .

From these equations we find

a„—dp2
1 Q„—d

Pz ——2da„[(d —a„)(a„d+a„—2d)+2d ]

(A2a)

(A2b)

(A2c)

(A3)

(A4)
Here we present the general case of d dimensions. The

case d =2 discussed in Sec. II can be easily inferred.
The d-dimensional n-gasket has d+1 boundary sites.

We can therefore fix d +1 potentials (Vo, %'t, . . . , %q+&).
The (d+1)X(d+1) matrix LT" relates the currents to
these potentials as in Eq. (2.22). The same arguments that
followed Eq. (2.22) imply now that an cr" has the form

T

Qn

a„

&n

Qn
I

We want to determine a„by calculating o"+' which
pertains to d +1 n-gaskets put together, which coristitute
the ( n + 1)-gasket. As an example we show in Fig. 12 the
situation for d =3. (We reiterate that every vertex in the
figure denotes actually a hypertriangle rather than a site. )
Since cr" is determined by only one parameter, we can

a„J=a„l— (Pt+P)+ +$))=a„(1—Pt) . (A5)

Using (A3) and rearranging we find

a„d(d +1)J=
d (3+d) —a„(d +1) (A6)

Now the matrix o"+' pertains to Fig. 12 looked at as one
single hypertriangle. Therefore

J=a„+,X 1 — (0+0+ . +0)=a„+, .
d

%'e thus have the desired recursion relation

a„d(d +1)
d (3+d)—a„(d +1)

(A7)

(A8)

Repeating now the tricks of Sec. II for this general case
we find

Now let J be the current flowing into the top vertex
(this of course equals the sum of currents flowing out of
all "bottom" vortices):

Qa= 'n

d+1 — (d+1)d+1

(A9)

n+1 —gasket

-0

whcrc W has been relnscrtcd. In dcrlvlng (A9), ai =—d
has been used. This follows since (for W=1 on the 1-
gasket)

d
Jo= g(4t Po)= d4'o+ g0—. —

FIG. I2. The boundary conditions and notation used for the
calculation of the currents are shown for d =3 as an example.
Notice that there exists only three independent values of P in
any dimension d.

Since we now have o" we can calculate the currents
under the boundary potential vector ($,0,0, . . . , 0). The
total current flowing into the bottom sites (equal to the
current flowing out of the top site) is then
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2dwg
'n

(d +1) d+1
or for large n

2dwg
n

(d +1) 8+1

(A10)

(Al 1) 1.
A =(d —1)Pi+QPj 2dPi ~

J
(83)

The prefactor in the first term on the right-hand side of
(82) is d other than (d +1) since one site in hypertriangle
i is omitted for each member of the sum of equations
(81). The second term is a sum over nearest-neighbor hy-
pertriangles to i, calIed j.

Rearranging terms in (82) gives

D —8—2=in[(d + 1)/d + 3]/ln2 .

But since

D =ln(d + 1)/ln2

we fllnd

O=ln(d+3)/ln2 —2 .

Further, (A12) implies that

K=2dS'/D(d+1)(2+8 —D) .

(A13)

(A14)

(A15)

(A16)

Equation (A16) is our main result here. Although the
result (A15) is known, we feel this particular derivation
underlines the equivalence of anomalous diffusion and the
anomalous scaling of the resistance (see Sec. V). Having
calculated 8 and K we can now compare the predictions
of Eq. (1.4) to numerical simulations in all dimensions d.

APPENDIX B: RENORMAI. IZATION GROUP
IN d DIMENSIONS

J„ is the total radial current flowing through the gasket.
As before (Sec. II) we have to match this equation with
Eq. (2.20). Since on the n-gasket ro 2" in a—l—l embedding
dimensions, we have now

QKD(2+ 8 D)(2—")

=2diijg/(d+1)[(d+3)/d+1], (A12)

where

P;=W gpj —(d+1)p; (84)

We have transformed Eq. (81) for sites into a hypertri-
angle diffusion equation with coordination number
(d+1) rather than 2d. The sum runs over the (d+1)
neighboring hypertriangles.

To analyze the Green's function, consider an (n —1)-
gasket embedded in d dimensions. Consider the (d+1)
hypertriangles i,i + I, . . . , i +d which comprise a larger
hypertriangle of the next size up. Let k label the remain-
ing nearest neighbor of i.

Now consider the n-gasket obtained by converting each
of these hypertriangles into (d+1) hypertriangles which
we label i, a=0, 1, . . . , d (see Fig. 13 where this is illus-
trated for d =2).

The Green's function G;"j(E) on the n-gasket is defined
by

(d+1)— G;"(E)=QGk (.&)+5;
k

which results from Laplace transformation of (84) with
appropriate initial conditions. %'e employ notation where
subscript s denotes summation (e.g., G;" j =g& OG;" j )

and e:E/W, Ae:d—+1 e—. The equa—tions (85) for io
and each of its nearest neighbors are then (see Fig. 13)

where p; is defined as the sum of the amplitudes Q; over
all (d +1) vertices of i. We define p; as the probability to
be at hypertriangle i Eq. uation (83) is

The coordinate system appropriate to the d-dimensional
Sierpenski gasket is a natural generalization of that used
for d =2. On the n-gasket, which comprises (d +1)"hy-
pertriangles, the latter are labeled by i =gk Oax(d + 1),
a~ ——0, 1, . . . , d. The basic repeating unit of the gasket is
a hypertriangle of d +1 sides (bonds). A site is the com-
mon vertex of two neighboring hypertriangles. The vertex
of such a hypertriangle has d bonds leaving it: thus a site
has 2d bonds leaving it, i.e., has 2d nearest neighbors.
The site diffusion equation is

a=1
d —1

A, Gk~ j (e)= Q Gi", j +G;, j +5k j,
a=0

kp

(86)

(87)

Qp
——W ggq —2dgq (81) k)

where g is over the 2d nearest neighbors of site p, and
8'is the conductance of a bond or the hopping frequency.

Consider the equations (81) for each of the (d +1) sites

q belonging to the hypertriangle labeled i. Their sum is
l+2-

(i+2) (i+2}, (i+1 )z

)0

~Kg. =dXQ. +X X Q. -2dXQ, .
q&i q&i j q q&i

[.q&J'
qadi}

(82)
FIG. 13. The notation used for the renormalization-group

calculation in d dimensions is shown for d =2 as an example.
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d
A, G; j ——QGt j +6(t+p) j +5; j, p —l,d

a=o
asap

d

&6(g+p)oj ——g G(i+p) j +6;"J +5(;+p) j
a=1

p = 1, . . . )d .

(88)

(89)

+(1+i)5( j +5(;+p) j, p=l, . . . , d.
(810)

Each equation has been summed over the j in a large hy-
pertriangle. Note that i and (i +a)o are neighbors as are
io and kd (Fig. 13). Multiplying (88) by (1+A,) and add-
ing to (89) we obtain

d d
(i(, +A, +1}Gt"j ——(1~A, ) g 6;" j + QG(";+p) j

a=0 a=0
(a~p)

e'=(d +3)e—e

using A, =(d + 1)—e. Thus (812) becomes

[(d + 1)—e']6;"j (e)

(813)

(815)

d= QG(;+p), j +G» j +(4+1)(1+A}5j
p=1

d

+ +5i+p,, +5», (814)
p=1

Noting that (i +p), p =1, . . . , d, and k are the nearest
neighbors to i on the (rt —1)-lattice, we see that the sys-
tem of equations (814) for 6;"j (e) has the same structure

as a sum of systems of equations for 6,"j" "(
G;" j (e) =(d+ l)(1+A, )GJ '(e')+QG((j '(e'),

Similarly from (86) and (87) we have

d d
(1, +A, +1)Gg" j ——(1+A,)QGt" j + QGk j

a=o

+(1+A,)5;,; +5k„, . (811)

where g is a sum over the (d + 1) nearest neighbors to i
on the (n —1}-lattice. As for d =2 (Sec. III) we consider
ij fa apart when 6~=6;j and 6; j =6; j
=6(d+, ); (d+i)j so (815) becomes

(0+1) 6(d+i);(d+))j(e)=(d+1)(2+A)6 j '(e') .

(812)

Summing Eq. (810) over pg, and adding to (Bll)
gives

[A, +(1—d)A, —(4+1)]G;"j
d

6(i+p)j +6k j+(1+A)5gj
p=1

d

+ g 5(i+p)oj, +5k&,j,
@=1

Note that 5; j =(4+1)5j, 5(i+p) j ——5;+p j, and

5» j +5»j Defining .A. '=A, +(1—d)A, —(8+1},and de-

fining e' by A,
'—:(d + 1)—e' we have

The fixed-point function thus obeys

d+3 —e 2
6(d+1)t, (d+1)j(~) Gij ((d +3 }ed+1

(816)

(817)

6(d+1)i,(d~i)j Gij(t&(d +3))2+1 (818)

where we have substituted e' [from (813)] and I,. Taking
the @~0 limit of (817) and inverse Laplace transforming
we have for long tiines
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