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The nonlinear Navier-Stokes-Langevin equations are used to describe fluctuations in a compressi-
ble fluid with uniform shear flow. The hydrodynamic modes for small deviations from the macro-
scopic nonequilibrium state are calculated, including linear mode coupling of the fluctuating vari-
ables with the macroscopic velocity field. The associated correlation functions are determined with
the full nonlinear dependence on shear rate required for long times and/or large shear rate. The sta-
tionary and joint probability densities are also constructed from the associated Fokker-Planck equa-
tion. As an application of these results, the lowest-order mode-coupling contributions to the renor-
malized shear viscosity are evaluated.

I. INTRODUCTION

A simple fluid in uniform shear flow is characterized
by a velocity field with constant gradient orthogonal to
the flow. The magnitude of the gradient, or shear rate,
provides a single control parameter to measure the depar-
ture of the fluid from its equilibrium state. For planar
geometry, the pressure is spatially constant and the tem-
perature is either temporally or spatially constant (de-
pending on boundary conditions), so the macroscopic state
of the fluid can be very far from equilibrium, for large
shear route, but still structurally quite simple. Because of
this relative simplicity, such a system provides a con-
venient testing ground for the concepts and methods of
nonequilibrium statistical mechanics. ' In recent years
there have been several attempts to calculate the transport
and fluctuation properties for shear flow, both theoretical-
ly ' and by novel methods of nonequilibrium computer
simulation ' some experiments also have been per-
formed. Many of the most interesting features ob-
served in these results are attributed to the coupling of hy-
drodynamic modes in the nonequilibrium fluid. The ob-
jective here is to describe in some detail these hydro-
dynamic modes for a compressible fluid up to quite large
shear rates. The results allow calculation of the hydro-
dynamic fluctuations, or time correlation functions, and
related transport properties for this nonequilibrium state.
In the limit of small shear rate, the results obtained here
reduce to previous calculations generally limited to first
order in the shear rate, and at zero shear rate they reduce
to the well-known expressions for hydrodynamic fluctua-
tions in an equilibrium fluid.

There are several motivations for continued attention to
the properties of a fiuid under shear. The nonequilibrium
computer simulations mentioned above have provided a
great deal of data that do not have an adequate theoretical
explanation. For example, the shear viscosity is expected
to decrease with increasing shear rate (shear thinning). At
small shear rates a, the hydrodynamic mode-coupling
theories predict that the shear viscosity in three dimen-
sions has the form

n(a) -no+riia ' ', gi & o (1.1)

The surprising feature of this result is the nonanalytic
dependence on the shear rate, indicating a divergence of
formal nonlinear response functions. While the
computer-simulation results can be fit to this a'~ depen-
dence, the coefficient g~ obtained in this way differs by
two orders of magnitude from the theoretical values. '

Although there has been a recent suggestion for the possi-
ble resolution of this discrepancy, the problem remains
open. In two dimensions the mode-coupling theory
predicts a logarithmic nonanalyticity, and at sufficiently
large shear rate' the computer-simulation data can be fit to
this functional form but with a coefficient that is again
too large as compared to theory. Furthermore, at smaller
shear rates in two dimensions, computer-simulation re-
sults suggest that the shear viscosity is independent of
shear rate. One explanation for this' is a small-shear-rate
instability that is not accounted for in the theoretical
models. Finally, and perhaps most puzzling, is a structur-
al phase transition observed recently in a three-
dimensional computer simulation at large shear rate. ' At
a critical shear rate enhanced shear thinning was ob-
served, while above this shear rate the particles (hard
spheres) were found to be localized in tubes along the
direction of flow, with a hexagonal packing of the tubes.
Since planar Couette flow is expected to be linearly
stable (as confirmed here), the mechanism for such a
transition is not evident. A related class of mode-
coupling problems for the hydrodynamics of liquid crys-
tals under shear has been discussed also.

The discussion given here does not address these ques-
tions directly. However, it is generally assumed that all of
the above phenomena are related to the nonlinear dynam-
ics of hydrodynamic fluctuations, which describe the cou-
pling of the thermal fIuctuations around the nonequi-
librium macroscopic state. From the corresponding study
of nonlinear mode coupling of excitations around equi-
librium, it may be expected that such effects are singular
in two dimensions, but can be treated perturbatively in
three dimensions. Much less is known about such mode
coupling for a nonequilibrium state (particularly for a
compressible fluid), and one objective here is to provide
the nonequilibrium hydrodynamic modes required for
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such a mode-coupling analysis. To illustrate their utility
in this context, the fluctuation-renormalized shear viscosi-
ty is calculated and the coefficient g& in Eq. (1.1) is deter-
mined.

The model used to describe hydrodynamic fluctuations
is the Navier-Stokes-Langevin equations. This is a set of
five coupled equations for the local conserved densities
(mass, energy, and momentum) that is structurally the
same as the macroscopic nonlinear Navier-Stokes equa-
tions. However, the heat flux and pressure tensor have
fluctuating components that represent the dynamics of all
other (presumably more rapidly varying) degrees of free-
dom. These fluctuating components are then modeled by
a Gaussian-Markovian process. The consistency of such
nonlinear Langevin equations with basic principles of ir-
reversible thermodynamics has been doubted, but recent
results have largely dispelled such questions. ' The pre-
cise definition of the Navier-Stokes-Langevin model is
given in Sec. II and Appendix A. These equations are
then linearized around the state of uniform shear flow and
diagonalized. The resulting set of five independent linear
equations defines the hydrodynamic modes. The calcula-
tion parallels closely that for the equilibrium state. In
the latter case the modes are parametrized by a single
wave vector k, while in the nonequilibrium case there is a
coupling of these wave vectors even in the linearized equa-
tion. This linear mode coupling is due to terms that are
bilinear in the fluctuations and the macroscopic flow ve-
locity. The latter behaves as an external inhomogeneous
field that induces the wave-vector coupling, leading to
qualitative differences from the equilibrium hydrodynam-
ic modes (e.g., nonexponential time dependence), and is
essential for the stability of these modes at large shear
rate. The equations are solved in a manner valid for large
shear rates in the sense that secular terms -(at) are in-
cluded to all orders. It is still possible to interpret the re-
sults as two sound modes, a heat mode, and two shear
modes, although the equilibrium degeneracy of the latter
is broken in the nonequilibrium state.

The matrix of time correlation functions is calculated
from these modes in Sec. IV. These functions obey a gen-
eralization of Onsager's assumption on the regression of
fluctuations to nonequilibrium states. The equal-time
correlation functions are shown to exhibit long-range or-
der with a correlation length I —(I /a)', where I is the
sound damping constant. The dynamic structure factor
for the Brillouin light scattering spectrum is identified as
the sum of Brillouin and Rayleigh peaks which, in con-
trast to equilibrium fluids, are not simply Lorentzian
shapes. The Landau-Placzek ratio of integrated intensi-
ties is calculated and found to be a function of both wave
vector and shear rate. In Sec. V the Fokker-Planck equa-
tion associated with the linearized Navier-Stokes-
I.angevin equation is constructed, and the stationary state
and the joint probability densities are determined. Final-
ly, the results are summarized and discussed in Sec. VI.

II. NAVIER-STOKES-LANCxEVIN EQUATIONS

The microscopic conserved densities for a simple fluid
are linear combinations of the mass density p(r, t), the en-

ergy density u(r, t), and the momentum density p(r, t).
The local conservation laws are given by

at p(r, t)+ V.p(r, t) =0,

u(r, t)+V s(r, t)=0,
at

p;(r, t) + t J(r, t) =0 ,
a
Bt ' '

Br,-"

(2.1)

where s(r, t) and tJ(r, t) are the associated energy and
momentum fluxes. The specific forms of these phase
functions are well known and will not be given here. By
analogy with the macroscopic hydrodynamic equations it
is convenient to express the energy density and fluxes in
terms of the corresponding quantities referred to a frame
of reference locally at rest with respect to the fluid. This
can be accomplished in a formal way by introducing a lo-
cal microscopic velocity field by p(r, t) =p(r, t)v(r, t).
Then a Galilean transformation of the densities and fluxes
leads to

—+v.V p+pV. v=0,a
Bt

' 8 +v V u'+u'V v+V.s'+t, J
——0,

Bt 81'~
(2.2)

s'=s*(p, u')+ s~,

tJ =p(p, u')5tj+tJ(p, u')+t j .
(2.3)

In the second equation of (2.3) a form analogous to that
for the macroscopic equations has been chosen, where the
microscopic pressure has been introduced. It is defined to
be the same function of p and u' as in the equilibrium
equation of state,

p(p, u') =p, (p, u') . (2.4)

Equations (2.2) and (2.3) are still exact but not very use-
ful until the functional forms of s* and t* are specified.
A model Langevin equation results from idealizing the de-
tailed structure of the fast degrees of freedom as a
Gaussian-Markovian process. ' ' This is accomplished
by taking the random components as linear functionals of
the corresponding stochastic variables. Considerations of

p +v V v+ tj=0,
Bt '

Br, "
where the quantities with a prime denote the correspond-
ing phase function referred to the local rest frame. In this
form Eqs. (2.2) resemble closely the macroscopic conser-
vation laws. To complete the parallel, the rest-frame
fluxes are further decomposed into two parts, one whose
dependence on the microscopic degrees of freedom occurs
only through the conserved densities p and u' and a
remaining "random component" which cannot be written
in that form
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s = —ADVT,

Bvg 8vj ——5,iV v ~gV—v5,J.
BPi B1'i 3

(2.5)

Here A,~, g~, and az are "bare" transport coefficients that
depend in general on p and u'. Also, the microscopic
temperature Tis defined in a manner similar to (2.4),

irreversible thermodynamics then impose relationships '
between the covariances of these variables and the forms
of s;* and t,j. For processes with small spatial variations,
the latter are assumed to have the Navier-Stokes form

roscopic variables yo(r, t) in Eq. (2.10). For the equilibri-
um state W p is a linear differential operator with con-
stant coefficients, and Eq. (2.11) then has a local form.
More generally, the hydrodynamic modes for nonequi-
librium states will involve a coupling of different wave
vectors. This new feature of the linear Langevin equa-
tions for nonequilibrium fluctuations will be referred to as
linear mode coupling. It is to be distinguished from the
mode coupling due to nonlinearities in z which have
been neglected in Eq. (2.11).

III. HYDRODYNAMIC MODES FOR SHEAR PLOW

T=T, (p, u'), (2.6)
The macroscopic state of uniform shear flow is charac-

terized by an average velocity field

where T, is the equilibrium function of its arguments.
Equations (2.2)—(2.6) together with the Gaussian-
Markovian properties of the random components give a
closed set of five nonlinear stochastic differential equa-
tions, the Navier-Stokes-Langevin equations. A more pre-
cise specification is given in Appendix A. The physical
basis for the idealization involved in such Langevin
models has been discussed at length elsewhere ' ' and no
further comment will be made here.

For notational simplicity a five-dimensional vector
whose components are the conserved densities is intro-
duced:

y-(p(r, t) u(r, t), p;(r, t)) . (2.7)

The vector whose components are the nonequilibrium
averages of these densities will be denoted by yo,

yo-(po(r, t), uo(r, t), po;(r, t)), (2.8)

where a subscript, 0, will be used to indicate an averaged
quantity. To study small fluctuations around a given
macroscopic state, the relevant variables are the deviations
of the conserved densities from their average values,

z(r, t)—:y(r, t) yo(r, t) . — (2.9)

Linearization of the Navier-Stokes-Langevin equations
with respect to z(r, t) leads to the general form

a z(r, t}+W p(yo(r—, t))zp(r, t) =R (r, t), (2.10)

where

z(kt) J,dr—=e'"'z(r, t) (2.12)

and R~ is the transform of R . The solutions to these
linear Langevin equations define the hydrodynamic
modes. The nonlocal form of the matrix, W(k, k;t), with
respect to k is a result of the inhomogeneities of the mac-

where R (r, t) contains all of the contribution from the
random components in (2.3), and the dependence of the
linear operator W-~ on the particular macroscopic state
considered has been made explicit. In terms of the
Fourier transform of z(r, t) these equations have the form

z (k, t)+ I dk'S &(k,k';t)z&(k', t)=R (k, t),
at

(2.11)

vo(r, t) =a;Jr~,

a;J'—a 5;„5jy
(3.1)

corresponding to a flow along the x axis with a constant
gradient a along the y axis. An arbitrary additive con-
stant velocity is sometimes included but can be removed
by a suitable Galilean transformation. This velocity field
is a solution to the macroscopic Navier-Stokes equations
for spatially uniform pressure and macroscopic internal
energy density Eo determined from the energy equation

BEp a Tp
+'Qa

Bt ay 2 (32)

'ao(t)
at

=pa (3.3)

The conditions of homogeneous shear are most closely re-
lated to the Lees-Edwards conditions for computer simu-
lations. ' A second solution exists for time-independent
properties, but with spatially varying temperature,

aTo(y)=T&—
2X

(3.4)

where T~ is a constant determined from the boundary
condition that the temperature at the surfaces is constant.
In the following the conditions of homogeneous shear
flow will be assumed for definiteness. However, as ob-
served below, the results obtained will be valid for both
cases (3.3) and (3.4).

It is now straightforward to obtain the linear equations
(2.11) for the case chosen. The form of these equations is
simplified considerably by a suitable choice of variables,

z(k, t)~(c,5p(k t), c25K(k, t), e' '(k).5v(k, t)), (3.5)

Jpa
~i =po

Bpp

2 1 Poa
c2=(poho)

Co BGp po

(3.6)

where ho =co+pp is the average enthalpy density, and

Here A, and g are the thermal conductivity and shear
viscosity, and To is the macroscopic temperature. There
are two different solutions to Eq. (3.2) of interest. The
first is homogeneous shear flow, for which the tempera-
ture and density are spatially uniform but the energy in-
creases according to
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(3.7)

—a;;k; z (k, t)+L t)(k,a, t)zt)(k, t)=R (k, t) .

5p=p —
po& 5s=tt —so& 5v=v vo .

(a)
The vectors Ie (k) } t(pe a set of three pairwise orthogo-
nal unit vectors with e (k) along k. The linear Langevin
equations for these variables are found to be

A, )(k,a)= —icok+ —,'(I"ok +ak„k„/k },
A,2(k,a)=+icok+ —,'(I ()k +ak„ky/k ),
Ai(k, a) =Dozk

A,4(k, a) =v()k —ak„ky/k

Xs(k, a) =v(,k' .

(3.12)

(3.8)

The detailed forms of 8 (k, t) and L t)(k, a, t) are given in
Appendix A. The linear mode coupling is represented by
the differential operator with respect to k, a simplifica-
tion of Eq. (2.11) due to the linearity of the imposed ve-
locity field. The matrix L t)(k, a, t) also depends on the
shear rate, but in a manner that does not couple modes of
different wave vector, k. Finally, the time dependence of
L t)(k, a, t) is due entirely to the viscous heating expressed
by Eq. (3.3).

Since the irreversible fluxes at Navier-Stokes order are
valid only to first order in the gradients, this matrix is
valid only to order k . In the present context it is neces-
sary to specify the relative magnitude of the shear rate a
as well. To motivate the choice, it is noted that there will
be secular terms in the solution to Eq. (3.8) of the foun
(at). Also, heat and momentum diffusion and sound
damping occur on a time scale of order vok t —1, where

vo=7is/po is the kinematic viscosity. Therefore, to inves-
tigate shear-rate effects on the same time scale as hydro-
dynamic dissipation, the shear rate is chosen to satisfy

Here co is the sound speed, I 0 is the sound damping con-
stant, and DoT is the thermal diffusivity. For zero shear
rate the first two eigenvalues represent damped sound
propagation and the third eigenvalue is for thermal dif-
fusion, while the last two describe transverse momentum
(shear) diffusion. The effect of the nonequilibrium state
in (3.12) is then simply to shift the sound damping by a
term proportional to the shear rate and to remove the de-
generacy of the shear modes.

The general solution to the Langevin equations (3.8) can
now be constructed from these eigenvectors and eigen-
values in the form

z (k, t)= Gp(k k t ——to)zt)(k', to)
dk'

(2m. )

dk'+f V~f,G.~(k, k', t ~)Z~(k, r) .
'o (2~)

(3.13)

The Green's function G~t)(k, k', t) has the representation
56.~(k,k'; t) = g g."(k)q~(' (k') 6"'(k,k', t),

a &vok (3.9)

The wave vector must be small compared to the mean free
path l for the validity of the Navier-Stokes approximation
so that the condition (3.9) becomes a «vo/i . This is a
relatively weak constraint and allows for quite large shear
rates (e.g., for air at STP the restriction is a «10 sec ').
With this choice the time dependence of L t)(k, a, t) may
be neglected, since it generates nonsecular contributions of
order ak (vok .

A further simplification of Eq. (3.8) is possible by a
transformation to diagonal form in terms of a set of five
linearly independent vectors g" that are solutions to the
generalized eigenvalue problem

—a,,k, +I. g")=~,g") .
J

(3.10)

5
(+(i) g(j)) y ~(i)egj()

a=1
(3.11)

The eigenvectors g" and eigenvalues 2; can be obtained
explicitly in the context of perturbation theory, using k as
a small parameter. Since the matrix L is not Hermitian it'

is also necessary to introduce an associated biorthogonal
set of vectors g" with the property

where 6"(k,k';t) satisfies

(3.14)

—a Jk; +A,;(k,a) 6"(k,k', t) =0,

6"'(k k'0}=(2n.}'5(k—k')
(3.15)

The form (3.14) allows identification of the five linearly
independent excitations possible in the fluid under shear.
Accordingly, the hydrodynamic modes are the solutions
to Eqs. (3.15). It is important to note the role of linear
mode coupling in these equations. If the latter is neglect-
ed, the resulting approximate modes are entirely charac-
terized by the eigenvalues A,;(k,a). Since the effect of the
shear rate in Eqs. (3.12) is to change the sound damping
by a term of equal magnitude but opposite sign to that of
the shear mode, one of the modes will necessarily be un-
stable at sufficiently large shear rate. However, this con-
clusion is not justified since inclusion of the linear mode
coupling in (3.15) stabilizes the modes at all shear rates, as
demonstrated below. The solutions are readily found to
be

The first equality of (3.11) defines the scalar product in
the five-dimensional space of hydrodynamic variables.
The determination of the eigenvectors and eigenvalues is
described in Appendix B. In particular, the eigenvalues to
order k are

6"'(k k't) =(2~)'5(k —k'(t) )E"'(k t)

E"(k,t)=exp —f d~A, ;(k( —~))
(3.16)
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where the tinM-dependent vector g"(k, t) is

g"(k, t) =E"(k,t)g"(k) . (3.18)

These five linearly independent vectors are defined to be
the hydrodynamic modes for small deviations from uni-
form shear flow. They are solutions to the equations

Here k;(t) =k; k—jaj, t.
These results allow the Green's function, (3.14), to be

put in the form, for t & t',
5

6 tt(k, k';t) =(2m. )'5(k —k'(t)) g g"(k, t)gII (k'), (3.17)

a(t)~(ak„/2k)t', P(t)~ ,
' (—«„/k)'t' . (3.23)

((z.(k, t))) =G.t (k, ko;t)gI"(kp)/(2~)'

Since the magnitude of P(t) is positive the functions
E"(k,t) decay (for t & 0) and hence represent stable exci-
tations.

To illustrate the effects of strong shear flow on the hy-
drodynamic modes, consider the special case of an initial
sound excitation along the direction of flow, i.e.,
z (k,O)=g" (k)5(k —kp) with kp:—kpx. Then the aver-
age of (3.13) gives

+A,;(k( t),a) g—"(k,t)=0. (3.19) =5(k —kp(t) )g" '(k)E" '(k, t), (3.24)

These equations have a simple interpretation. They result
from Fourier transformation of the Navier-Stokes equa-
tions (2.10) referred to the Lagrangian coordinate frame.
The latter is obtained from the transformation

where the second equality follows from Eqs. (3.17) and
(3.18). Inverting the Fourier transform in Eq. (3.24) gives
the space-time evolution of this initial excitation,

—r k'p(t —a)/2((z (r, t) )) =g"'(kp(t))(1+ a't')'"e
Ir =r —Up. (r)t =r a "r t . —
l l l l lJ J (3.20)

XcosIkp[x(t) cpa(—t; —a)]I, (3.25)

where a(t;a) and P(t;a) are defined by Eq. (3.23), and
x ( t) is the Lagrangian coordinate of Eq. (3.20),
x (t) =x +ayt. The corresponding result for an excitation
in an equilibrium fluid results from the replacements,
at=0 and a(t) =P(t) =1. The expected effects of flow re-
sulting from a Doppler shift of the velocity are contained
in x(t). These may be suppressed by restricting attention
to the time variations in the plane y =0. Since all points
in this plane are stagnation points, the nonequilibrium ef-
fects on sound propagation and damping are due to gra-
dients of the velocity field. Without loss of generality,
x (0) is also chosen to be zero. If the time is measured in
units of (I pkp) ', the relevant parameters of (3.25) are
(cpkp/I pk~) and (a/I pkp). Choosing a typical value of
(cpkp/rpkp)=10 ', Fig. 1 shows the results for
(a/I pkp)=0 and 1. The effects of shear flow are two-
fold. First, the effective sound velocity is approximately

E'"(k, t) =[k/k( —t)]'~ exp[ ic ka(t)—
,' I pk2P(t)]—,

E' '(k t)=[E'"(k,t)]
E' ~(k, t)=exp[ Dprk P(t)], — (3.21)

E"'(k,t) =[k(—t)/k]exp[ —vpk'P(t) j,
E"'(k, t) =[k/k( —t)]E' '(k, t) .

The time-dependent functions a(t) and P(t) are

a( t) =(2ak„k)—

Effectively, this induces a local Galilean transformation
that brings each fluid element to rest relative to the mac-
roscopic motion, and it is quite natural that the hydro-
dynamic modes have the simple form of equilibriumlike
excitations in this frame. However, the wave-vector,
dependence of the eigenvalues A, ; in this frame is neces-
sarily time dependent. This latter effect is responsible for
a qualitative difference of the E"(k,t) from simple ex-
ponential functions of t. (This time-dependent wave vec-
tor may be interpreted as the Fourier transform variable
for spatial functions referred to the local Lagrangian
frame for the fiuid under shear flow, i.e., r =r; a,jrjt.)—
The specific forms of the functions E"(k,t) are

x [k, ( t)k( t) —k,k]——

2 k( t)+k~( t)sgn(ak„)— —
+kg ln

k +k~ sgn(ak„)

(3.22)

P( t) —= (ak„k') '{kg [ky( —t) —ky]+ —,
'

[kY'( —t) —ky ]I,
kj =k —k

In particular, it is seen that for large t,

A
A

1O

IV
V
V

FIG. 1. Propagation and damping of sound wave in shear
flow for a/I pkp=1 ( ) and for a/I pkp ——0 (---).
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twice that for zero shear rate on this time scale. In addi-
tion, the attenuation is significantly enhanced by the shear
rate after about five cycles. At much larger times the
period varies to a greater extent, but the amplitude is then
very small. Although (a/I Oko)=1 would be difficult to
attain for simple atomic fluids, it is likely that such modi-
fications of sound and other hydrodynamic modes could
be observed in driven colloidal suspensions under shear
fiow 22, 23

on the left side of (4.1). Time-reversal invariance and sta-
tionarity impose the symmetries

C &(k, t;k', r';a)=C z(k, t —r';k', 0;a),
(4.2)

C &(k, t;k', t';a)=P P&C$ (k', t;k, t'; —a),
where P =+1 denotes the parity of z under time rever-
sal. It is therefore sufficient to consider C &(k, t;k';0;a)
for t&0, without loss of generality. To calculate the
correlation function, Eq. (3.13) for to~ —oo may be used,

IV. CORRELATION FUNCTIONS

The correlation functions for the deviation of the hy-
drodynamic variables from the macroscopic state of uni-
form shear fiow are defined by

C &(k, r;k', r', a) =—(z (k, r)z&(k', t') ),
where the angle brackets denote the nonequilibrium aver-
age, and the shear rate dependence has been made explicit

I

5
z (k, r)= f d~ g g"(k, r —r)F"(k(r—r);~),

i=1

where the effective random force F" is

F"'(k, r) =q~"(k)R,(k, r) .

The correlation function is then, for t & 0,

(4.3)

(4.4)

C ~(k, t;k', 0;a)=g f dr f dr'g"(k, r)g&J'(k', r')(F"(k( ~),t —r)F'J'—(k'( r'), —r'—) ) . (4.5)

The properties (A3) for the random variables imply

(F"(k,r)FJ(k', t') ) =(2~)'5(k+k')5(r —r')F J'(k),

(4.6)

modes. These results have a more familiar form in terms
of the differential equations they satisfy, as follows direct-
ly from (4.7)—(4.9),

which defines the matrix F'1'(k). Use of (4.6) in (4.5)
then gives an expansion for the correlation function in
terms of the hydrodynamic modes,

—a;,.k; C z(k, t;k', r')

+I. (k, a)C &(k, r;k', t') =0, (4.10)

C &(k, r;k', 0;a) =(2m-)'5(k+k'(r))
5

X g g."(k,t)q."(—k')C.~( —k', ) .

(4 7)

The coefficients in this expansion C &(k';a) are related to
the equal-time correlation functions by

C~p(k, 0;k', 0;a) =(2m. ) 5(k+k')C~p(k;a) . (4.8)

The explicit form of these coefficients, as determined
from (4.5) and (4.6), is

C~p(k;a) =f dr g g~ (k,~)gJ'( —k, r)F'J'(k( —r}) .

(4.9)

Equations (4.7)—(4.9) are the primary results of this
section. The first shows that the time-dependent correla-
tions decay according to the same linear laws as those for
small deviations of the hydrodynamic variables from the
macroscopic state of shear flow. This represents a gen-
eralization of Onsager's assumption on the regression of
fluctuations to nonequilibrium states. ' Equation (4.9)
shows that the equal-time correlation functions are deter-
mined from the noise amplitude and the hydrodynamic

a—5 ~;Jk; +L~ (k,a) C p(k;a)
J

+[Lp ( —k, a)]C (k;a)=R p(k), (4.11)

where R p(k) is the amplitude of the random forces,

(R (k, t)Rp(k', t'))—:5(k+k')5(t —r')R p(k) . (4.12)

Equation (4.10) is the linear regression law, while Eq.
(4.11) may be identified as a nonequilibrium fluctuation-
dissipation relation. These equations show the close rela-
tionship of the dynamics of fluctuations to the macro-
scopic dynamics, even for states far from equilibrium.

The equal-time correlation functions C~p(k;a) are
given in Appendix C [Eqs. (C8) and (C9)]. One interest-
ing feature of these functions is that some of them are
long ranged. For example, the inverse transform of the
density-density correlation function defined by

Cpp(r} =f 2
e'"'Cpp(k;a)

(2m. )

is easily shown to have the form

Czz(r) = l, kz Top+T [5(r/l) +(l /r)F(r/1)], (4.13)

where l =(I 0/a)'~ is a characteristic length associated
with the shear rate. The first term in the square brackets
of Eq. (4.13) is the usual result for equilibrium fluctua-
tions and expresses the idealized conditions of 5-function
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correlations introduced in the Langevin forces (A3). More
accurately, of course, there exist equilibrium density
correlations of finite range on the scale of the interatomic
force range. The second term in (4.13) is quite different
and represents long-range correlations originating entirely
from the nonuniformity of the fluid under shear flow.
The factor of (l Ir) in this term has been obtained previ-
ously by direct expansion of Czz(r) to first order in the
shear rate. Equation (4.13) shows that such an expansion
is valid for r ll « 1, with a leading coefficient of
E(0)= a;Jr;rj—/8n. yar where y=C~IC„ is the ratio of
specific heats. Although this ( l/r) dependence is certain-
ly long ranged compared to the equilibrium correlation
function, it is seen to be the short-range limit of the
second term in (4.13). To study the behavior of this func-
tion for larger (r/l) is a straightforward but multidimen-
sional numerical problem. Instead, the related, but some-
what simpler, problem of the density correlations between
a plane orthogonal to the flow and a point on the x axis is
considered,

I dy f dz C~z(r)

—:l 'ktiTop+T [5(x/1)+yH(xll)] . (4.14)

The nonequilibrium contribution H(x/l) is reduced in
this case to the simple one-dimensional integral

dt(1+t2) —3/2t —i/2(1+ & t2) —i/2
0

X exp I (x I 1) [4t ( 1+——,
' t ) )

(4.15)

For large (x/l) the asymptotic decay of correlations along
the flow is algebraic:

0.2

2.0

= x/I

6.0 )G.O

with

Stt(k;co) =2'., l (co+ck)+——,
' (I Ok +ak„ky/k )

1

ij i
l

Xc, 'g', "q.'"C., (k;a),

Stt (k;co) =2R, ico+DOTk ——,—at kt
J

(4.19)

FIG. 2. Spatial correlations of density along direction of Aow
for a/I Oko ——1 { ) and corresponding asymptotic form, Eq.
(4.&6) {---).

H (x/l) —+0.828(x /l) (4.16)
Xc,-'g', "~'."C., (k;a) .

At very short distances these one-dimensional correlations
are approximately Gaussian. The transition between these
limits is shown in Fig. 2. If the conditions of Fig. 1 for
the sound excitation are assumed then the wavelength of
the sound wave, A, -2'/ko, corresponds to (x/l)-2n. .
Therefore, under these conditions of strong shear flow the
time-dependent density fluctuations will not only exhibit
the temporal modifications inustrated in Fig. 1, but also
the slow spatial decay of (4.16). The former is simply an
effect of macroscopic hydrodynamics, where the latter is
attributed to nonequilibrium fluctuations.

The time correlation functions may be used to compute
the dynamic structure factor which describes the intensity
of light scattered from the system,

These are not simply Lorentzians, due to the operator
character of the terms in the large parentheses of Eqs.
(4.19). Expansion of (4.19) to first order in shear rate
gives agreement with earlier results. The shape of
these lines at large shear rates is straightforward, but nu-
merically difficult, to obtain from (4.19) except for select-
ed directions of the scattered wave vector k. ' However,
the Landau-Placzek coefficient, defined as the ratio of the
integrated intensities of the Rayleigh and Brillouin peaks,
can be obtained directly:

~=I dcoSti(k;co) J dco[Stt(k;co)+S~(k; —co)]

=g', 'q' 'C, (k;a)/g', "g"'C,(k;a)
S(k,~)—=J dt I f ', 'e(k —k, )e(k+k, )

00 (2m. )
= [Cpp —(po/ho)C, p]/[a Cpp+(po/ho)C, p], (4.20)

XCpp(ki, t;k2, 0;a)e' ', (4.17)

S(k;co)=S~(k;co)+Ski(k;co)+Ss(k; —co), (4.18)

where 8(k) is the Fourier transform of a normalized form
factor designed to restrict spatial integrals to the volume
irradiated. This expression is simplified in Appendix C to
identify the modified Brillouin and Rayleigh peaks,

where a =poc i /hoc2. The Rayleigh intensity in the
numerator is easily obtained from the first two equations
of (C8) in Appendix C,

f dcoS~(k;co)=(y —1)/y, (4.21)

where y again denotes the ratio of specific heats. This is
simply the equilibrium result, which is now seen to hold
to all orders in the shear rate. Similarly, the intensity of



32 HYDRODYNAMIC FLUClXJATIONS AT LARGE SHEAR RATE

the Brillouin zone peaks can be-obtained from Eqs. (CS),
and the resulting Landau-Placzek ratio is 0.20-

A'=(y —1)/[1+yhi(k;a)] . (4.22)

Here hi(k;a) is the nonequilibrium part of the equal-time
density autocorrelation function. Generally, this ratio is a.
function of the magnitude and direction of the wave vec-
tor k as well as the shear rate. These effects are illustrat-
ed for large shear rate (a/I"Ok = 1) in Fig. 3, where k is
taken in the x -y plane and the deviation
R =[SF(a)—9P(0)]/SF(0) is evaluated as a function of
the angle between k and the x axis.

V. PROBABILITY DENSITIES

-O,RO-

-0.30-

FIG. 3. Deviation of the Landau-Placzek ratio, Eq. (4.22), as
a function of angles for a/1 ok2=1 and k, =O. The value at
8=+/2 corresponds to k„=O, for which the equilibrium result
holds.

P(z;t) —= (5(z(t) —z) ),
P(z, t;z', t') = (5(z(t) —z)5(z(t') —z') ) .

(5.1)

The angle brackets denote an average over the random
variables IR j and over a specified ensemble of initial
values for Iz~(0) j. The 5 function in (5.2) is an abbreviat-
ed notation for

5(z(t) —z)—=g5(z (k, t) —z (k))
a, k

(5.2)

These probability densities are most easily constructed
I

The correlation functions (4.1) were evaluated simply
and directly from the Langevin equations. However, to
calculate higher-order correlation functions or averages of
more general functions of the Iz~ j it is useful to construct
the probability densities for these variables. For the
Gaussian-Markovian process considered here it is suffi-
cient to know the probability and joint probability densi-
ties, defined by

from the conditional probability density

W(z, t;z', t')=P(z, t;z't')/P(z', t') . (5.3)

Since the process is Markovian, the joint probability
density is independent of the ensemble of initial values,
Iz (0)j. Furthermore, with condition (3.11) the process is
approximately stationary and W(z, t;z', t ')
= W(z, t t';z', 0). Th—erefore, it is sufficient to calculate

W(z, t',z', 0)=(5(z(t
~

z') —z))R, (5.4)

where the angle brackets now refer to an average over
only the random components R, and z(t

~

z') is the solu-
tion to the Langevin equations with initial value
z(0

~

z') =z'. The latter is given by Eq. (3.13), written in
the abbreviated notation

z(t iz')=G(t)z' +f drG(t r)R(~) . — (5.5)

An integral representation for the 5 function in (5.4) and
use of (5.5) then gives

W(z t 'z' 0)= dk, e'"'(' "' l exp iA, —d~G. (t r)R(r)—
x

=f dkexpfi A[z ,—G(t)z'] —A, M(t) j

= (det[mM(t)] j
'~ expI ——,

' [z —G(t)z'].M '(t) [z G(t)z'] j—,

I

P(z, t)= f dz'W(z, t;z', 0)P(z', 0),
(5.9)

P(z, t;z', t') = W(z, t;z', t')P(z', t'),
where P(z, 0) is the specified initial density. Since the
conditional probability density is specified entirely in
terms of the correlation functions calculated in Sec. IV,
they provide through (5.9) complete information for any
desired average. Some important conclusions follow from
the explicit form of the conditional probability density.
For example, the stationary state exists as a consequence
of the stability of the correlation functions and is given by

(5.7)

Use of the Onsager regression equation and fluctuation-
dissipation relation, Eqs. (4.10) and (4.11), allows (5.7) to
be written more explicitly in terms of the steady-state
correlation functions of Sec IV, .

M(t)=C(0) —C(t) C '(0) Cr(t) . (5.&) P„(z)—= lim P(z, t)

where the second equality is obtained from the first from
the Gaussian statistics for R(t), and the matrix M(t) is
defined by

M(t)= f d~ f dr'G(t r) (R(T)R(r—')).Gr(t r') . —

Here C(t) is the abbreviated notation for the correlation
function C tt(k, t;k', 0).

The probability and joint probability densities are now
obtained simply from the conditional probability density,

f~ce

= Idet[mC(0)] j
'~ exp[ ——,'z.C '(0) z] .

(5.10)



3048 JAMES I.UTSKO AND JAMES W. DUj;1'Y 32

where the effective "temperature" is

T( k, a) =TOR (0;0)/R (k;a) (5.12)

and R(k;a) is the Landau-Placzek ratio calculated in
Sec. IV.

The above results could have been obtained also from
the linear Fokker-Planck equation associated with the
Langevin equations (3.7). The form of the Fokker-Planck
equation is easily obtained from direct differentiation of
(5.9) with respect to time,

at ' =, az. (k)
P(z, t)= —g [J, (z, t)+J, (z, t)], (5.13)

where Jo~(z, t) is the deterministic. or "drift" contribution
to the probability current density,

Jo~(z, t) = aijk; z~(k) I.~p(k, a)zp(k—) P(z, t),
J

(5.14)

and Ji~(z, t) is the "diffusion" component of the current
density,

J&.(z, t) = —,R.p(k) P(z, t) . (5.15)
zp

The diffusion tensor R p(k) is the amplitude of the corre-
lation matrix for the random components in the Langevin
equations, as defined in (4.11). Equations (5.13)—(5.15)
are the expected results for the relationship of Fokker-
Planck and Langevin descriptions.

VI. DISCUSSION

The effect of the macroscopic state of uniform shear
flow is to modify the evolution of small fluctuations
around the average nonequilibrium steady-state values of
the hydrodynamic parameters. This hydrodynamic effect
occurs, at the level of the linearized evolution equations,
because of the coupling between the fluctuations and the
macroscopic flow field generated by the Oseen terms.

As expected for a linear I.angevin equation with Gaussian
random components, the variables {z~j also have a
Gaussian distribution in the stationary state, with covari-
ance determined from the nonequilibrium equal-time fluc-
tuations. Equation (5.10) is actually a stronger result, im-
plying that P»(z) is not only stationary but also represents
the asymptotic state for a wide class of initial conditions.
It also follows from Eqs. (5.6), (5.9), and (5.10) that the
joint probability density is Gaussian in the steady state.

The matrix C '(0) is easily inverted using the results
(C8) of Appendix C, but will not be given here. Instead,
to illustrate (5.10) in more detail, the reduced stationary
distribution for the longitudinal components of the veloci-

ty field, z3 ——k.5v(k) =u (k), can be written down from in-
spection since C33(k;a) does not couple to the other corre-
lation functions. The result can be expressed in the sug-
gestive form

P»(u (k) ) = [2mmkp T(k,a)]

Xexp{—m
~

u(k)
~

/[2kpT(k, a)]j, (5.11)

Two modifications result. The first of these is the appear-
ance of a term resembling an inertial force (proportional
to the velocity) in the equation for u„. The effect of this
term is to cause the shifts in the eigenvalues and, thereby,
to introduce a strong angular dependence in the Green's
function. This term is also responsible for breaking the
degeneracy of the shear modes. The second effect of the
flow field is the introduction of the linear mode coupling
which also contributes to the spatial asymmetry of the
Green's function through its effect on the eigenvectors.
In addition to this "static" effect, the linear mode cou-
pling strongly modifies the temporal evolution of fluctua-
tions and, in fact, is necessary to understand the stability
of the modes. These hydrodynamic effects have obvious
relevance to the evolution of fluctuations which can be
calculated from the Careen's function given in Eq. (3.19).
As an example, the evolution of a sound excitation has
been exhibited and the expected kinematic effects (i.e.,
change of frequency) due to convection are evident.

These purely hydrodynamic modifications of the
dynamics of fluctuations in the nonequilibrium state also
characterize the statistical mechanics (ensemble) for this
state, through the fluctuation-dissipation relations, (4.9) or
(4.11). For example, the equal-time correlation functions
completely determine the covariance for the steady-state
distribution function. The most striking feature of the
correlation functions is that they are long ranged. Al-
though this had been recognized from small-shear-rate
calculations, the analysis here gives the detailed form of
this space dependence at large shear rates as well. The
one-dimensional correlation of densities in Fig. 2 has an
exact x power law dependence, for large distances.
This suggests that the angle-averaged radial distribution
function decays as r "~ for large r, in contrast to the
r ' behavior for small shear rates. The light scattering
function (4.17) reflects both the dynamical and statistical
mechanical changes due to shear flow. The qualitative
changes in shape of the Brillouin and Rayleigh lines are a
direct consequence on the nonequilibrium Onsager regres-
sion law (4.10). The wave-vector and shear-rate depen-
dence of the Landau-Placzek ratio is a direct measure of
the nonequilibrium fluctuation-dissipation relation (4.11).
Unfortunately, all of these effects are too small to be ac-
curately measured by conventional Brillouin scattering
techniques. However, with a suitable modification of the
Langevin model to apply at larger wave vectors, related
predictions could be amenable to test by computer simula-
tion.

As noted in the Introduction, many intersting and
unexplained phenomena are expected to be due to non-
linear coupling of the hydrodynamic modes described
here. Such coupling occurs as an integration over all
wave vectors k, with the asymptotically small k values
domination. Consequently, even though some of the con-
ditions considered here (e.g., a/I Ok =1) cannot be at-
tained simply in the laboratory, they do play a key role in
the calculations of nonlinear mode coupling. As an appli-
cation of the results obtained here, we have calculated the
lowest-order mode-coupling contributions to the nonlinear
shear viscosity g(a) as defined in Eq. (1.1). Equation
(3.3), which is a macroscopic equation, has been used to



32 HYDRODYNAMIC FLUCTUATIONS AT LARGE SHEAR RATE 3049

define the renormalized shear viscosity. By averaging the
microscopic equation for energy conservation, the second
of Eqs. (2.2), and comparing the result to Eq. (3.3) we ob-
tain an expression for g(a) in terms of integrals of corre-
lation functions. The result is Eq. (1.1) with

2.56 4. 17
91 8 0

(2g) )3/2 + (P )3/2

(f")=0, alla

(f(a)f(t)) ) (} ~~P
(f '(r, t)f~ "(r', t')) =25lj5(r —r')5(t —t'),
(fi'j"(r, t)fkl '(r', t') ) =2& jikl5(r r'—)5(t t'—),
(f~j '(r, t)fkl'(r', t') ) =25ij5kl5(r —r')5(t t') —.

(A3)

in agreement with Ernst et al. ' Furthermore, it can be
shown that the analytic expressions obtained for 7jl (for
an incompressible fluid} by Yamada and Kawasaki agree
with ours, the differences in the value of n) being at-
tributable to errors in the numerical analysis. A more
complete analysis of the fluctuation renormalization of
the macroscopic equations in both two and three dimen-
sions using the hydrodynamic modes calculated here is in
progress.

ACKNOW LEDGMENTS

The authors wish to thank Bob Coldwell for assistance
with the numerical analysis. One of the authors (J.L.)
wishes to thank David Kilcrease and Pradeep Kumar for
several useful discussions. This research was supported
by National Science Foundation Grant No. CHE-84-
11932.

APPENDIX A: NONLINEAR
NA VIER-STOKES-LANCxEVIN EQUATIONS

The microscopic conservation laws in the form of Eqs.
(2.2) and (2.3) are

+v V p+pV. v=O,

UI.

+v V u'+hV u'+V s +t;" Br,

V.s'+ t,'," '(3rj
(A 1)

p +v V u;+ (p5j+t j)=— t j .

The irreversible fluxes s' and t,z are given by Eqs. (2.5) in
the Navier-Stokes limit. The random components of the
fluxes are defined in terms of three dimensionless stochas-
tic variables,

p. -=&p&. ..-=&. &, p. -=&p&. (A5)
The macroscopic flow velocity vp, internal energy ep,
pressure pp, and temperature Tp are defined by

2
pp ppVO~ KO Q 0 2 ppV 0

( )
po pe (pot ep) i Tp Te (pot eo }

The quantities in (A6) are closely related to, but not equal
to, the average of the corresponding variables in the
Langevin equation. For example, the average microscopic
velocity and internal energy are related to vp and cp,

A6

&pv) =p()v(),
(A7)

& u & =so+ 2 (pouo2 &pu & }—.
Similarly, p, (pp, eo} and T, (pp, EO) differ from the averages
of p (pe, u') and T, (p, u') due to their nonlinear depen-
dence on the arguments of these functions.

The linearization of Eqs. (Al) around uniform shear
flow, defined by Eqs. (3.1) and (3.3), gives

r

Bt 8 5p+ppV 5v=0,

The tensor 5ijki is defi~ed by

~ijkl =5ik5jl+5il5jk 75ij5kl (A4)

Equations (Al)—(A3) provide a closed description for the
macroscopic dynamics and fluctuations in a simple fluid.

The macroscopic hydrodynamic equations have the
same form as (Al), without the random components of
the fluxes. However, the irreversible part of the fluxes
will generally differ from the average of Eqs. (2.3). This
is due to fluctuation renormalization by the nonlinear
terms in ihe Langevin equation. The latter present techni-
cal difficulties associated with differences between the
average of a function of the microscopic variables and the
corresponding function of their averages. These compli-
cations make the detailed relationship of the macroscopic
hydrodynamic equations to the Langevin equations some-
what indirect. To be more specific, if the macroscopic
mass, energy, and momentum densities are distinguished
from their microscopic counterparts by a subscript, 0, the
two are related by the definitions

s"(r t)=(T A, )' f'"
tl"(r, t)=(Trjtt)' f' '+(Tal())' f' '

(A2)

Here Al), gl), and as are the bare transport coefficients,
and T is the microscopic temperature defined in Eq. (2.6).
The If(~)(r, t) I are a set of independent random variables
characterizing a Gaussian-Markovian process, with mean
values and covariances,

a + ij Jgr &+hp V'.5v

BTp BTp
V 5c+ V 5p

0 p Bpp

—2qga, j 5u;+ 5UJ
BPJ BI

g
L

(V s +a;jt;~—), (A8)
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B Br'
5U( +a(j5Uj al;j ——et"(k)a( e (k)

(i) B (j)
at—kte„(k)

Bk
e„(k) .

m
(A13)

—I
+pp

Bpo B BP B5s+ 5p
Bs, „Br, Bp. ..Br,.

The parameters c; are given by

B. -B ~+v V 5U —( —vs+po Ks) V 5v = —p()Br Br. 'j '
l l

5p—=p —(p&, 5e=—u' —(u'&, 5v=v —(v) . (A9)

The Fourier transform [Eq. (2.12)] of Eqs. (AS) has the
general forin

Bt " 'Bk,.
—a;.k; z (k, t)+L tt(k, a, t)zt)(k, t)

Here vs—=po 'ris, and all bare transport coefficients are
now functions of po and eo. Also, the fluctuations are de-
fined by

c()——(poci) +(hocz)2= Pp

p, so

Az
hp

Ppcp

hp

Ppcp

C4=

p
2

Bpo co
Ci =pp 2

l-
app g pp

2
z i Bpo cotzr

cz =(poho)
Beo p() po Ocp

cz BTO
C3=

c( Bpo ~~o ci p(p'T

BTo

po poc

(A14)

R=(k, t) . (A10)

The matrix L (tk), at) is given by

L tj(k, a, t)= —ikB t)(t)+k'C tt(t)

+aD~p(k, t)+a E~p(t), (A 1 1)

vo VB /po is the kinematic viscosity,
vo= 3 vo+po ~s, ctT ——po '(Bpo/BTO)

~ p is the thermal
expansion coefficient, c, is the constant volume specific
heat, cp is the constant pressure specific heat, y=c /c„
and co is the speed of sound.

Finally, the random forces R ~ are

where k is a unit vector,

0 0

0 0

Ba)s poc l hoc2

0 0
0 0

0 0

0
0

0 0
0 0

ppc) 0 0

hocz 0 0
0

R~ =R~ —(R~),
R) ——0,

R2 ——c) ik s (k, t) a; t,""(k,t)—
Rz+t=e; (k)ikjt j(k, t)/p, i=1,2, 3 .

(A15)

0

0

0 0
0 0

D~p —— 0 0

0 0

0 0
I

0 0 0
0 0 0

~21 ~22 ~23

~3 I ~32 ~33

0 0 0 0 0
c3+ c4+ 0 0 0

0 0 vp 0 0
0 0 vp 0
0 0 0 vp

(A12)

The effect of the shear flow occurs in several terms of
(A10). First, the linear mode-coupling term (i.e., the gra-
dient term in k) is proportional to the shear rate and van-
ishes in equilibrium. The contribution from E & is pro-
portional to a and is due to the viscous heating expressed
by Eq. (3.3). The time dependence of L tt(k, t) is also due
to this heating and occurs only through the dependence on
so(t). Aside from the neglect of terms nonlinear in
z~(k, t), no other approximations have been made. In par-
ticular, there has been no restriction that the macroscopic
state of uniform shear be close to equilibrium.

The tensor I,~ is considerably simplified by a suitable
choice for the unit vectors e' '. In particular, we choose
e =klk, e perpendicular to e"' and in the k-y plane,
and e' ' perpendicular to e"' and e' ',

(])
e

8 lnc2
+a2&PZ

Bsp p

81nc ja E~p(t) =5~(5p)
Bso po

[$, ~())(~()) ~)]/k
~(3) ~(1) (2)e =e )&e

(A16)

and I,l is given by where ki ——(k —k» )' /k. It then follows that
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I')) ———I zz
—k~kj, /k

I )z
———kx/kj,

I'3) ———ky k, /kk j,
I 3z

———k, /k,
I,J ——0, all others .

APPENDIX B: HYDRODYNAMIC MODES

The general solution to the linear hydrodynamic equa-
tions may be determined from the generalized eigenvalue
problem, Eq. (3.10):

(81)

The differential operator with respect to k makes this a
nonlinear eigenvalue equation. The problem is posed in a
five-dimensional complex Hilbert space with scalar prod-
uct

These vectors also form an orthonormal basis. Because of
the degeneracy for i =3,4, 5, the lowest-order eigenvectors
tgp'] are

(]) (1)

00 =0(2) (2)

5

go = g M(jf(j', i =3,4, 5 .
J=3

(88)

k 'a,,k, -+X, ) 5j, M, , =O, i j =345." 'k,.

The eigenvalues to next-order perturbation theory and the
coefficients M;j are determined from the second of Eqs.
(85). Taking the scalar product of this equation with g"
and use of (88) gives

A,; ) ——[g",(C+ak D)g(j)], i =1,2
5

[@(j)(C + k —2D)y(l)]
1=3

(a,b) =g a'b (82) The specific forms of the matrices C and D are displayed
in Eqs. (A12). It follows immediately that for i =1,2,

(+(i) g(i)) (83)

The perturbation theory is generated by the expansions

Since I. is not Hermitian, the eigenvectors will not be
pairwise orthogonal in general. The associated biorthogo-
nal set is denoted by I g"I,

X;,= —,'(r+ak zr„),

h() j(,pc 2 CpIo= (ppc)c3+hpc2c4)+Vp= Dr+Vp
C C~

(810)

A,; =kA, ; p+kzA, ;,+
g(i) g(i)+kg(i)+. . .

is the sound damping constant, Dz is the thermal dif-
fusivity, and I » is defined by Eq. (A13). Also, it is seen
from the form of C and D that for I =3,4, 5,

Substitution into Eq. (Bl) and use of the form (All) for L
gives the equations for first- and second-order perturba-
tion theory,

[(ij' ', (C+ak D)TP'"]=o D

Consequently, a solution for i =3 is

(811)

( —iB —~, Pgp(') =0,
, (85)

( iB —A,;0I)g—')'= A,; )I —C ak D+k a(—jk; g()',
j

where I denotes the identity. The eigenvalues of the ma-
trix —iB are readily found from (A12) to be

A, ) p= —lCp X2 p= +lCp
(86)

~3,0 ~4,0 ~5,0

A3 ) Dr, ——
(812)

1=4,5

ak —2(y( j) Dq(&) )

The remaining two eigenvalues are determined from (89),
which now has the simple form, for i,j =4,5,

and the corresponding eigenvectors are (A,; ) —vp)+k aj~k)
m

5jj M;j =0 . (813)

(ppc ),h pc z, cp, o,o),(1)
2Cp

()ppc „h,c„—c»0,0),(2) 1

2'Cp

(hpc2, —ppc), 0,0,0),(3)

Cp
(87)

The elements of (@(j),DQ( ') are found to be

I'22 0
(y(j) Dy(l))

32
(814)

y(') =(o,o,o, l,o),
y")=(0,0,0,0, 1) .

where the special coordinate system (A16) has now been
selected for simplicity. Equations (813) are then, for
i =4„5,
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T

)(;,)
—vp —(a/k )r~q+(a/k )k„„M;=0,2

Bky

where F"(k,t) is defined by

F"'(k, t) =—~."'(k)R.(k, t) (C2)

~t, ) —vp+(a/k )k„M„—(a/k )I 3~M, 4=0 .

(815)

Solutions to these equations include

A,4 (=vp+ak I gg, A,5 ) =vp—2

with the coefficients

M44 ——I, M45
——M,

M54 ——0, M55 —1,
kk,

M = — tan '(ky/k) ),
x

kg ——k —ky .

(816)

(817)

These results clearly apply only if k„&0. More general
solutions to (815) exist with different eigenvalues and
coefficients. However, it is possible to show that the
Green's functions defined by Eqs. (3.14) and (3.16) are in-
variant with respect to these differences. More specifical-
ly, any differences in the eigenvalues cancel in the Green's
function so that only the hydrodynamic modes deter-
mined by the choice made here appears in the final re-
sults.

In summary, the eigenvalues and eigenvectors to this
order are

(s;"(kt,)) =0+0(k ),
( t;", (k, t) )=0+0(k'),
(s,"(k,t)t,";(k',t') ) =0,

R R

(C3)

k, kJ (s, (k, t}sj (k, t })
(—2m)5. (k+k )5'(t t')2k —T()A o,

k;k,'e'"(k)e„' )(k')(t; (k, t)t,„(k',t'))

=(2n-)'5(k+ k') 5(t —t')

X2Tok [2'gs5()5p)+5(p(zs —
3 'gg)] .

The matrix of forces in (C 1) then becomes

5
F('J'(k) =2k'T, g R.q."(k)q."'(—k)

with
2 2 1R) —0, Rp c2kz To~——R3 vo Tppo~

R4 ———R5 ——VpTpPp .

Evaluating the sum in (C4) gives the desired results

(C4)

(C5)

and the random forces are given in Eqs. (A15). The
forces R (k, t) are linear combinations of the random
parts of the heat flux and pressure tensor of Eqs. (A2) and
(A3). To order k, it is found that

A,)= ick+ —,'—(I'k +ak„ks/k ),

A, 3——DTk

~4= vok' —ak k, /k'

A, 5
=v()k

2

(818)

and the biorthogonal set to lowest order is found to be

g( ) ri(l) y( ) i 1 2 3

g(4) = (O, O, O, I,M),
g")= (o,o,o,o, 1 ),
q")=(0,0,0, l,o),
ri( '=(0,0,0, —M, 1) .

APPENDIX C: CORRELATION FUNCTIONS

(819)

The autocorrelation matrix for the random forces is
given by Eq. (4.6),

F'3=F = kv 2Aopph pc—) cp

2

F = —2k voTo33 2t
Cp

2
C pCXT= —2k vpTp pp ~

hpCp

F~=2k'Tovo/po,

F" = F=M(k)F-
F"= —[1+M'(k)]E

r 2
TpC2

Cp

F' '(k)=F'~'(k) for ij =1,2, 3,

F"=F"=k'T, (ro —2v,'),
Tp Pp

(C6)

(F"(k, t)F"'(k', t') ) =—(2')'5(k+ k')5(t —t')F'"'(k),
(C 1)

The equal-time correlation functions in Sec. IV are deter-
mined from the functions C t)(k;a) of Eqs. (4.8) and (4.9),

C~t)(k;a)= f dr+ g~ (k, r)gp ( —k, r)F'J'(k( —r))
l~J 4

=f dr+ E(')(k, r)E(J)( —k, r)g '
(k)g& ( —k)F 'J (k( —r)) .

E,J
(C7)
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At this point, it is convenient to convert the variables z~
and zz back to 5p and 5K using their definitions (3.5), e.g.,

C~(k;a) =c i C»(k;a),
etc. The correlation functions can then be written as

o "(k 'co)i—co+ Ac(k, ),a) —a;jk i;
~i

=8(k —ki)g"(ki)c, C, (k„a) . (C12)

C~(k a) =ks TpppNr [1 +b i(k;a )]

Qz
C~(k;a)=k&TohopoYr 1 ho —Tp +~i(k'a)

XT

CZ z.
C„(k;a)=ka Tour j(.'r Toc„+ ho —To

XT.

+h (') b, ,(k;a)

The index i in (Cl 1) and (C12) only ranges over 1—3 be-
cause the density does not couple to the transverse modes.
Further simplification of these results is possible by not-
ing that to the order in perturbation theory considered
here g'i'(k} is independent of k for i =1—3. Then, multi-
plying (4.19) by g'i' 8(k—ki) and integrating over ki gives

k)f 3 8 (k —ki)[[ ic—o+A ;(k,i,a)]cr(ki, co)
(2m)

C33(k;a)=kj)TpPp [1+7ki(k'a)],

C44(k;a) =kji Tppp '[1—hz(k;a)],

C45(k;a) =kji Tppp '63(k;a),

C55(k a)=ksTppp [1—kg(k a)]

(C8)

—2vok~p( —t)
Xe

The functions 6;(k;a) all go to zero with the shear rate
and represent the corrections to the local equilibrium re-
sults. Explicitly,

kk„k ( t) —r kp2(, )
b.)(k;a) =y 'a dt eok( t)

x y —zvok2p( t)—kk
k2

(C9)
2k„ky( —t) k,

63(k;a) =a f dt F(k, t)+

dk)f 8 (k —ki)
(2n. )'

i co—+A;(k„, a)

——,
'
a;jk); cT"(k(,co)

ij

—gI'g"c i C i(ki, a) =0 . (C14)

Equations (C 1 1) may also be written in terms of
o"(k co)

dk]
S"(k;co)=2R, f 8 (ki)cT"(k+k),'co) . (C15)

—8(k —k) )ajki; 8(k —ki)o(k)', co) =0,
ij

(C13)

where g((i)c'T"(ki, co)='8(—k ki—)cT"(ki,co) 'Th. e last term
in Eq. (C13) can be transformed by partial integration to
yield

00 kxky( —t) k,
b4(k;a) =2a f dt F(k, t)

" F(k, t)+k'( —t}

Typically, the dimensions of the light scattering region
can be large compared to the change in wavelength, so
that ki «k. Then the functions S"(k;co) can be written

—2vok p( —t)Xe S"(k;co)=2R,o"(k'co) (C16)

where

F(k, t) =M(k( —t)) — M(k) .k( —t)
k

(C10)

where, with Eq. (C14), the cr"(k;co) satisfy the approxi-
mate equations

ico+A,;(k,a) —,'—a;Jk; cT"—(k;co)
j

The light scattering function is defined by Eq. (4.17).
Representation of the density autocorrelation function in
terms of the hydrodynamic modes leads to the form [us-
ing Eqs. (4.10) and (4.7)]

3

S(k ~)= g S()(k;~),

(Cl 1)

S"(k;co)—:2R, f 3 gi'(ki)8(k —ki)o"(ki', co),
(2m )

where R, denotes the real part, and cT"(ki,co) is the solu-
tion to

S(k,co) =Sg(k,co)+Ss(k, —co)+Sj((k,co) . (C18)

The first two terms give the Brillouin peaks and the last
gives the Rayleigh peak.

=c i g'i'rj C~~( (k;a), (C17)

and the integral over 8 (k) has been arbitrarily set equal
to unity. The right side of (C17) is the same for i = 1 and
2, corresponding to the two sound modes so that
S"'(k,co)=S (k, —co)—=Ss(k,co). The third contribution
is from the heat mode. In summary, the light scattering
function is



3054 JAMES I UTSKO AND JAMES Vf. DU&TY 32

For an overview and references, see the special issue on non-
equilibrium Auids, Phys. Today 37, No. 1 (1984); see also
Nonlinear Fluid Behavior, edited by H. Hanley (North-
Holland, Amsterdam, 1983).

2K. Kawasaki and J. Gunton, Phys. Rev. A 8, 2048 (1973); T.
Yamada and K. Kawasaki, Frog. Theor. Phys. 53, 111 (1975);
D. Oxtoby, J. Chem, Phys. 62, 1463 (1975); M. Ernst, B.
Cichocki, J. Sharma, and H. vanBeijeren, J. Stat. Phys. 18,
237 (1978).

A. Onuki and K. Kawasaki, Ann. Phys. (N.Y.} 121, 456 (1979);
Prog. Theor. Phys. Suppl. 64, 436 (1978); Physica (Utrecht)
111A, 607 (1982); Ann. Phys. (N.Y.) 131, 217 (1981); Prog.
Theor. Phys. 63, 122 (1980); 69, 146 (1980); 71, 16 (1984).

4R. Zwanzig, Proc. Natl. Acad. Sci. U.S.A. 78, 3296 (1981).
5J. Machta, I. Oppenheim, and I. Procaccia, Phys. Rev. Lett. 42,

1368 (1979); Phys. Rev. A 22, 2809 (1980); J. Machta and I.
Oppenheirn, Physica (Utrecht) 112A, 361 (1982).

6T. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys.
Rev. Lett. 42, 862 (1980); 44, 472 (1980); Phys. Rev. A 22,
950 (1982); J. Dorfman and T. Kirkpatrick, in Systems Far
from Equilibrium, edited by L. Garrido (Springer, New York,
1980).

7A.-M. Tremblay, M. Arai, and E. Siggia, Phys. Rev. A 23,
1451 (1981); A.-M. Tremblay, in Recent Developments in
Xonequilibrium Thermodynamics, Vol. 199 of Lecture Notes
in Physics, edited by J. Casas-Vazquez, D. Jou, and G. Lebon
(Springer, Berlin, 1984).

L. Garcia-Colin and R. Velasco, Phys. Rev. A 26, 2187 (1982};
D. Sahoo and A. Sood, ibid. 30, 2802 (1984}.

M. Marchetti and J. Dufty, J. Stat. Phys. 32, 25S (1983); R.
Rodriguez, E. Salinas-Rodriguez, and J. Dufty, ibid. 32, 279
(1983);J. Dufty, Phys. Rev. Lett. 51, 2159 (1983); Phys. Rev.
A 30, 622 (1984); 30, 1465 (1984).
S. Hess, Phys. Rev. A 22, 2844 (1980); I. Pardowitz and S.
Hess, Physica {Utrecht) 100A, 540 (1980); S. Hess and H.
Hanley, Phys. Rev. A 25, 1801 (1982); S. Hess, Physica
(Utrecht) 118A, 79 (1983).
T. Keyes, Phys. Rev. A 23, 277 (1981).

~ D. Ronis, Phys. Rev. A 29, 1453 (1984).
3A. Lees and S. Edwards, J. Phys. C 5, 1921 (1972); E. Gosling,
I. McDonald, and K. Singer, Mol. Phys. 26, 1475 (1973); W.
Ashurst and W. Hoover, Theor. Chem. 1, 1 {1.975); T. Naitoh
and S. Ono, Phys. Lett. 57A, 448 (1978); J. Chem. Phys. 70,
4515 (1979).

~4D. Evans, Mol. Phys. 37, 1745 (1979); Phys. Lett. 74A, 229
(1979); Physica (Utrecht) 103A, 343 (1980); Phys. Rev. A 22,
290 (1980); J. Chem. Phys. 78, 3297 (1982); Physica {Utrecht)
118A, 51 (1983);B. Holian and D. Evans, J. Chem. Phys. 78,
5147 (1983); D. Evans and G. Morriss, Phys. Rev. Lett. 51,
1776 (1983);Comput. Phys. Rep. 1, 299 (1984).

5W. Hoover, D. Evans, R. Hickman, A. Ladd, W. Ashurst, and
B. Moran, Phys. Rev. A 22, 1690 (1980); W. Hoover, A.
Ladd, and B. Moran, Phys. Rev. Lett. 48, 1818 (1982); W.
Hoover, Physica (Utrecht) 118A, 111 {1983); Annu. Rev.
Phys. Chem. 34, 103 (1983).

I6D. Heyes, J. Kim, C. Montrose, and T. Litovitz, J. Chem.
Phys. 73, 3987 (1980).

7D. Evans and H. Hanley, Phys. Rev. A 20, 1648 (1979);Physi-
ca (Utrecht) 108A, 567 (1981);Phys. Lett. 79A, 178 (1980);D.
Evans, ibid. 101A, 100 (1984}.
C. Trozzi and G. Ciccotti, Phys. Rev. A 29, 916 (1984).

~ J. Erpenbeck, Physica (Utrecht) I18A, 144 (1983); Phys. Rev.
Lett. 52A, 1333 (1984).

~oD. Beysens, Y. Garrabos, and G. Zalczer, Phys. Rev. Lett. 45,
403 (1980); H. Kiefte, M. Clouter, and R. Penney, Phys. Rev.
8 30, 4017 (1984).

~ D. Beysens, M. Gbadamassi, and L. Boyer, Phys. Rev. I.ett.
43, 1253 (1979); D. Beysens and M. Gbadamassi, Phys. Rev.
A 22, 22SO (1980); D. Beysens, M. Gbadamassi, and B.
Moncef-Bouanz, ibid. 28, 2491 (1983).

2 N. Clark and B. Ackerson, Phys. Rev. Lett. 44, 1005 (1980);
46, 123 (1981); J. Phys. (Paris) 42, 929 (1981); Physica
(Utrecht) 118A, 221 (1983);Phys. Rev. A 30, 906 (1984).

23%. Dozier and P. Chaikin, J. Phys. (Paris) 43, 843 (1982};H.
Lindsay and P. Chaikin, J. Chem. Phys. 76, 3774 (1982).
L. Landau and E. Lifshitz, Fluid Mechanics (Pergamon, New
York, 1975).

~ST. Kirkpatrick, Phys. Rev. Lett. 53, 1735 (1985).
2 P. Drazin and W. Reid, Hydrodynamic Stability (Cambridge

University, London, 1984}.
~7G. Mazenko, S. Ramaswamy, and J. Toner, Phys. Rev. A 28,

1618 (1983);S. Ramaswamy, ibid. 29, 1506 (1984}.
28D. Forster, D. Nelson, and M. Stephen, Phys. Rev. A 16, 732

(1977); S. W. Lovesey, J. Phys. C 10, 1781 (1977); I. Khalat-
mikov, V. Lebedev, and A. Sukhorukov, Physica (Utrecht)
126A, 135 (1984).

2 See also J. Lutsko and J. Dufty, Phys. Rev. A 32, 1232 (1985).
3OR. Fox, J. Math. Phys. I9, 1993 (1978); Phys. Rep. C 48, 179

(1978);Physica (Utrecht) 112A, 505 (1982).
W. van Saarloos, D. Bedeaux, and P. Mazur, Physica
(Utrecht) 110A, -147 (1982); V. Morozov, ibid. 126A, 443
(1984}.

3~P. Resibois and M. DeLeener, Classica/ Kinetic Theory af
Fluids (Wiley, New York, 1977).

33K. Kawasaki, Prog. Theor. Phys. 51, 1064 (1974).
34L. Onsager, Phys. Rev. 37, 405 (1931);38, 2265 (1931);L. On-

sager and S. Machlup, ibid. 91, 1505 (1953);91, 1512 (1953).
5J. Keizer, Phys. Fluids 21, 198 (1978); H. Grabert, R. Gra-

ham, and M. Green, Phys. Rev. A 21, 2136 (1980); D. Ronis,
I. Procaccia, and J. Machta, ibid. 22, 714 (1980); M. C. Mar-
chetti and J. Dufty, Physica (Utrecht) 118A, 205 (1983}.

36J. Irving and J. Kirkwood, J. Chem. Phys. 18, 817 (1947).
The average here is the conditioned average, for specified
z(k, 0); in this case the average random force vanishes but
«z(k, I) »~o.

38N. VanKampen, Stochastic Processes in Physics and Chemistry
(North-Holland, Amsterdam, 1981).

39The renormalized shear viscosity in Ref. 29 was identified
from the average momentum conservation law. The resulting
expression is the same as that obtained from the energy law,
although some care is required to maintain the self-
consistency between these two identifications. The problem
arises from the need to introduce a maximum wave-vector
cutoff, kM, in the divergent mode-coupling integrals. Al-
though the physical basis for such a cutoff is clear (hmitations
on the validity of hydrodynamics), such a cutoff breaks the
translational invariance of the correlation functions in real
space. Effectively, self-consistency of all equations is
preserved if the hydrodynamic equations are defined on a lat-
tice of spacing kM'.

~Note that the sound damping constant I o as defined here is
twice that of Ernst et al. , Ref. 2.


