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A new method of deriving expressions for any thermodynamic-state function as an average of the
appropriate microscopic dynamical functions over the microcanonical distribution is presented. The
results are valid for any system of classical particles interacting through a potential depending only
on their relative positions and have a primary application to calculating thermodynamic quantities
in molecular-dynamics computer-simulation studies. A Laplace-transform method is used to express
any combination of energy and volume (or strain) derivatives of the microcanonical phase volume as
averages of specific dynamical functions and their fluctuations. A unique result is the occurrence of
the average reciprocal kinetic energy in these equations. These derivatives are then related to
thermodynamic-state functions using the Legendre relations and the basic definition connecting the
entropy to the phase-space volume. In particular, the complete microcanonical expressions for the
adiabatic elastic constants are derived for the first time. The equations derived by this method are
consistent with results from the literature pertaining to the classical microcanonical ensemble. The
equivalence is obtained in the limit that the number of particles in the system approaches infinity,
but the results diverge for systems with few particles. Numerical results from molecular-dynamics
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simulations of a simple model system are used to substantiate these points.

I. INTRODUCTION

In many texts on equilibrium statistical thermodynam-
ics, the microcanonical ensemble is briefly introduced and
then quickly abandoned in favor of the canonical, grand-
canonical, and other ensembles (with several notable ex-
ceptions! ~*). There are several reasons for this tendency.
First, the mathematical formulation of the microcanoni-
cal ensemble involves the use of generalized functions
(delta and step functions) which are “not convenient” for
deriving statistical formulas. Second, there is some ambi-
guity in the basic definition of the entropy which connects
the microcanonical distribution to all  other
thermodynamic-state functions.” Third, from a practical
point of view, observations of real systems are rarely car-
ried out at constant total energy. However, in recent
years, computer-simulation methods have been developed
which require the microcanonical formulas for their most
precise interpretation. It thus becomes a practical necessi-
ty to not only have the formulas for the microcanonical
ensemble -available, but to also have a comprehensive
theoretical technique which can be applied to new prob-
lems as they arise.

The purpose of the present paper is to discuss the fol-
lowing topics. In Sec. II, we present a direct and con-
venient method for deriving expressions which equate any
J
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thermodynamic-state function to averages of specific
dynamical functions and their fluctuations over the classi-
cal microcanonical distribution. In the process, the
specific expressions for a variety of thermodynamic quan-
tities are derived. In Sec. III, we assess the effect of the
various entropy definitions on our results and then com-
pare them to previous work in the literature. In Sec. IV,
we apply the derived formulas to the analysis of
molecular-dynamics computer simulations.

Our entire formalism is based upon two familiar ap-
proximations in molecular and solid-state physics. The
first is the Born-Oppenheimer approximation.® The
second approximation is that the nuclear motion can be
described classically, so that a system of N atoms is
described by specifying the three position and momenta
components of each atom, whose time evolution obeys
Hamilton’s equations. All of the kinetic energy of the
atoms (or nuclei), including what might also be character-
ized in certain situations as vibrational or rotational ener-
gy, is included in the p2/2m terms. Thus we will be deal-
ing with structureless classical particles (no internal de-
grees of freedom) representing atoms in any state of ag-
gregation (molecular, liquid, solid).

The primary functions of the classical microcanonical
distribution for this system are the phase-space volume
Q(N,V,E), and the phase-space density o(N,V,E);"° i.e.,

. ny’pN})) ’ (l.la)

o(NV,E)=- [axldp'--- [dx"dp"SE—H(x\p',...,.xpY), (1.16)
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where O( - - - ) and 8( - - - ) are the generalized unit step
and delta functions. The volume constraint is incorporat-
ed into the limits of integration over the coordinates
dx',...,dx" in the phase-space integrals (1.1). The mi-
crocanonical average of any dynamical function of the
coordinates and momenta of the particles is then written

=L Ldpl-- -
(A)-—wcfdx dp

xf dxVdp" A({x.,p!,...,xN,p"})
X8E—H({x,p',...,x¥,p"}).
(1.2)
Our goal is to  determine the functions
A({x',p',...,x",p"}) whose average over the micro-

canonical distribution gives any desired thermodynamic
variable. The starting point is a definition for the entro-
py, of which there are the following two possibilities,
among others:

S=kzlnQ , (1.32)

S=kphno . (1.3b)

It has been discussed that these definitions are in agree-
ment to order 1/N.>° We will take (1.3a) as our primary
definition. In Sec. III we will show explicitly the
equivalence in the N— oo limit of using the other defini-
tion (1.3b). We will also show that our results are con-
sistent with equations found in the literature which are
derived by a method valid only in this limit.

The method outlined in Sec. II consists of two distinct
tasks which convert the definitions of Eqgs. (1.1)—(1.3)
into the desired form. First, we use macroscopic thermo-
dynamic equalities to write any variable as a combination
of energy or volume derivatives of the entropy, pressure,
or temperature. The fundamental definition (1.3a) is then
employed to convert these to derivatives of the phase-
space volume. The second step is the use of the Laplace-
transform technique (hereafter designated LTT) to con-
sistently evaluate the energy and volume derivatives of the
phase-space volume and express them as microcanonical
averages of specific dynamical functions. We then com-
bine these results to obtain the final equations. The re-
sults for the primary microcanonical quantities—
temperature, heat capacity at constant volume, pressure,
stress, Grineisen constant, and the adiabatic bulk
modulus—are shown explicitly. Also shown, we believe
for the first time, are the complete expressions for the adi-
abatic elastic constants.

The primary application of these microcanonical equa-
tions is for the analysis and interpretation of molecular-
dynamics simulations,!°~!2 which we will not review in
any detail. Since our goal is to study the formulas we
have developed and not to simulate specific materials, we
have selected a simple model for the potential energy (a
two-body Mie potential interaction) to perform the simu-
lations in Sec. IV. We will provide numerical confirma-
tion of the limits taken in Sec. III, and then compare the
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values for the thermodynamic derivatives against values
obtained as difference derivatives over several simulations.

II. BASIC METHOD

A. Thermodynamic equalities

The thermodynamic potential whose extremum defines
equilibrium at constant E and V is the entropy S. Thus
any quantities which can be immediately expressed as E
and V derivatives of S will be the fundamental quantities
from which all other thermodynamic variables are con-
structed. Neglecting strain for the moment, we thus con-
sider

os | _1 jor| _ 1 |oP| _ vy
dE |, T’ |3E |, Cy’ |3E |, V'

2.1
os| _P |oT) _ 1 P | __ Br
V |, T |V |y Vag |V |g v’

with the usual notation of T for temperature, P for pres-
sure, Cy for the heat capacity at constant volume, and ¥
for the Griineisen parameter. The other two quantities,
ap and Bp, are defined in a manner consistent with the
usual definition of the thermal expansion coefficient (a7)
and the adiabatic (Bg) or isothermal (By) bulk moduli.
Although they are not useful thermodynamic quantities in
themselves (i.e., if you heat a system, how must you
change the volume to keep the internal energy constant),
they will appear in the expressions for other useful quanti-
ties, and thus are retained for notational convenience.

Thermodynamic Legendre relations!® can be used to re-
late any other thermodynamical variables to the basic
quantities in Eq. (2.1). (See Table L.)

To formulate similar equations for stress and elastic
constants, we begin with the following basic definitions:!*

3

(2.2a)
hj=1
1| 0E
Ti=—0 |7 — , (2.2b)
L vV anij S’n;_j
2
Cgkl = '1— ’_“a—‘L ’ (2.2¢c)
14 a'r’ij ankl S:ﬂ,’-}, kT

where the set n={7y;, i,j=1,2,3} are the Lagrangian
strain parameters which measure the deformation from an
initial reference configuration; 77;775 {nips 1,7'=1,2,3}\
{ny} and 075 gr={nep 15 =123}\{nyMu}. 7y are
the stresses and Cgk, are the adiabatic elastic constants.
Equations (2.2b) and (2.2c) are to be evaluated in the
reference configuration, that is, at zero strain. Using Eq.
(2.2a), we may reexpress Egs. (2.2b) and (2.2c) in the
desired form as

T
’T,‘j=—_

V

N

(2.3a)
any;

s
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TABLE I. Contributions to the expression for partial derivatives. The subscripts signify the quantity
being held constant. A partial derivative is formed when the listed contribution for the thermodynamic
potential is divided by that for the independent variable; e.g., contributions from 8P |z and —oV |

combine to give — (0P /0V)g=(Bg/V)/(—1)(1)=—Bg/V, in agreement with Eq. (2.1).

(2.41)

b

E,q
(2.4g)

(2.4h)

Thermodynamic Contribution Thermodynamic
potential or to the potential or
independent variable expression independent variable
aP I y—> % <——-—6V I P
AT | y— CLV —dV |7
as | y— ;‘T— Vs
P | p— —Vi «——3E|p
3S | s— ~§ ——dE}s
1
oT | g— Ve, «~——0E|r
1 Bg
- — |-y ZE « 3T
op I T vV VaE + CV 9 | P
1 1 P
8S , T—> T VaE —_ CV <——-——6T l S
3S | p— — 57 (Bs+7P) ——aP|s
cSy=_L| 9 vy | S a [, o1 a0 |7
i V|8 dmu |Ewt g 09| 8E? |, ke | P |eeEdV ||
2
T |7y [ =25 By 1 3% 1 30
97 0E |4 —= — ——
i 14 o 3V? |g, o OEdV -
a’s
+7 | . (2.3b)
Y ankl JdE 71’;7 J
CcS,, — 1_23a
Finally, we take the entropy definition of Eq. (1.3a) and ikl ® 07;;0M . EV,n{s g
combine it with Egs. (2.3) and (2.1) to generate the follow- s
ing relations between the macroscopic variables and the Ve, | L 00
phase-space volume integral and its derivatives: Gt aE? Vin
ksT=2, (2.4a) 1_93Q
@ ki w 877,-j oE V,"T;—j
— L%’f , (2.4b) O O E)
® I L )
Eq ) 877,,1 oE V’”;ZT
Tij = — _1‘ _1" o N (2.40)
V |o 31y |&ve- .
” B. Laplace-transform technique
Cy 1 3%2Q =1 We must now evaluate the phase-space volume deriva-
Nkg = |N—NkpT ‘© JE? ’ (2.4d) tives appearing in Eqgs. (2.4b)—(2.4h) using the definitions
& (1.1) and (1.2). We begin by rewriting these integrals in a
more convenient form. This is accomplished by taking
e 1 320 1 320 1 30 the Laplace transform with respect to energy, doing the
V. |w dEdV |. | o oE? ” ‘© 3V e momentum integrals by virtue of the separable classical
n >N )7

(2.4e)  following:

Hamiltonian, and then inverse transforming to obtain the
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_—1__._.__ 1,.. N _ 1 N 3N/2 _ 1 N 2
Q(N,V,E)= CION/ATD [ dx [ axME —o({x, ..., x") PV 26(E—({x!,...,x"}), (2.5a)
_____1____ 1... N _ 1 N 3IN/2—-1 _ 1 N
w(N’V’E)_COI‘(3N/2) fdx fdx [E—®({x',...,x"})] O(E —o({x',...,x"})), (2.5b)
1 ... N 1 N _ 1 NN 2—19(Fr 1 N
(A)—wcor(3N/2)fdx [ ax¥A(x, .. xDE—o({x!, ..., x¥])] O(E—d({x,...,x"}),

where I'(n) is the gamma function, with the property that
I'(n +1)=nT(n) and I'(1)=1, and the new constant C,
is given as

1 _ 1 IN/2

.- C (27mm) .

Although the expressions (2.5) are not first given in the
present work, their consistent application to the derivation
of microcanonical formulas as described here is novel.
Essential to these derivations is the realization that the to-
tal kinetic energy is actually a function of the coordinates
in the integrals (2.5) because of the constraint on the total
energy. As an important example, we write out explicitly
the expression for the temperature:

Q0 1

kpT=""= ©CoT(BN/2+1)

Xf dx!-- f de[E_q)({xl’ . ’XN})]3N/2

XOE—@({x!,...,x"})).
Comparing this to Eq. (2.5¢) gives immediately

2 2
kpT=-(E—@)=-(K) . (2.62)

This is the equipartition theorem,!>!® but derived here in

a simple way.
A more interesting example is

dE* |y, L

=s{Q]

1 1 3N/2—-1
_ 1 ... N, —s@({x!,...,x") [ 1
= fdx fdx e —sPUx x .

kyT=-2(K) ,

3N
1z - [ézﬁ_l]m—»,
_:7 :;Z KE,n:_j:NkBTSij—(d%j),

(2.5¢)

which can be inverse transformed to give

32Q

JE?

1

(0]

Vin
B 1
= wC,[(3N/2—1)

X [dx'--- [dxME—@({x,... ,x"})PN/2-2

XO(E—-&({x!,...,x"})).

Comparison with (2.5¢) then shows that

a’Q
dE*

~3£—1|<K-‘>,

> (2.6b)

1
()

Vin

where (K ~!) is the average of the reciprocal of the kinet-
ic energy.

The volume (or configuration) constraint has been in-
cluded in the limits of integration over the coordinates.
We must change variables to remove this dependence,
thereby introducing a Jacobian into the integral. For the
volume derivatives, we simply make the often-used
transformation!’

xi=V1/3xi', i=1,2,...,3N

which introduces a Jacobian of V¥,
The results of applying the above formalism to the
derivatives appearing in Egs. (2.4) are as follows:

(2.7a)

(2.7b)

(2.7¢)

(2.7d)
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1| 8% 3N 3D _1>
— =p— |21 |{|S2] K1), 2.
o |aBaV |, {2 ]( v |, @.7¢)
1 [ a2 3N .
2 =N&:: — |22 _1 (®.K , .
w [3E3my |vnp ij [2 ]( ot ) .76
2
2 _ 2
Ljga) _NWN- ”kBT—< s >—2p< Chd >+ Ny < i K—‘>, (2.7g)
o |V |g, % AV g WV gy 2 W g,
1 320
D , =—NkpTDjyy+N ZkBTaijakl_'(q)ijkI)
@ | 9Ny 9N |EVinf; gy
3N _1
—N(<¢‘ij)5k1+<¢k1>5,-j)+ T—l <<D,~j¢k1K ). (2.7h)
M
p (=N/V), is the number density and we have used the 2 00000
shorthand notation 020000
002000
<1>.-,-=389— P=lpboo0100
My BV 000010
0 00O0O01
Dy = _de
Ukt O M |EVinss gp

C. Final results

The matrix D and the Kronecker delta §;; result from the
strain derivatives of the Jacobian. In Voigt notation, the
matrix is

2 (ky,

The only remaining task is to combine Egs. (2.7) with
Egs. (2.4) and collect terms into a sensible order. We list
below some of the more important results:

kBT=3N (2.83)
c
(KK +N(1— (KK, (2.8b)
Nkg
P=pkBT—< —g%— ) (2.80)
Eq
Tij= —-pkB T8'I+_Il/-(¢’l> , (2.8d)
Nkg 3N 3P 1 3P 1
vt |1 V< 22 E,n><K >_< v |, K ) : (2.8¢)
- Nk 2
Bs=pkBT[l+21/— C: V< g; )
En
2
N L. < 3P _,> < 3 >< 3b _,> < 3D >2 _,l
— 2w k)2 |22 L0 kN4 (|22 (K- |, (2.86)
2 ] { W g W g\ |V g, ¥ |5,
Nk 1
Ciu=pksT Dijkl+c—:8ij8kll+—V'<q)ijkl>
+pksT izN-—l][((cp,-,-><K-1>—<<1>,-,-K—1>)ak,+(<<bk,><1<-‘>—<<I>k,1<-‘>>8,~,-]
+ 3TN_1]<<<p,,.><¢k,1<—1>+<<:>,,,><<1>.-,-K—‘>—<<1>,-,~<1>k,K-‘>—<<1>,-,»><<1>k,><1<-1>>. (2.8g)
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The most significant feature of these equations is the appearance of the reciprocal kinetic energy, both directly and in
fluctuation terms together with the potential-energy derivatives.

III. ASYMPTOTIC LIMITS

A. Expansion of reciprocal averages

In this section, we will derive asymptotic expressions for several Egs. (2.8) in the limit N— «. The general approach
is to make the following expansion for the average of the reciprocal kinetic energy:

(K~ )=

(K) ( 1+5K)2 (K) [1—-8K+(8K)?—--- 1],

where we have defined the normalized mean deviation

-———KZK(;Q «<1.

The condition (3. 1) is always obtained in the limit N— . This method is easily extended to averages of the form
(K~2%) and (4K '), where 4 is any other dynamical function. We w111 consistently retain terms to second order in the
normalized mean deviation; either (8K)? or (8K)(8A4).

Applying these expansions to Egs. (2.8b) and (2.8e)—(2.8g) yields

0K = (3.1)

—1
Cm
- , (3.2a)

Nkp

2 (K?)—(K)*
3 _N[ (K)?

Nk;a+ 3NV
Ccy  2(K)?

yo = (3.2b)

oP
|4

(

Nkpg
cy

N
g

1
+ V(q)ijkl )

’®

572 . (3.2¢)

BE =pkpT |14+2y% —

Cii® =pkpT |Dyj +

Nk
< 8j0m

>[(<¢’UK> (¢,,>(K>)8k1—((@k1K> (q)k1)<K>)5,,] ((‘Duq)kz) (‘I),,)(q)k])) (3.2d)

(K

B. Entropy definition Cy

We have consistently chosen the entropy definition of Nkpg
(1.3a) for all equations derived in Sec. III A. This expres- ]

sion for the entropy can be justified by an argument based —-N 3N _2
on the invariance of the phase-space volume under adia- 2

batic changes in the external mechanical parameters
which constrain the system (such as the configurational
volume).'®!® Other arguments can be made which lead to
definition (1.3b).52° We now present and compare the re-

sults obtained by using the LTT on definition (1.3b).
Following the method of Sec. IIL A, we can derive the
following:

-1
(kgT),p= H———ll(K“‘)] , (3.3a)

(P),,,=—JI%(kBT)a,—<

K=K
Enjo

(3.3¢)
The subscript @ designates the use of the alternate entropy

definition (1.3b). We now expand the reciprocal kinetic
energy terms in Egs. (3.3) to obtain their asymptotic lim-
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its. First, for the temperature,

2{K)
3N

(x> |~

(K)?

The term in square brackets approaches unity as O (1/N),
thus (kpT); approaches Eq. (2.8a) as O(1/N). For the
pressure,

2

(kpT)g = I (3.42)

3D
()2 =pk T—< o )
B  gnlo
3D
+ (K>2< — )
[ v Enlo
9 2y—1
—(K)< |, 0K>}(K) . (3.4b)

If Eq. (3.4b) is to be equivalent to the previously derived
pressure equation (2.8c), then the last term must approach
zero in the N— o limit. We assume that this limit will
be obtained due to the fluctuation character of this term.
The validity of this assumption will be demonstrated by
the numerical results of Sec. IIIC. Finally, for the heat

capacity,
S |7 [z [ex)—x)?
Nkg | |3 (K)?
(K [, (k)? -
><[<1<2> [2(K2>—1]H ’

(3.4¢0)

The term in square brackets goes to unity as O(1/N),
which then yields a result equivalent to the expansion
(3.2a).

We have thus shown in specific cases that the applica-
tion of the LTT to the two different entropy definitions
(1.3) leads to expressions which give consistent results to
O(1/N) as N— o. In Sec. III C, we will see that the ex-
plicit calculation of these quantities for a model system
confirms these conclusions.

C. Comparison with results from the literature

Thus far, we have developed a set of equations and
their limiting forms for evaluating thermodynamic-state
variables as averages of microscopic dynamical functions
over the microcanonical ensemble. Some of these results,
as previously indicated, are not unique to this work.
However, the first work which attempted to develop a
consistent method for deriving microcanonical equations
for higher-order thermodynamic quantities is, to our
knowledge, that of Lebowitz, Percus, and Verlet,?! which
we will hereafter refer to as LPV. In this work, they
developed an expression relating the square and cross fluc-
tuations of any dynamical functions between any two dif-
ferent ensembles based upon the same microscopic Hamil-
tonian. They then applied this general result to the
derivation of formulas for the microcanonical ensemble
from the canonical ensemble. Other authors have con-
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firmed their results and extended them to derivations of
additional formulas.?>?* We will now show that the
asymptotic forms of the LTT equations (3.2) are identical
to the LPV equations.

We list below the expressions which result from the
LPV method as given by Cheung:?*

Cy N{(8Q)?)
Nkj =ng |1— an§T2 , (3.5a)
oT |, ng | Nk k3T? o
2P +pkpT kg T
Bs=BL= :f B +P B
N ng
_ N(@sIg?y |
+<—)—W (3.5¢)

The Griineisen constant can be written in terms of (3.5b)
as

vV

Cy

ap
oT

1 v{sQally)
Vv

(3.5d)
nQ ané T2

We must now convert these results into the current nota-
tion. Q is the average kinetic energy per atom, defined
such that (Q)=3kpT.

The other two dynamical functions appearing in (3.5)
are

_ Lo Ll 5 g |22 3.6
HQ ng Q 3V % ij aRij RL ’ (3.6a)
7)) /

1 d*®
E=— RiRyy | m==—— (3.6b)
57 = ,;; el T PET W X

ihj »
(i<j) (k<D

In these expressions, i,j,k,/ label different particles with

* the summations being over all distinct pairs of particles.

R;; are the interparticle distances. (The sets R’ and R”
and the sets 7’ and 17"’ are similarly defined.) Ilg is called
the pressure function because (Ily ) =P. It is a matter of
some algebraic manipulation to show that

2 AP
_ % 2 30
E=V2,7 + 337 (3.7b)

Upon inserting the relations (3.7) into Chueng’s equations
(3.5) and rearranging terms, the LPV equations become
identical, term for term, with asymptotic limits of the
LTT results (3.2). In Sec. IV, we will confirm this result
using the exact numerical evaluations of both the LPV
and LTT equations from the same molecular-dynamics
simulation. Differences in the two methods will be dis-
cussed in the conclusions.
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TABLE II. Basic simulation characteristics.

Quantity S1 S2 S3
E/N (eVo/?tom) —2.6869 —2.6870 —2.7044

Qo (A7) 17.5136 17.5658 17.5136

(T) (K) 1060.3 1051.3 990.5
(P) (eV/atom) 0.074 54 0.01221 0.02295

IV. MOLECULAR-DYNAMICS SIMULATIONS

We have simulated a simple model system to numeri-
cally confirm the results of the preceding sections. We
will show that the exact LTT equations (2.8) do in fact
produce results which agree to O(1/N) with the LPV (or
asymptotic LTT) equations (3.2) and the alternate entropy
equations (3.3). In addition, by performing several simu-
lations with slightly different total energies and volumes,
we have calculated difference derivatives to compare with
the direct values obtained from these equations.

We chose a system of 500 particles on an fcc lattice us-
ing the usual periodic boundary conditions. A Mie poten-
tial**

)

was used with the parameters selected as €=0.344 66 eV,
R(y=42.968 A, m=12, and n =6 (which thus becomes
the Lennard-Jones 6-12 function). The atomic volume
was selected to give near-zero pressures for the specified
potential. A cutoff radius falling between the fifth and
sixth neighbor shells was used. The exact value was
chosen to make the direct contribution plus integral

€ R, |” R,

m —n

$lry)= —m

r,'j rij

TABLE III. Comparison of equations. (y and Cy/Nkp are
dimensionless.)

Quantity LTT LPV S =kglnw

Simulation S1

kT (eV) 0.09138 0.09145
P (eV/atom) 0.07454 0.07502
Cy/Nkp 2.63247 2.62922 2.63181
1% 2.64917 2.64470

Bg 21.3268 21.3600
Simulation S2

kT (eV) 0.090 60 0.090 66
P (eV/atom) 0.01221 0.01274
Cy/Nkp 2.95804 2.96598 2.94645
% 2.93166 2.93621

Bg 20.7270 20.7569
Simulation S3

kpT (eV) 0.085 36 0.08543
P (eV/atom) 0.02295 0.023 40
Cy/Nkp 2.64735 2.642 85 2.64796
v 2.63568 2.63151

By : 21.1945 21.2263

correction equal to the infinite lattice sum value for the
potential. Integral corrections were then applied to all the
calculated quantities as necessary.

The data we will present are from three simulations
(S1—S83) with the basic characteristics shown in Table II.
Each simulation ran for 1200 steps using a time step of
5.0 101 seconds. Averages were made over the last
1000 steps every fourth step. Increasing the averaging to
every second step did not alter the results significantly.
We will comment on our statistics later.

The main purpose of the computer study is to confirm
the equivalence of the various equations. The simulation
results are shown in Table III. The clear conclusion is
that indeed all the equations are consistent. Thus, from a
practical point of view, it does not matter which of the
sets of equations (2.8), (3.2), or (3.3) are used.

From Table II, we see that simulations S1 and S2 are at
the same energy with slightly different volumes, and vice
versa for simulations S1 and S3. We can thus use the data
from Table II to form difference derivative approxima-
tions to the thermodynamic quantities. The comparison
between the values calculated from the above equations
and those calculated directly by the LTT equations are
shown in Table IV. The values for the heat capacity and
Griineisen constant are only within about 10% for simu-
lations S1 and S3, although Table III shows that the
values from simulation S2 are in much better agreement.
All three simulations apparently give good numbers for
the bulk modulus.

The data from Table IV taken alone do not conclusively
prove that the microcanonical equations we have present-
ed are correct in an absolute sense. The simulations need
to run longer to generate adequate statistics. However,
the question of statistics was discussed in the references
on the LPV equations,?""?* in which the validity of those
equations was established. Our primary goal of providing
a numerical confirmation of the equivalence of the vari-
ous equations of the preceding sections has been achieved.
We thus did not chose to commit computer resources to
investigate the more costly question of the comparison to
difference derivatives, especially since this has already
been done for the LPV and thus, as shown here, the
analytically equivalent LTT equations.

V. DISCUSSION

In Sec. II, we developed a new method, the LTT, for
deriving thermodynamic equations from the classical mi-
crocanonical ensemble. First, we identified the primary
statistical functions of this ensemble, the phase integrals
of Egs. (1.1) and (1.2), and related the thermodynamic-
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TABLE IV. Comparison to difference derivatives. (Cy/Nkp and ¥ are dimensionless.)

Difference Direct
Quantity Simulations derivative LTT value
Cy/Nkg S1 2.6325
and 2.902
S3 2.6474
Y S1 2.6492
and 2.949
S3 2.6357
V|22 | (ev/atom) st —21.1323
v |,
and —20.956
S2 —20.6908

state functions to them and their energy and volume
derivatives. Second, we used the Laplace transform to
convert the generalized step and delta functions in the for-
mal representations of these phase integrals into usable
forms. Finally, we consistently used Eq. (2.5) for the
average of some general dynamical function to identify
the specific averages involved in all other phase integrals
resulting from taking the energy or volume derivatives.

In Secs. III and IV, we developed asymptotic expres-
sions for the LTT equations and then proceeded to
demonstrate their equivalence in the N— o limit to re-
sults obtained with a method already available in the
literature. Although there is always some intrinsic merit
in discovering new ways to derive and substantiate old re-
sults in statistical mechanics, we feel that there are several
other reasons for considering the LTT.

The LTT demonstrates that the average reciprocal ki-
netic energy (as opposed to the reciprocal of the average
kinetic energy) is an important dynamical quantity in the
microcanonical ensemble. Indeed, higher-order energy
derivatives will generate terms involving (K ") and their
fluctuations. There is some intrinsic interest in the oc-
currence of these terms. There may also be some econo-
my of notation, since the expansions in the N — o0 limit
can be more cumbersome, especially for the higher-order
energy derivatives. The LTT also provides a straightfor-
ward approach for deriving the elastic constants, which
have not, as far as we know, been derived using the LPV
method. In fact, it was our interest in the elastic con-
stants which motivated this work. Higher-order volume
or strain derivatives are also directly accessible by this
method. ‘

The LTT is a comprehensive method for deriving all
thermodynamic quantities. The LPV method only applies
to quantities containing fluctuation terms, so that other
arguments must be made to define the pressure and tem-
perature. In addition, for the LPV method, one first re-
quires a relationship between a thermodynamic quantity
and various fluctuation terms from some other ensemble,
such as the canonical ensemble. For thermodynamic
quantities which are fundamental to the microcanonical
distribution, such as given in (2.1), the appropriate Legen-
dre transformations into ¥ and T derivatives, to facilitate
their expression with canonical phase averages, will yield

an equation with many terms. Upon applying the LPV
method, many of these terms must cancel to recover the
simpler microcanonical forms. We expect this to be par-
ticularly important for higher-order strain derivatives,
such as the third- and fourth-order elastic constants. Use
of the direct LTT method is clearly desirable in such
cases. :

Finally, the LTT results are ostensibly applicable to sys-
tems with a small number of particles, as indicated by the
results in Secs. III and IV. However, there are some more
general questions involved with this point. If one is truly
interested in a small number of particles contained in an
appropriately small volume, then we know that the details
of the interaction at the volume boundary will play an im-
portant role in determining the behavior of the system.
That is, the number of atoms in the interface region is a
significant fraction of the total number of atoms, so that
enforcing a volume constraint either with a fixed “wall
Hamiltonian” or by limiting the region of integration in
phase space is not expected to produce reasonable results.
Thus, even though the LTT and the LPV method diverge
for small N, the theoretical basis for both methods disap-
pears for small N, so that the point is moot.

This then raises the question of the connection of the
molecular-dynamics simulation technique with its small
number of particles and its periodic boundary conditions
to the actual phase space for the macroscopic system be-
ing simulated. We have seen that the LTT and the LPV
method do give different numerical results to O(1/N).
Again, from a practical point of view, this difference will
usually be eclipsed by the overall statistical accuracy limi-
tations stemming from the finite length of the simulation.
However, the formal question remains as to which equa-
tions, the LTT or the LPV, are more appropriate based
upon the computational approximations of using periodic
boundary conditions to model a large system with a small
one. We cannot answer that question here. However, it
seems certain that the theoretical tools used to attack this
problem must not already contain any assumptions about
the size of the system. Thus, the LTT formalism may
prove useful in answering such questions.

As an example of this use of the LTT, consider the two
entropy definitions (1.3) and the corresponding equations
for the temperature, (2.8a) and (3.3a). The first definition



yields the equipartition theorem identically, while the
second only does so, as shown by (3.4a), in the N—
limit. This may be taken as further evidence that the defi-
nition (1.3a), S =kzInQ, is the most correct definition for
the entropy, even though it is unimportant for any explicit
practical numerical calculations.

In summary, the LTT provides a straightforward and
relatively simple method for manipulating the micro-
canonical ensemble. It can be used to generate the ap-
propriate equations for analyzing molecular-dynamics
computer simulations. It may also facilitate more general
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statements concerning the mechanics of small systems at
constant energy and volume.
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