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Squeezed-coherent-state generation via four-wave mixers and detection via homodyne detectors
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Wideband calculations of the response of a homodyne detector to the outputs of various four-
wave-mixer configurations are presented. It is shown that the noise-power spectrum of the homo-
dyne detector output can exhibit regions where the noise is greatly reduced below the shot-noise level
even at frequencies far from dc. Hence, in the detection of noise squeezing via homodyne detectors,
I/f noise and other low-frequency noise sources may be avoided by observing the homodyne
detector's noise power at frequencies far from dc.

I. INTRODUCTION

The proposal by Yuen and Shapiro' that squeezed
coherent states could be generated via degenerate four-
wave mixing has triggered experimental efforts directed
toward producing squeezed states in this manner. Also
considerable theoretical work has been devoted toward
understanding how the details of the four-wave-mixing
process affect the ability of the four-wave mixer ' ' to
generate squeezed states. These investigations have pri-
marily concentrated on the degree to which losses in the
medium and pump noise affect the ability of the four-
wave-mixing process to generate squeezed coherent light.

Yurke has demonstrated that by placing a four-wave-
mixing medium in a cavity the degree of squeezing can be
greatly enhanced. The analysis was carried out in the
narrow-band approximation, in which only the mode os-
cillating at the pump frequency was considered. Here this
work is extended to a wideband analysis. It is shown that
the noise-power spectrum of one component of the ampli-
tude of the light leaving the four-wave mixer can exhibit
considerable structure, exhibiting noise reduction over
some frequency intervals and noise enhancement over oth-
ers. This work parallels wideband calculations that have
been performed for degenerate parametric amplifiers.

In addition to the analysis of the wideband output of
some four-wave mixers, the wideband response of a homo-
dyne detector to this output is presented. Yuen and
Shapiro ' have pointed out that homodyne detection
measures one of two components of the amplitude of the
electromagnetic field arriving at the photodetector. More
recently Yuen and Chan have shown that quantum and
excess noise from the local oscillator can be eliminated by
balanced homodyne detection. " The technique has been
experimentally demonstrated by Abbas, Chan, and Yee. '

As a result this technique looks very promising as a
means of observing noise squeezing. Mandel' and
Schumaker' have also discussed the detection of squeezed
states via homodyne detection. In this paper a wideband
calculation of the response of a balanced-homodyne detec-
tor is carried out for the case when the photodetectors
respond to energy flux rather than photon flux, that is,
when the photodetectors are bolometers. Since the noise-
power spectrum of one component of the light leaving the

four-wave mixer can exhibit noise reduction at frequencies
far from dc, I/f noise and other forms of noise likely to
appear in the output of the homodyne detector near dc
can be avoided by looking at the high-frequency com-
ponents of the detector's output.

After establishing some notation and defining the com-
ponent operators of the amplitude and the noise-power
spectrum of a component of the amplitude, the analysis of
the wideband homodyne detector is presented. The
analysis of the four-wave mixers will follow last. This
will allow a discussion of the output of a four-wave mixer
in terms of the response it produces on a physically realiz-
able detector.

[a (co),a (co')] =5(co—co'),

[a (co),a (co')] =0 .
(2.2)

The operators X&(t,8) and X2(t, 8) of the field amplitude
components can be introduced by writing E(x,y, t) in the
form

E=+2cope(x, y)[X)cos(copt +8)+X2sin(&opt +8)],
(2 3)

II. THE COMPONENTS OF A FIELD MODE
AND SQUEEZED COHERENT STATES

In this section the two components of an electromag-
netic field mode are introduced, and their noise-power
spectra for squeezed coherent states are derived.

To this end, consider a homodyne detector, which
through spatial filtering has been made blind to all but
one particular radial field mode of the electromagnetic
field propagating along the z axis and let the detector ac-
cept this mode over some frequency band 8. At the aper-
ture of the detector the electric field operator can thus be
written

E(xy, t)=e(x,y) J deuto'~ [a(co)e '"'+a (co)e' '],
(2.l)

where e(x,y) specifies the electric field amplitude and po-
larization across the detector aperture and the creation
and annihilation operators satisfy the commutation rela-
tions
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where cop is some preferred frequency, say the homodyne
detector's local oscillator frequency. From (2.3) and (2.1)
explicit expressions for X&(t,O) and Xz(t, O) can be ob-
tained.

In particular

COp+ CO

X)(t,O)= f dco
B 2COp

and

I
6(co)

I

—IM(co)
I

=1 (2.10)

Four-wave-mixer configurations which are capable of per-
forming the mode transformation (2.9) on an incoming
vacuum state will be presented in a later section of this
paper. It is worth noting that 6 (co) and M(co) are not in-
dependent. Since both a(co) and b(co) must satisfy com-
mutation relations of the form (2.2), one requires

)& [a (coo+co)e'ee ' '+ H. c.],

COp+ CO

X2(t, O) =f dco
2COp

G(co)M( —co) =6(—co)M(co) .

From (2.10) and (2.11) one can readily show2.4

I
6(~) I'=

I
6( —co) I'

(2.11)

(2.12)

X[ ia(—coo+co)e' e '"'+H c ].. .

X, (t, O)= f dco[X)(co,O)e ' '+H. c.],
LOP

x,(t,O)= f d~[x,(~,8)e ' '+H. c.],
where

1/2
COp+

X~(co,O) = a (cop+ co)e '

2COp

1/2

(2.5)

By taking the band B to be symmetric about cop, X~(t, O)
and X2(t, O) can be reexpressed in the following useful
form: X~(co,O) =

' 1/2
COp+ CO 6 (co)e'

2COp

+
2COp

' 1/2

M*( —co)e ' b(cop+co)

1/2
COp+ CO

M (co)e'
2COp

1/2
COp —CO —i86*(—co)e ' b (cop —co) .

2COp

That is, the norms of 6 and M must be symmetric func-
tions of co. Substituting (2.9) into (2.6), X~(co, O) becomes

2COp
a (cop —co )e

—i8
(2.13)

1/2
COp+ CO

X2(co, O) = i-
2COp

1/2

a (coo+ co)e'e

(2.6)
Since X&(co,O) is linear in b and b, it is immediately evi-
dent that the expectation value of X(t,O) with respect to

I
Ob ) is zero:

a (cop —co)e
—i8 (ob

I
x(t, O)

I
ob & =o . (2.14)

and Aco=B/2.
Since X2(t, O)=x&(t, 8——,m) the discussion will now

be restricted primarily to X1. In Sec. III it will be demon-
strated that a homodyne detector measures X, (t, O) where
6 is determined by the local oscillator phase. Having in-
troduced the component operator X&(t,O), the expectation
value of X&(t, O) and X~(t, O) will be evaluated for a class
of squeezed coherent states which will now be defined.

Let
I
Ob) .denote a vacuum state for the annihilation

operators b (co):

In fact, it is clear that each of the frequency components

X,(co, O)e ' '+X, (co,O)e'"'

of X&(t,8) has zero expectation with respect to the state
I ob & ~

It is straightforward to show that the mean-square de-
viation of X(t,O) from its zero expectation value is given
by

(Ob I
x', (t, O)

I
o„&

b(co)
I

Ob ) =0 for all co,

(Ob I ob) =1 .

(2.7)

(2.8) +2 I—
'2 1/2

= f dco
I
6(co)

I + IM(co)
I

Squeezed coherent states can be generated from this vacu-
um state via the mode transformation

a (coo+co) =G (co)b (coo+co)+M(co)b (coo co) (2 9)—

COp

&& Re[6(co)M( —co)e ' ] . , (2.15)

Under this transformation
I Ob ), which is a vacuum state

for the b(co), is a squeezed coherent state for the a(co).
where use has been made of Eqs. (2.11) and (2.12). Hence,
the noise-power spectrum for X

& (t, O) is given by
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S(co,8)=
I
G(co) I'+ IM(co) I' DETECTOR 2

+2 1—
COp

2 1/2

Re[G(co)M( —co)e ' ] . OUTPUT

(2.16)

It will be shown in Sec. III that S(co) can be observed
directly by feeding the output of a homodyne detector
into a spectrum analyzer. Here some properties of S(co,8)
will be pointed out. If one chooses the identity transfor-
mation for (2.8), i.e., G(co) =1, M(co) =0, then

S(co,8)=1 .

bl

SI6 NAL
BEAM

50/50 BEAM
SPLITTER bp

aI

DETECTOR I

Squeezing is said to occur whenever

S(co,8) & 1 . (2.17)

LOCAL
OSC I LLATOR

BEAM

Under typical experimental circumstances the homodyne
detector output frequency ~/2~ will extend to tens of ki-
lohertz, while coo/2rr, for visible light, will be of the order
of 5 && 10' Hz. Hence (co/coo) appearing in (2.16) is
much less than unity and can for practical purposes be
neglected. The term [1—(co/coo) ]'/ appearing in (2.16)
does, however, set a fundamental upper bound on how
small S(co,8) can be made. One can show

FIG. l. Balanced-homodyne detector. Output current is pro-
portional to the difference between the photocurrents developed
in detectors 1 and 2. Such a detection scheme eliminates noise
due to local oscillator intensity fluctuations.

Ei e(x——,y) f dcoco'/zdi(co)e' ',
(3.1)

S(co,8) )
COp

the minimum occurring when

1 ~o
GI =—1+

2 co

III. SIDEBAND HOMODYNE DETECTION

(2.18)

(2.19)

E)+ ——e(x,y) f dcoco'/ d)(co)e

the power deposited in the bolometric photodetector is
proportional to E i E~+. Let I

& (t) denote the signal
delivered by the photodetector to the external world.
Then I

&
(t) has the form

I (t) —F dco dco'co / co' / dt(co)d (co')e'i~
1 ~ ~ 1 1

In this section it is demonstrated that the noise-power
spectrum P(co, 8) given by (2.15) can be measured directly
by feeding the output of the homodyne detector into a
spectrum analyzer. Yuen and Chan have shown that
quantum and excess noise from the homodyne detector's
local oscillator can be eliminated by balanced-homodyne
detection. " The wideband analysis of a balanced-
homodyne detector using energy flux detectors is present-
ed here. The case when photoemissive detectors, that is,
photon flux detectors, are employed will be carried out in
the accompanying paper, ' but to lowest order in co/coo

the results are the same. A balanced-homodyne detector
is depicted in Fig. 1. A 50%-50% beam splitter combines
the signal beam and the local oscillator beam. The result-
ing beams a1 and a2 are directed towards photodetector 1

and photodetector 2, respectively. The signal proportional
to the difference in the signal generated by photodetector
1 and photodetector 2 (difference mode signal) is then
delivered as output. Photodetectors with quantum effi-
ciencies less than unity will be considered, but for simpli-
city it will be assumed that the photodetectors are
matched, that is, their quantum efficiencies are equal. Let
di(co) and dz(co) denote the annihilation operators for
light entering, respectively, photodetector 1 and photo-
detector 2. Introducing the positive and negative frequen-
cy components of the electric field at photodetector 1,

(3.3)

Yuen and Shapiro ' have pointed out that the effect of a
quantum efficiency rl & 1 for photodetectors can be taken
into account by introducing the mode transformations

di(co) =g' 'a i(co)+(I —g)' 'ci(co),

dz(co) =r)'/ az(co)+(1 —r) )' cz(co),
(3.4)

where ai(co) and az(co) denote the annihilation operators
for light delivered, respectively, to photodetectors 1 and 2.
A loss, by the fluctuation-dissipation theorem, couples
equilibrium noise into a system. This noise is taken into
account with the noise mode operators c&(co) and cz(co)
appearing in Eqs. (3.4). For simplicity, rt will be taken to
be independent of frequency.

Let bi(co) and bz(co) denote the annihilation operators
for light propagating along the signal beam and the local
oscillator beam, respectively. The mode transformation
performed by the 50%-50% beam splitter can be taken to
be

(3.2)

where F is the proportionality factor. Similarly, for pho-
todetector 2 one has

(t) Q dco dco col/zco 1/zdt(co)d (co )
i(mem )t—'

2 2



32 SQUEEZED-COHERENT-STATE GENERATION VIA FOUR-. . . 303

a&(co) = [b~(co)+b~(co)],
I

2

a, (co)= [—b)(co)+by(co)] .
2

(3.5)

Using Eqs. (3.2)—(3.5) one can express the operator
I&(t)—Iz(t), which is proportional to the difference mode
signal, in the form

(co) —I (co)=F dco dco'co&Z2co' 'ne'~
B B

X rt[b )(co)b2(co')+b2(co)b)(co')]

' 1/2
rt(1 —g)+

2
b 1(co)[cl(co ) —c2(co )]+b2(co)[&](co )+c2(co')]

I

+ [c & (co) —c&(co)]b &
(co')+ [c ~ (co)+c &(co)]bz(co')

+ (1—g)[c ~ (co)c~ (co')+c2(co)cz(co')]

b2(co)
J
A2) =Ae ' 5(co —coo)

f
A2) .

One then has

(3.7)

Each of the operators b&(co), b2(co), c&(co), and c2(co) acts
on a separate Hilbert space. The Hilbert space on which
I~(co) I2(co) ac—ts consists of the outer product of these
separate Hilbert spaces.

The expectation of I, (co) Iq(co) is —now taken for the
state

I
4&=

I @i& I
Az& 103& 104&

where
~
03) and ~04) are vacuum states for the operators

c~(co) and cq(co), respectively,
~
g~) is an arbitrary state

of the Hilbert space of b ~(co), and
~
A2 ) acting on b2(co)'s

Hilbert space represents the state vector for the local os-
cillator light. For simplicity, let

~
A2) be a Glauber state

for an oscillator that is very stable and spectrally pure:

where

COO+ CO

X~(t,8)=f dco
B 2coO

[b ) (coo+ co )e'ee "'+H. c.]

(3.9)

is a component operator for the light in the signal beam,
as can be seen by comparison with (2.4). Hence, the bal-
anced homodyne detector measures a component of the
incoming signal mode. The precision with which this
measurement is carried out is determined by evaluating
the higher moments of I&(t)—I2(t). In particular, one
can show

(f ~
[I~(co)—I2(co)]

~
t/i) =2' coortAF(g~

~

X~(t, 8)
~ f~),

(3.8)

(f ~
[I)(t)—I2(t)]

~
P) = 2F'g A'coo(g) X)(t,8)

~ g, )+F rt(1 —g)A coof dcoco

+F rtf dcof dco'f dco"co(co'co")' e'"' " "(P~ ~b~(co')b~(co")
~
g~) . (3.10)

From this equation one sees that the rms fiuctuations in
X~(t, 8) are reported by the difference mode signal of the
balanced-homodyne detector. The degree to which the
rms fluctuations in I~(t) —Iq(t) reflect the fluctuations in
X~(t,8) is degraded by the noise terms in (3.10). By mak-
ing A sufficiently large, that is, by making the local oscil-
lator beam much more intense than the signal beam, the
last term on the right-hand side of (3.10) can be made
negligible. The second term on the right-hand side of
(3.10),

F 7J( 1 —'l7)A coof dco co,

arises as a consequence of the less-than-unity quantum ef-
ficiency of the homodyne detector and provides a floor
below which the noise power of the homodyne detector
output cannot be reduced.

Using Eq. (2.15) one can readily show from (3.10) that
the noise-power spectrum S~(co,8) of I~(co) —I2(co) nor-
malized to unity when the signal beam consists of vacuum
fluctuations is
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+2 I—
6)p

' 2 1/2

SD(~,e)=g (G(~) ]'+ (M(~) ('
~o+~ will be coupled to a field at cup —co and vice versa
via the time-dependent susceptibility. Considering the
case when all the signal beams propagate along the z axis,
in order to study what happens at the frequency ~p+co,
E, must include all the following terms:

E, = —,
'

[E((cop+co, z)e ' +H. c.]

X «[G(cp)M( —cu)e "e] .+1—7)

=gS(cp, g)+ 1 —q . (3.11)
+ —,

'
[E2(Cpp —Cp, z)e ' +H.c.] (4.5)

Hence, it has been demonstrated that the noise-power
spectrum (2.16) is directly observable with a homodyne
detector. Noise squeezing is observable as a reduction of
the SD(cp, 8) below the shot-noise level of unity.

IV. SIDEBAND FOUR-%'AVE MIXING

In this section a wideband model for a four-wave-
mixing medium is constructed. The treatment follows the
approach of Yariv. ' The medium is taken to be lossless
and to have a nonlinear polarization with a third-order
polarizability. The pump beam is assumed to be classical.
For a treatment of the four-wave-mixing medium from a
microscopic point of view the reader is directed to Reid
and Walls. '

The case when all electric field vectors are polarized
along the same direction will be treated. Hence, the non-
linear polarization may be written as

aE, O'E,
k+~ ))

Bz Bz2

one obtains, by substituting Eqs. (3.3)—(3.S) into (3.2),
1/2

E,(1)E,(2)
BE((cop+co, z)

BZ

l8
(CPp+CP )

2

(4.6)

i(k —k )z
XE2(cop —cp, z)e

BE2(Cpp+Cp z) id
az 2

(CPp+ CP )

' 1/2
(4.7)

E~(1)E~(2)

%'here k and k „are taken to be greater than zero and
denote the magnitude of the k vectors for light oscillating
at cop+co and ~p —co, respectively. Making the standard
assumption that

P„]=Ed . (4 1)

E(x, t) =Ez(x, t)+E,(x, t) . (4.3)

The pump electric field, as shown in Fig. 2, arises from
two counterpropagating beams at frequency cop,

Ep(x, t)= —,
' [E~(l)e ' +H.c.]

+ —,
' [Ez(2)e ' ' +H. c.] . (4.4)

By neglecting the effects of losses in the medium, the field
equation governing the electric field is

BE BE
V E=pe +pd (4.2)

Bt2 Bt2

The electric field E (x, t) can be separated into the pump
field Ez(x, t) and the signal field E,(x, t),

where n is the index of refraction of the medium, Eqs.
(4.7) can be written in the form

d A i (cop+ cP, z)
=LK 1—

dz COp

2 1/2

X e 2i(n/c)coze —t( )COp —CO, Z

—i(k —k )zXE i(cz)p —cp, z)e

where for simplicity it has been assumed that e is indepen-
dent of frequency. Introducing the field amplitudes

1/2

EI (4.8)
COg

The pump field will generate a time-dependent suscepti-
bility oscillating at 2cop. An electric field oscillating at

PUMP

dA2(Cop+Co, z)

dz
= —lK 1—

COp

' 2 1/2
(4.9)

a, (~,O)
FOUR- WAVE-

MI X I NG
MEDIUM

a) (CU, L)

az((u, L)

where
2

Xe2i(nlc)razed t(

d ~pic= — 3 (1)A (2)P JP (4.10)

BEAM

FIG. 2. Four-wave mixer.

is, in general, a complex number and c is the vacuum
speed of light. Equations (4.9) can be integrated as fol-
lows.
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Let

X(z) =A ((cop+co,z),

y'(z)=~2(cop c—o z)
(4.11)

=ia*e ' 'X(z)
dz

~These equations readily yield

d X .bdX(z)
~

~2 ( )

(4.13b)

(4.14)

a=a 1—
COp

2 1/2 which has the general solution

X(z) hei[ b+(
~

a—
~

2+b )(~2]z+gei[ b —( —
~

a
~

~+b2)(~2]z

n6= 67,
C

then Eqs. (4.9) can be reexpressed as

dX (z) 2cbz y—(
dz

(4.12)

(4.13a)

(4.15)

An expression for Y(z) can be obtained by substituting
Eq. (4.15) into Eq. (4.13a).

Taking the nonlinear medium to exist in the region
O~z ~L, the solution to Eqs. (4.9) can be put into the
form

I

c(co)e ' '"' A)(co()+co, 0)+ia(co)e ' '"' sin[c(co)L]AZ(cop co, L—)
A ((co()+co, L ) =

c (co)cos[c(co)L] ib (co—)sin[c (co)L]

—ia*(co)sin[c(co)L]A)(cop+co, 0)+c(co)e ' ' ' A2(cop co, L—)
A z (cop —co, 0)=

c (co)cos[c (co)L]—' ib(co)sin[c (co)L]

(4.16)

where

a (co) =ic 1— CO

2 1/2

I

where

GM(co) = c (co)e
c (co)cos[c (co)L]—ib(co)sin[c (co)L]

b(co)=
C

c(co)=[
~

a(co) ~' +b( c)o']'

(4.17) ia (co)sin[c(co)L]
c (co)cos[c (co)L] ib (co)sin—[c(co)L]

(4.22)

ik z
a((cop+co, z) =3 ((cop+co, 0)e

—ik z
a2(cop+co z) =32(cop+co 0)e

(4.18)

are introduced. Now k„ is given by

k„=—(co()+co) .
C

Let Op denote the phase shift experienced by light at fre-
quency cop as it propagates along the length L of the non-
linear medium at frequency ~,

(4.19)

n
Hp = copL

C
(4.20)

Using Eqs. (4.17)—(4.19), Eq. (4.16) can be put into the
form

a((cop+co, L) =GM(co)a((cop+co, 0)

+MM(co)a 2(cop —co, L ),
(4.21)

a 2(cop+ co, 0) =MM (co )a, (cop —co, 0)

+ GM(co)a2(cop+co, L ),

In order to use these results as a building block for
analyzing cavity four-wave mixers it is convenient to reex-
press Eq. (4.16) in terms of creation and annihilation
operators that include phase shifts due to position dis-
placements.

Hence the operators

Equations (4.21) and (4.22) together with the defining
equations (4.17) constitute the major result of this section.
The wideband behavior of various four-wave-mixing con-
figurations capable of producing squeezed coherent radia-
tion will now be described.

bz(cop+co) =e'~(")az(cop+co, 0) . (5.1)

Let LD denote the difference in the length of the optical
path followed by light traveling from the four-wave mixer

V. COHERENTLY COMBINING THE OUTPUT BEAMS
OF A FOUR-WAVE-MIXING MEDIUM

Yuen and Shapiro' have pointed out that squeezed
coherent radiation can be generated by coherently cornbin-
ing the output beams of a four-wave-mixing medium via a
50%%uo-50% beam splitter. The device they proposed is de-
picted in Fig. 3. The input beams a&(0) and a2(L) are
separated from the output beams a2(0) and a)(L) via the
optical circulators labeled C. The output beams are then
combined via a 50%%uo-50% beam splitter, labeled M2. The
light in either c~ or c2 can exhibit squeezing. A phase
shifter P has been included in the figure as a convenient
way of simulating what happens when the output beams
a2(0) and a ((L) travel over different optical path lengths.
Letting the beam path labels of Fig. 3 also denote the an-
nihilation operators for the optical modes traveling along
the beam path, one has for the phase shifter
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bp

c,
M2

Cs

1
cI(coo+co) = [a I (coo+co L)+b2(coo+co)l

2

1
c2 ( cop + co ) = —[—a I ( cop +co, L ) +b p ( cop +co )]v'2

(5.5)

az (0) a1 {L)

Equations (5.1) and (5.5) together with Eq. (4.21) can be
solved to express the annihilation operators cI(cop+co)
and c2(coo+co) in terms of the creation and annihilation
operators of the incoming light.

In particular,
a1 (0)

c az (L)
C

to the 50%-50% beam splitter along beam path a2(0) and
a, (L). One then has

FIG. 3. Four-wave-mixer configuration capable of generating
squeezed coherent light. Circulators C are used to separate the
light propagating towards and away from the four-wave-mixing
medium F. M2 is a 50 jo-50% beam splitter. The phase shifter
III simulates the effect of unequal path lengths for the light prop-
agating to M2 from the four-wave-mixing medium;

c I ( cop +co )

1
G~(co)[a I(cop+co, 0)+e'~I 'a2(cop+co, L)]

MM(co)[e' ' 'a I(cop —co, 0)+a2(cop —co, L )] .

(5.6)

This equation is not of the form (2.9) and hence Eq. (2.16)
is not applicable. However, working from the expression
given for X,(t, B) in Eq. (2.5), one can show that the
noise-power spectrum for the X, (t, B) component of the
light in the output beam c& is

P(co) =Pp+corD, (5.2) S(co,B)=
i
G~(co)

i + iMM(co)
i

where
2 1/2

cos(co TD )

4'o =coo
C

is the phase shift at the pump frequency cop and

(5.3)
i (28+go)

&&Re[e ' Gsc(co)MM( —co)] . (5.7)

(5 4) Upon writing a (co) in the form

is the difference in arrival time for pulses propagating
along the two optical paths.

For the beam splitter one has

a(co)=
~

a(co)
~

e (5.8)

and using Eqs. (4.22) the noise-power spectrum can be ex-
pressed as

c (co)+
~
a(co)

~

sin [c(co)L]
c (co) —

~

a(co)
~

sin [c(co)L]

2[1—(co/coo) ]'
~

a(co)
~
c(co)cos(corD)sin[c(co)L]sin(28+$o+Bo+go)

c (co) —
~

a(co) sin [c (co)L]

(5.9)
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FIG. 4. Noise-power spectrum, for the components of the
light leaving port cl of the device depicted in Fig. 3, exhibiting
the greatest noise squeezing and noise enhancement at co=0 for
the case when the. two beam path lengths for light propagating
to M2 are equal (LD ——0) and L =1 cm, n =1,~L =1.

FIG. 5. Noise-power spectrum, for the component of light
leaving port c ~, exhibiting the greatest noise squeezing at co =0,
when the two beam path lengths to M2 differ by 5 cm (LD ——10
cm) and L =1 cm, n =1, ~L =1.
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I the second term of (5.9) vanishes, and, since the denomi-
nator of the first term is always less than or equal to the
numerator, one has S(co,O)) 1 for all oI. In this case
$(co,8) is independent of the path length difference LD.
Figure 7 shows $(oI,H) when (5.12) holds. This figure is
plotted for the same parameters used in Figs. 5 and 6.

VI. A FOUR-WAVE-MIXING MEDIUM BACKED
BY A TOTALLY REFLECTING MIRROR

where a(co), b(co), and c(co) are defined by Eqs. (4.17).
From Eq. (5.9) one sees that the largest amount of noise
squeezing at m=0 occurs when

26'+ 0o+ ~o+ 4o =—
2

(5.10)

This condition may be met by properly adjusting the local
oscillator phase 0. Maximum noise enhancement at co=0
occurs for the component in quadrature to the component
exhibiting maximum squeezing, that is,

2~+go+ I9o+ go ——m /2 . (5.1 1)

In Fig. 4, Eq. (5.9) is plotted for the components specified
by Eqs. (5.10) and (5.11). The length L of the active
medium was taken to be 1 cm long. The index of refrac-
tion n of the medium was taken to be 1, and the product
~L was taken to be 1 and the difference in the beam path
lengths LD was taken to be zero. Note that both com-
ponents exhibit regions of noise squeezing S(oI) &1 and
noise enhancement S(oI) ~1. Figures 5 and 6 illustrate
the effect of a nonzero path difference LD. All the pa-
rameters for these figures are the same as those for Fig. 4
except now LD ——10 cm. Note that the noise-power spec-
trum of each component exhibits pronounced dips below
the shot-noise level S(oI)=1.

When

I I I I I I I I I I l I I I I I I

0 5 X10" 10X]0'0 15X10'0

co (s-')
FIG. 6. Noise-power spectrum for the component of light in

quadrature (90') to the component displayed in Fig. S.

0I(oI) = I9I(0)+rIco,

where

(6.2)

I9I(0)= (6.3)

is the phase shift for light at coo and

Li
(6.4)

In this section a four-wave-mixing medium backed by a
totally reflecting mirror is discussed. The device is de-
picted in Fig. 8. The four-wave-mixing medium acts like
a phase-conjugating mirror. This phase-conjugating mir-
ror together with the totally reflecting mirror forms a cav-
ity. As the reflectivity of the phase-conjugating mirror
approaches unity the cavity is brought near the threshold
of oscillation. In a narrow-band analysis Yurke has
shown that a large amount of squeezing is generated in
the output beam as threshold is approached. Here the
wideband behavior of the device is presented. It is shown
that the noise-power spectrum for a component of the
output can exhibit rich structure, exhibiting regions of
both noise squeezing and noise enhancement.

Let OI(oI) denote the phase shift suffered by light at fre-
quency coa+~ as it propagates from the four-wave-mixing
medium to the totally reflecting mirror. Then
az(coo+oI, L) can be exPressed in terms of aI(coo+oI, L),

2i 8&(,co)
a2(oIo+co, L) =e ' aI(coo+co, L) . (6.1)

Let LI denote the distance between the four-wave-mixing
medium and the totally reflecting mirror, then

2~+ 4o+ ()o+ 4o =0

I I I I

IO—
I I [ I I I I [ I I I I I I

(5.12) is the time it takes light to travel from the four-wave-
mixing medium to the totally reflecting mirror. Equation
(6.2) together with Eq. (4.21) may be solved to yield the
outgoing annihilation operators a2(oI, O) in terms of the
incoming creation and annihilation operators a I(co,O) and

PU

O. I =-I I I I I I I I I I I 1 I

0 5 x IO'o IO x IOIo

(u(s I)

I

I5xIOIo

INPUT

SQUEEZED
OUTPUT

FOUR- WAVE-
Ml X I NG
MEDIUM

MP TOTALLY
REFLECTING

Ml RROR

FIG. 7. Noise-power spectrum for the component of light 45'

to the component displayed in Fig. S. No noise squeezing is ob-

served.

FIG.. 8. Four-wave-mixing medium backed with a totally re-
flecting mirror. Output light exhibits large amounts of squeez-
ing when the reflectivity of the four-wave-mixing medium ap-
proaches unity.
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FIG. 9. Noise-power spectrum, for the components of the
light leaving the device of Fig. 8, exhibiting the greatest noise
squeezing and enhancement at ~=0 for the case when the dis-
tance L

&
between the four-wave-mixing medium and the totally

reflecting mirror is zero and L = 1.cm, n = 1, ~L =0.5.

FIG. 10. Noise-power spectrum, for the component of light
leaving the device of Fig. 8, exhibiting the greatest noise squeez-
ing at co =0 for the case when the distance L ~ between the four-
wave-mixing medium and the totally reflecting mirror is 5 cm,
the other parameters being the same as for Fig. 9.

a I(co,0). The result is

a2(coo+co, 0) = G2t (at)a I (coo+co, 0) +My (co)a I (coo —co, 0),
(6.5)

I

i28((ru)

GR(co) =

where the amplitude gain Gz(co) and reflection amplitude
M2I(co) for the four-wave mixer with a totally reflecting
mirror in terms of the medium's amplitude gain GM(at)
and reflection amplitude MM(co) is

MM(~)I 1+(GM(~)GM( ~) MM(~)MM( ~)le
Mz(co) =

1 —M(co)M*( — )

(6.6)

Equation (6.5) is of the form (2.9). Hence, the four-wave
mixer backed by a totally reflecting mirror can transform
incoming vacuum fluctuations into squeezed states whose
noise-power spectrum for a particular component is given
by (2.16).

Figure 9 shows the noise-power spectrum S (co) for both
the component exhibiting maximum squeezing at ~=0
and its quadrature component which exhibits maximum
noise enhancement at co=0. For this simulation, the dis-
tance between the mirror and the active medium was tak-
en to be zero. The length I taken to be 1 cm was chosen
for the medium, the index of refraction n was set to 1,
and the product of t'ai. was taken to be 0.5. More than an
order of magnitude in noise reduction is obtained at m=0.
Note that both components exhibit regions of noise
squeezing and noise enhancement. Figures 10 and 11
show the effect of moving the totally reflecting mirror
away from the four-wave-mixing medium. The distance
from the active medium to the totally reflecting mirror
was taken to be 5 cm in this case. All other parameters
are the same as in Fig. 9. Figure 10 displays'the com-
ponent exhibiting maximum squeezing at the origin. Note
the oscillation from maximum squeezing to maximum
noise enhancement as a function of co.

Figure 11 depicts what happens to the component in
which the local oscillator phase has been shifted by m. /4

I

radians from the phase exhibiting maximum squeezing.
In this case no noise squeezing is observed. By comparing
S(co) of Fig. 7 and Fig. 11 one sees that Fig. 11 shows
more structure than the corresponding nois'e-power spec-
trum for the device discussed in Sec. V.

I I I I
I

I I I I i I I ! I
I

I I I I [ I I I I i I I I I

I I I . I I I I I I I I I I I I I I I I I I I I j I I I I

0 5xioio ioxioto
ao(s )

FIG 11 Noise-power spectrum for the component of light
45' to that depicted in Fig. 10.
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VII. THE CAVITY FOUR-WAVE MIXER

In this section a partly transparent mirror is added to
the input-output port of the four-wave mixer discussed in
Sec. VI. The device is depicted in Fig. 12. Such a config-
uration allows one to obtain large amounts of squeezing
even when the aL product for the four-wave-mixing medi-
um is much less than unity.

The relation between the creation and annihilation
operators for light propagating along beam paths ai and
a2 have been derived in Sec. VI and are given by Eqs.
(6.5) and (6.6).

The distance L2 between the partly transparent mirror
M 1 and the four-wave mixer is taken into account with
the phase shifter Oz depicted in Fig. 12. The relation be-
tween the a&, a2 modes and the b&, b2 modes is given by

i 82(a) )
aI(cop+to)=e bI(a)o+~),

(7.1)
i 82(co)

b2(cop+co) =e a2(cop+co),

where Oq(co) in analogy with (6.2) has the form

bin bl a,

bout bp
Ml

FIG. 12. Cavity four-wave mixer. When ~L for the four-
wave-mixing medium is small, a large amount of squeezing can
still be achieved by passing the light through the medium many
times.

Equations (6.5), (7.1), and (7.4) can be solved to express
b,„t(co) in terms of b;„(aI). The result is

M 1 is taken to be given by

b I(pip+co) =& b Itt(cop +co) +( 1 —X) b2(cop+to)
(7 4)

b,„t(coo+co)= —(1 It: )' —b;„(cop+co)+It". '~ b2(coo+co) .

02(co) =82(0) + rptp,

where

(7.2) b..t(MO+~) =G(~) b,.(~ 0+~) +M(~)bt. (n 0 M), —
(7.5)

where G(pi) and M(tp) have the form

92(0)= t'Opr 2

(7.3)
G(aI) =& (~)/D(co),

M(rp) =8(co)/D(to) .
(7.6)

The scattering matrix for the partly transparent mirror
The complex numbers A (co), 8(to), and D(co) are given
by

a (co)= —(1—Z)'~'+GR(co)e' ""'+(1 IC)GR( —m)e—
—(1—It )'~ [GR(to)GR( —co) —MR(co)MR( —to)]e (7.7)
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FIG. 13. Noise-power spectrum, for the component of light
leaving the device of Fig. 8, exhibiting the greatest noise squeez-
ing at co=0 for the case when ~I=0.01, L=1 cm, n =1, and
Lp ——5 cm.

FICx. 14. Noise-power spectrum, for the component of light
leaving the device of Fig. 12, exhibiting the greatest noise
squeezing at co=0 when the transmission coefficient I( of the
mirror M1 is O.S and the mirror is located a distance L2 of 5
cm from the four-wave-mixing medium. All other parameters
are the same as in Fig. 13. Comparing with Fig. 13, one sees
that a substantial enhancement in the amount of squeezing re-
sults by putting the mirror M2 in place.
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) ( )
i[82(co)—82( —a))J

(7.&)

D(co)= 1 —(1 IC—)' [G~(m)e ' +Gz( —co)e ' ]
)fc

t'2I 02(co) —(92( —co) ]+(1 E)—[Gz(co)Gz( co—) half—z(~)Mz( —~) le (7.9)

As an illustration of the enhancement in noise squeezing
that can be achieved, consider the device discussed in Sec.
VI, where L =1 cm, n =1, L~ ——5 cm, and the ~L prod-
uct is now taken to be 0.01, a factor of 50 less than that
chosen to generate Fig. 10. The output of this device is
depicted in Fig. 13. The noise level at co=0 drops only to
0.82, unity being the vacuum fluctuation level.

By placing a mirror with a transmission coefficient
IC =0.5 at a distance L2 ——5 cm in front of the four-wave
mixer, the noise level at co=0 drops to the respectable
value of 0.32, as depicted in Fig. 14. One also has a corre-
sponding enhancement of the noise peaks and dips away
from r~=0. These peaks and dips are spaced with a fre-
quency spacing Ace corresponding to the difference in fre-
quency between two successive Fabry-Perot modes.

VIII. CONCLUSION

A wideband model for a balanced homodyne detector
has been presented. It was shown that the homodyne
detector measures a component X&(t,8) of the incoming
signal light. An expression for the noise-power spectrum
of the output of a homodyne detector has been obtained

for the case when the incoming light consists of squeezed
vacuum fluctuations. Expressions for the wideband out-
put of various four-wave-mixer configurations capable of
squeezing light have been presented. It has been shown
that the noise-power spectrum of the X, (t, 6) component
of the squeezed output light can show considerable struc-
ture as a function of frequency. In particular S(co,8) for
a given 0 generally shows regions of noise squeezing S & 1

and regions of noise enhancement S~1. These features
may facilitate the experimental observation of squeezed
coherent light since 1/f noise and other forms of low-
frequency noise originating in the homodyne detector can
be avoided by observing S(co,8) at frequencies sufficiently
far from dc. For the convenience of display, cavity path
lengths comparable to the 1-cm path length of the four-
wave-mixing medium were chosen to generate the figures.
For cavities of such dimensions, S(co) exhibits successive
dips on the GHz frequency scale, frequencies above the
response range of present photodetectors. Experimentally
it is more convenient to work with cavities a meter long or
longer. For such cavities S(co) will show successive dips
and peaks on the 10—100-MHz frequency scale, a range
easily accessible with the current generation of photo-
detectors.
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