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Equilibration distance of ions in the cathode fall
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The motion of atomic ions in a rare-gas cathode fall is limited by symmetric charge exchange.
Nonequilibrium solutions of the Boltzmann equation for this problem are presented. The distance
required for the average ion velocity to approach within 10/o of the equilibrium drift velocity is cal-
culated for constant and for linearly increasing fields, with a plane ionization source and with a uni-

form source. The equilibration distances range from two-thirds to six mean free paths. A rare-gas
cathode fall is typically 50—100 mean free paths thick; hence the ion motion may be accurately
described by the equilibrium drift velocity throughout most of the cathode fall.

The cathode fall region of glow discharges is the least
understood region and yet the most important region for
many discharge applications. The primary difficulty in
modeling the cathode fall is the failure of the electron dis-
tribution function to be in hydrodynamic equilibrium
with the local E/N (electric field to gas density ratio).
The lack of hydrodynamic equilibrium is caused by the
large and rapidly changing E/N and by the proximity of
the boundary. New theoretical approaches and recently
developed optogalvanic diagnostics should soon lead to a
more quantitative understanding of the cathode fall. '

Accurate spatially resolved electric field and gas density
(temperature) measurements are used to map the cathode
fall region of rare-gas discharges. ' The space-charge
density, which is dominated by the positive-ion density, is
determined from the spatial derivative of the electric field.
The ions are assumed to be in hydrodynamic equilibrium
with local E/N, and thus the drift velocity of the ions is
determined from known ion mobilities and the local E/N.
The product of the ion density and the ion drift velocity
determines the ion-current density. The difference be-
tween the. total discharge-current density and the ion-
current density is the electron-current density. The spatial
derivative of the electron-current density provides a map
of the ionization rate in the cathode fall. This simple
analysis is dependent on the assumptions: (1) that singly
charged atomic ions are the dominant species and (2) that
the ions are in hydrodynamic equilibrium. The first as-
sumption must be experimentally verified, but it is very
likely correct for low pressures ( —1.0 Torr). Rare-gas
molecular ions are likely to be dominant only at rather
high pressures ( & 100 Torr). The distance required for
the average velocity of atomic ions to approach within
10% of the equilibrium drift velocity is derived for four
idealized cases in the following paragraphs. The equili-
bration distance for the ion velocity is two-thirds of a
mean free path for a constant field with a plane ionization
source, 4.5 mean free paths for a constant field with a uni-
form source, 1.7 mean free paths for a linearly increasing
field with a plane source, and 5.7 mean free paths for a
linearly increasing field with a uniform source. The latter
two cases provide a lower and upper bound for the frac-
tion of the cathode fall where the ion velocity is less than

the equilibrium drift velocity. A normal rare-gas cathode
fall has a thickness of approximately 50 to 100 mean free
paths for symmetric charge exchange. The average ion
velocity can be approximated as the equilibrium drift
velocity throughout most all of the cathode fall.

The electric field in the normal and abnormal cathode
fall is very definitely a function of position, but for the
purpose of this initial discussion it will be assumed that
the field is constant and is in the z direction. The mobili-
ty at high E/N of atomic ions in their parent gas is large-
ly determined by symmetric charge exchange. Little
momentum is transferred in these charge-exchange col-
lisions. The symmetric charge-exchange-collision cross
section is only weakly energy dependent. Wannier
presented an elegant expression for the collision term of
the Boltzmann equation in the approximation that (1) no
momentum is transferred in the charge-exchange collision
and (2) the cross section is independent of energy. The
Boltzmann equation including this collision term is

Nouf +No5(v) —f f f fu du, du„du„+P(z)5(v),

where e is the electric charge, M is the ion mass, o is the
charge-exchange cross section, and other symbols have
their usual meanings. The last term which involves P(z)
is a source term which represents the production of "new"
ions via electron impact ionization. Consider, as case 1, a
plane source at the origin. The source function P(z) is
therefore j5(z) where j is a constant. The time-
independent nonequilibrium solution in which the ions
start from rest at z =0 is

fi =j5(u„)5(uy ) I exp( —N c)rs (zu )5(u /2 —az)

+(oN/a)[s (u, )—s (u, —&2az )]
X exp[ u, No. /(2a)] I, — (2)

where a is the ion acceleration eE/M, and s(u, ) is the
step function of u, . This solution for large z approaches
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Wannier's equilibrium solution. The distribution func-
tion given in Eq. (2) is not normalized in the usual sense
because it is a nonequilibrium distribution. The integral

f f f f,vdu, du„du,

is the particle flux density jz, which must be independent
of position by conservation of particles. The integral

f f f f,du, du„du,

is the particle density which is dependent on position be-
cause the ions are accelerating T.he average velocity of
the ions in the z direction is

f f f f, u, du, dv„dv,
&v. )= f f f f,du, du„du,

,(3)
exp( —O'Nz)/V 2az +V'~oN/(2a) erf(V'oNz )

where erf(x) is the error function. The average velocity
has the small-z limit of v'2az which is expected from
kinematics, and it has the large-z limit of V'2a/(oNn ), in
agreement with Wannier's equilibrium drift velocity. The

average velocity reaches 90% of the equilibrium drift
velocity in a distance 0.65/(oN), or about two-thirds of a
mean free path. Higher inoments of the distribution func-
tion also approach their equilibrium values in short dis-
tances, but not as quickly as the average velocity.

The distribution function of Eq. (2) has been presented
by several authors in discussion of ions in the cathode
fall. The distribution function has previously been
misidentified as an energy distribution function; probably
because f fiMv, du, is position independent. The distri-
bution function of Eq. (2) is here identified as a solution
to the Boltzmann equation and, thus, is a velocity distri-
bution function. An integral expression which can be
used to derive a velocity distribution function for an arbi-
trary position-dependent field with a plane ionization
source is given in Ref. 8. Nonequilibrium double-humped
distribution functions for Ar+ ions in Ar have been ob-
served in a low-pressure drift-chamber experiment. 'v

A solution of the Boltzmann equation for a constant
field with an arbitrary source function P(z) is constructed
using the plane-source solution as a Green's function.
The distribution function for constant field with an arbi-
trary P(z) is

f =5(u„)5(u~) f P(zv)[exp[ oN(z —z—o)]s(u, )5(u, /2 —a(z —zo))

+ (oN/a) Is (v, ) —s [v, —V'2a (z —zo)] I exp[ u, No'/(2a—)]]dzo . (4)

Consider, as case 2, a uniform source for non-negative z. The source function P(zv) in Eq. (4) is replaced by rs(zo). The
particle flux density

f f f f,vdudu„du,

is equal to rzz; it grows linearly with distance &om the origin. The average velocity of the ions in the z direction is

f f f f,v, du, du„du,

f f f f,du, du„de v'm/(2aNcr)[erf(V'oNz )(crNz+1/2)+VoNz/m. exp( oNz))—

The average velocity in case 2 approaches the equilibrium
drift velocity of v'2a/(oNir), but approaches more slowly
than in case 1. The slower convergence is due to the pro-
duction of new iona at rest via electron impact ionization
at all z&0. The distance required for the average ion
velocity to reach 90% of the equilibrium drift velocity is
4.5 mean free paths in case 2.

Experimental studies of the electric field in the cathode
fall indicate that the field increases with distance from the
cathode-fall —negative-glow boundary. The field reaches a
maximum at or near the cathode surface. The spatial
dependence of the field has long been approximated as
directly proportional to z, the distance from the cathode-
fa11—negative-glow boundary. Recent accurate electric

field measurements using optogalvanic detection of Ryd-
berg atoms support this simple spatial dependence of the
field. " The Boltzmann equation with a linearly increas-
ing field is

8 8+kz +v VfBt Bv,

= —Novf+No5(v) f f f fudv, du„dvs+P(z)5(v),

where kz is the ion acceleration. The source function
P(z) for case 3 is a plane source j5(z —zo) where zv &0.
The distribution function for z &zv is

f3 —j5(v„)5(uz )[exp[ oN (z —zo ) ]s (u~ )25—(v~ —kz +kzo ) +(oN/v k ) Is (u~ )—s [u~ —(kz —kzo )'~ ] I

&&exp(o.¹I[1—u, /(kz )]'~ —1])/(kz —u, )'~ ] .
This distribution function for large z approaches Wannier's equilibrium distribution function

f,q
——j5(u„)5(us )[oN/(kz)]s (u, ) exp[ —v, oN/(2kz)] .
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We need to specify zv in order to compute an equilibration distance for the average velocity. If zp ))(oN), then the
field changes only slightly in a mean free path and the equilibration distance will be that of the constant field problem.
The interesting case is for zv near zero. The average velocity in the z direction for this case is

f f f f,u, du, du„du,

f f f f,du, du. du, exp( tr—Nz)/(V kz)+troN exp( oN—z)[Io(oNz)+Le(oNz)]/(2v k )
(9)

where Iv(z) is a modified Bessel function of order 0 and Lv(z) is a modified Struve function of order 0 as defined and
tabulated in Refs. 12 and 13. The average velocity for this case reaches 90% of the equilibrium drift velocity
V'2kz/(pro N) in 1.7 mean free paths.

The plane-source distribution function for the linearly increasing field can be used as a Green s function to construct
an ion distribution function for an arbitrary source function P(z). The distribution function for a linearly increasing
field with an arbitrary source function is

f =5(u„)5(vs) f P(zo)[exp[ crN—(z —zv)]s(u, )25(u, kz —+kzv)+(crN/v k )Is(u, ) —s[v, (k—z kz—v)'~ ]I

Xexp(cr¹I[1—v, /(kz )]' —l I )/(kz —u, )' ]dzv . (10)

If the source function of the cathode fall is known, then it is possible to calculate a fairly realistic distribution function
and equilibration distance for the ions. Unfortunately, it is the source function we are proposing to map from accurate
field and gas density (temperature) measurements by assuming that the ions are equilibrated. This seems to suggest that
the Boltzmann equation for ions, the Boltzmann equation for electrons, and Poisson s equation must be solved simultane-
ously. Fortunately, a simultaneous self-consistent solution of these three equations is not necessary. The source function
P(z) is a decreasing function of z throughout the cathode fall. An electron avalanche starts from one electron emitted at
the cathode and grows as z decreases. Thus we can cotnpute an upper limit for the equilibration distance of the ions in
the cathode fall by using a uniform source function for positive z. This is case 4. The average ion velocity for a linearly
increasing field with a uniform source of ions at all positive z is

f f ff,u, dv, dv„du,

f f f f4du, du„dv„exp( crNz)trI Iv—(oNz)+La(oNz)+oNz [Ii(trNz)+L i (oNz)+2/m]I /(2v k )

where Ii(z) and Li(z) are modified Bessel and modified
Struve functions of order 1. The distance required for the
average velocity to reach 90% of the equilibrium drift
velocity v'2kz/(troN) is 5.7 mean free paths.

A normal rare-gas cathode fall is 50 to 100 mean free
paths thick. ' The ratio of 50 or 100 is independent of
pressure because the product in Torrcm of pressure and
thickness is constant for a normal cathode fall. The asser-
tion that the ion velocity in a rare-gas cathode fall can be
approximated by the equilibrium drift velocity is justified.
The approximation fails within the first 6 mean free paths
of the cathode-fall —negative-glow boundary. The approx-
imation should be reliable for positions more than 6 mean
free paths from the cathode-fall —negative-glow boundary.
The collision term of the Boltzmann equation used in the
preceding calculations is valid only for high field, but this
should lead to an overestimate of the equilibration dis-
tance. Recent nonhydrodynamic calculations of electron

kinetics suggest that the source function is fairly uniform
near the cathode-fall —negative-glow boundary. '

It should be emphasized that the short equilibration
distance is unique to the ions because of the symmetric
charge exchange. The electrons in the cathode fall are not
in hydrodynamic equilibrium. The nonequilibrium distri-
bution of the electrons is a topic of high current interest
for theoretical and experimental researchers.
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