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For random walks on finite lattices with multiple (completely adsorbing) traps, one is interested in
the mean walk length until trapping and in the probability of capture for the various traps (either
for a walk with a specific starting site, or for an average over all nontrap sites). We develop the for-
mulation of Montroll to enable determination of the large-lattice-size asymptotic behavior of these
quantities. (Only the case of a single trap has been analyzed in detail previously. ) Explicit results
are given for the case of symmetric nearest-neighbor random walks on two-dimensional (2D) square
and triangular lattices. Procedures for exact calculation of walk lengths on a finite lattice with a
single trap are extended to the multiple-trap case to determine all the above quantities. We examine
convergence to asymptotic behavior as the lattice size increases. Connection with Witten-Sander ir-
reversible particle-cluster aggregation is made by noting that this process corresponds to designating
all sites adjacent to the cluster as traps. Thus capture probabilities for different traps determine the
proportions of the various shaped clusters formed. (Reciprocals of) associated average walk lengths
relate to rates for various irreversible aggregation processes involving a gas of walkers and clusters.
Results are also presented for some of these quantities.

I. INTRODUCTION

(n)=(N —1) 'gist (n)t

are of particular interest.
For sites lr', adjacent to IT, one has that (n ),=N —1

l~
for walks with jumps to neighboring sites only, indepen-
dent of lattice structure. For general 1 =(li, l2, . . .) on a
hypercubic lattice, where all sites except lT ——(0,0, . . .)
have identical jump rates p (m) [for a jump of
(m„mz, . . .) lattice vectors), we define ok =gkmkp(m)
and

( [l ( ~ =(gklk ltrk)'r . Then one has that

+O(1) N in 2D
n t ~ STAT io'2

[u+O()(l() )]N in d &3D,

(1.1a)

(1.1b)

for large ~l~( (&&N), where u ' (=0.340537. . . for a
simple-cubic lattice) is the probability of escape (i.e.,
nonreturn) for a walker starting at the origin on an infi-
nite, perfect lattice. From (1.1), it is also clear that

Extensive results are available characterizing random
walks on a finite lattice of N sites (with periodic boundary
conditions) having a single (completely adsorbing) trap
lT. ' The basic quantities of interest are the mean num-
bers of steps until trapping, (n )t, for walks starting from
various lattice sites l&lT (the trap position). These, of
course, have a natural interpretation as first passage times
on a corresponding perfect lattice. The characteristics of
the lattice-averaged stalk length,

1IlX o

( n ) — 2m-o, o,
uN in d) 30,

(1.2)

where we have used that 1n~ ~l
~

(-lnN'~ for most contri-
butions in 2D. If S„denotes the mean number of distinct
sites visited by an n-step walk on an infinite perfect lat-
tice, then one can show that (1.2) implies" S(„&-N.
This result, if also true for the corresponding finite lattice
S„, has the interpretation that the walker, on average,
visits all distinct nontrapping sites once before being
trapped. @ ' Another perspective on the behavior of (n )
follows from assuming that the (average) probability for
trapping on the nth step is (1—1/N) " '(1!N), so that

(n) —g„,n(1 —1/N) " '(1/N)

[which has been shown to agree with (1.2) in d )3D].
Efficient algorithms, exploiting lattice symmetry, have

been developed to calculate ( n ) i (and thus (n ) ) directly
and exactly for finite lattices (results for N-10 are
readily obtained). ' Such results for (n) have been
compared with those obtained from the first few terms of
large-N asymptotic expansions whose first terms are given
by (1.2). There is close agreement even for small lattice
sizes. These techniques can be readily adapted to model
modifications such as biased walks and alternative
boundary conditions.

Montroll has extended the above formulation to charac-
terize a random walk in the presence of multiple (com-
pletely adsorbing) traps, denoted here by
L = I lT', lr, . . . , lTI for t traps. " Again the site-specific
walk lengths until trapping, (n )t, for 1EL, and the aver-
age walk length, (n)=(N —t) 'gt+~(n)t, are of par-
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ticular interest. As the appropriate expressions for these
quantities are rather complicated, little specific analysis
has been given. The above discussion suggests that here,
provided all trap separations are O(1), (1.2) should still
hold in 2D. Consequently the influence of multiple traps
(as compared with a single trap) will only be seen in the
coefficient of the O(X} correction term. However, for
d )3D, lim~ (n )/X should be lowered from u by the
presence of multiple traps. This behavior will be con-
firmed below. The above single-trap procedures for direct
calculation of (n )t can be extended to the multiple-trap
case, but ease of calculation is greatly enhanced by the
presence of trap-lattice symmetries. The concept of lat-
tice decimation, wherein successively larger regions of the
lattice are replaced by traps, also provides some systemat-
ic siinplifying features. For the multiple-trap case, trap-
ping or capture probabilities for individual traps are non-
trivial for walks starting from a specific site. (The trap-
specific mean walk lengths are also nontrivial. ) One can
have traps of distinct syminetry for t&3, and, in this
case, lattice-averaged trapping probabilities become non--
trivial and lattice-averaged trap-specific walk lengths vary
from (n). Finally, we note that there has been some
analysis of the case of a periodic array of traps (on a
periodic lattice}. '

The multiple-trap problem has obvious application to
the description of particle-cluster aggregation where a sin-
g1e randomly walking particle, upon reaching a site adja-
cent to the immobile cluster, sticks (or coalesces) irreversi-
bly (cf. the Witten-Sander model for the diffusion-limited
aggregation of fractal-like clusters' }. Here sites adjacent
to the cluster are assigned as (completely adsorbing) traps,
i.e., one decimates sites adjacent to the appropriate
cluster-shaped set of (trap) sites (see Fig. 1). We note that
the cluster shape distribution in the %itten-Sander model
is determined by the characteristics of an appropriate set
of Jii~ 00 trapping probabilities. ' Calculation of site-
specific walk lengths allows determination of the average
over all sites external to the decimated cluster. (Recipro-
cals of) such average walk lengths relate to rates of de-
struction of immobile clusters, with a specific shape, by
irreversible aggregation with walkers in a gas of random
walkers and immobile clusters. Determination of shape-
specific cluster creation rates requires a more detailed
knowledge of trap-specific capture probabilities.

Before outlining this contribution, we describe briefly
work on other aspects of, and models for, multiple-trap
problems. One can consider the effect of traps on the

probability of return to the origin (for finite or infinite lat-
tice). ' Problems involving a random distribution of traps
naturally arise in modeling exciton transport in photosyn-
thetic processes. Processes where "regular" sites have a
nonzero trapping probability were also considered here.
There is a large body of work directed at analyzing trans-
port and/or diffusion characteristics of walks on imper-
fect lattices.

In Sec. II, we first review Montroll's generating-
function formulation for walks on a finite lattice with
multiple traps. " Expressions for trapping probabilities
are introduced, and these together with Montroll's expres-
sions for walk lengths are expressed in a simplified, more
convenient form. Explicit expressions are given in cases
of just a few traps. For lattice-averaged walk lengths, we
give some indication of behavior for large connected com-
pact clusters of traps. Explicit large-N asyinptotic results
are given in Sec. III for symmetric, nearest-neighbor ran-
dom walks on a square lattice. There is also some discus-
sion of the corresponding triangular-lattice problem. In
Sec. IV, we show how matrix techniques for exact calcula-
tion of walk lengths, on finite lattices with a single trap,
extend simply to the multiple-trap case and can also be
used to calculate trapping probabilities. The relationship
of the matrix structure and (reduced) walk lengths for a
decimated problem to those of the original problem is elu-
cidated. Extensive numerical results are given for the case
of a square lattice. Finally, some concluding remarks are
made in Sec. V, and application of these results to
particle-cluster aggregation models is indicated.

II. GENERATING-FUNCTION FORMULATION
AND ANALYSIS OF THE MULTIPLE-TRAP

PROBLEM

The development presented here is based on that of
Montroll. " The set of t traps is denoted by
2 =IlT', lr, . . . , lTI. The most basic quantity for this
process is the probability P„(l) that the walker is at site 1

after n steps, given that it started at l, so P0(l)=5&ta.
The corresponding generating function is given by
P(l) =—g„p"P„(l). Since clearly g&P„(l)= 1, for all n,
one has that gtP (l) =(1—z)

The probability of trapping (or capture) at lT =l' is
trivially P (l') —=lim„P„(l'). Since one has

it follows that

(2 1)

(2.2)

FKx. 1. Aggregation with a bent trimer; adjacent sites which
have been decimated to traps are denoted by T.

Since the probability of trapping at l' on the nth step is
P„(l')—P„ i(l'), we conclude that the mean walk length
(n )t0 &,

from I to I' is given by
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& ii),0,;=
g n [P„(l')—P„ i(l') ]

n=1

g [P„(l')—P„. i(i')]
n=1

[(1—z)P(l')],

P„(i') (2.3)

(n), 0
—— [(1 z—)[P(&')+P(i )+ ' ' +P(i')]I =i ~

z

(2.4)

Montroll has provided expressions for P(l) in terms of
the generating function, G(l), for random walks (starting
at the origin) on a corresponding perfect lattice, as"

P(i)=G(1—lo)+ g [(1—z)G(i —l~)+5 ig, ]P(l ) .
k=1

(2.5)

It is now clear that the mean walk length from i for cap-
ture at any trap is"

A simultaneous set of equations is provided by (2.5) for
the P (1"). Solving these by Cramer's rule yields'

, G21
P(i")=(1—z)-'

G31

GZ k-1 G20

G3 k —1 G30

GI1 G1 k —1 G10 G1k+1

G2 k+1
detI G;1 I, (2.6)

0 4

where G; =G(l —i )=GJ, , and i,j in det[G;1 I run from 1 through t. Equation (2.6) allows calculation of various quan-

tities for a walker starting at a specific site 10. Corresponding averages over i KL can be obtained in terms of

P(ik) y p(ik)
log L

Since

(2.7)

and

QG~O
—gz "QG„(lj—l )=(1—z)

IO n gO

we conclude that

G1 k —1 1 Gl k+1 . G1

N t (N —r—)(1—z)
1 —z P /~ = G2 k —1 l G2 k+1 Gz, detI G;J I . (2.8)

To reduce these expressions further, it is necessary to
analyze in more detail the generating function, G (i), for
random walks on a perfect lattice. For a finite periodic
d-dimensional lattice where N =L, one has that

where A,(8)=pip (l)exp(il 8), so

G(l) = +@(l,z),1

N 1 —z
(2.10)

and N(l, 1) is finite. Previous detailed analysis has shown
thai'

d L —1
'

G(l) =
d Q g exp(2mii k/L)/[1 zA,(2'/L)], —

j=l k =01

(2.9)

N(O, z)-(cilnN+cz+csN '+ . )+0(l —z)'~2

in 2D, (2.11a)

where ci ——(2mricrz) ' for a square lattice, and the first
few c; have been calculated for various 2D lattices. One
can also deduce from previous work that

4(O,z)-(u+czN ' + . )+O(1—z)'~ in d & 3D .

(2.11b)

Csiven these results, we naturally make the decomposition
N(l, z)=4(O,z)+e(l,z), and express quantities of interest
in terms of N(O, z) and @i=e(1' lj,z) as z —+ l. —

The first step is to exhibit explicitly, through G (0) fac-
tors, any z~ 1 singular behavior in the determinants ap-
pearing in (2.6) and (2.8). We thus note that
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62k 1 1 G2 k+1

&1k —1 1 &1kg1

ez k 1 1 ~2k+1 (nonsingular), (2.12a)

Gl k —1 G10 G1 k+1

G2 k —1 Gzo Gz k+1

~11—~10

G(0). e'gt —ego

&1 k —1
—&10

~2 k —1
—~20

~1 k~1 —&10

&2 I ~1—&20

&11 ~1 k —1 ~10 ~1 k+1

&zk —1 &20 &2k~1 (2.12b)

aIld

detI G~j I =G(0)
~12

&Z~ +,&21 ~2~ + ''+ &21 e~, , 1 +detIe, J I .

(2.13)

Note that the symmetnc sum over the dete~in~ts (2.128), or over those constituting the cufflcient of G(0) in (2 12b)
[i.e., the coefficient of G (0) in (2.13)],equals

~12 ~11 ~1t ~11

&zs —&21

~11 ~12

&12 ~22 1 F23 622

&1r
—&&2

&zr —&ZZ (—=S, , say) . (2.14)

It now follows that

~11 ~10 &1 k —1 ~10 1 61 k ~1 ~10

P (l )= e~g —@~0
k

&2 k -1—&20 ~2 k~1 620 s, , (2.15)

P (l )= eqt
N —t ~2k —1 1 ~2k~1

+11 ~1 k —1 1 61 k~1
1

5,— (2.16)

P„(I')= ~12+~10 ~20

2E12

(2.17)

so P (l')=P (l )=—,
'

(as must be the case since both
traps are equivalent), and for a triple of traps (t =3)

sphere the e,j. are now evaluated at z =1. Thus one has
for a single trap (t =1) trivially P (l')=P (I')=1, for a
pair of traps (t =2)

S~'P (I )= &z~«iz+&I~ —&z~)

1 2+ [ e23(s12+e13 +23)+( 12 e13)X—3

(2.19)
where

2 2 2S3 2( 12&23+&13 2s+&12e13) s12 e13 23 ~

and corresponding expressions for traps I and l are ob-
tained by permutation of indices. For the special case of a
connected triple of traps where l' and l, / and l are ad-
jacent, so etq ebs eNN——(=———1, as shown below), and
e13———1 —p, one has that

P (I' ):P„(1)

S3 Poo(I ) ~23(e12+~13 ~23)++23(e20+e30 2e10)1

+(e12 e13)(~30 F20) (2.18)

=[I~p/(N —3)]:[(1—p) 2pl(N —3)] . (2.—20)

Note that it is possible for I and I to also be adjacent
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(p=0) on a.triangular lattice wherein (2.20) shows that
the P (l') are equal (as required).

For a multiple-trap problem where all sites within hop-
ping range of a particular trap lz' ' are also traps, it is
clear that the walker can never reach Iz'-", and thus
P (lT'") =P (lT' ') =0. Such a condition obviously im-
plies complicated relationships between the e,j for associ-

I

ated geometrical configurations. In the next section we
consider one such simple example.

Let us now consider the mean walk length, (n )tp fl'oiil

a specific starting site l, and the average walk length
(n ) =(N —t) 'gt, +~ (n )io. Froin (2.4), (2.6), and

(2.12)—(2.14), one has that

11 61 k —I 610 61 k+1
G(0) S,+ g e2i ~2 k —1 ~20 ~2 k+1

(n),o= a
r Bz G(0) S,+detIe;J j

g ezi
k=1

~2 k —1 ~20 ~2 k+1 —detIe;, j (2.21)

where the e;~ are evaluated at z =1. Thus for a single
trap ( t = 1), one has that (n ) tp

———e,~, and for a pair of
traps (t =2), (n)to= &

(E'iz —eip —E'2p)X. The result for
t = 1 is particularly elucidating in prouiding a direct physi
cal interpretation for the e,J at z =1. This result also fol-
lows trivially from previous first-passage-time analyses
which further lead us to conclude that, for nearest-
neighbor sites, e,j.=eNN ———1, and that

etJ ——ln) (i —j [
~/n. o imari

for an infinite 2D square lattice, ——u in d &3D, for
( ~i

—j( )
large [cf. (1.1)].

From (2.4), (2.8), (2.13) and (2.14), one has that

(1—z) 'S,(n)=
N —t Bz G(0) S, +detIe, q j

[N@(0,1)+N detIe J j /S, ], (2.22)

and for a triple (t =3),

where the e;J. are evaluated at z=1. For a single trap
(t =1), (2.22) reduces to (n ) =(N/N —1)[N4(0, 1)], i.e.,
only the first term contributes (cf. Refs. 3 and 9), so the
second provides the correction associated with the intro-
duction of additional traps (and thus will be negatiue)
For a pair of traps (t =2), (2.22) becomes

[@(0,1)+2 „„„/S,]X,

Ti T T

-tjm

T T

~ ~

g2

~ ~ ~ T

FICx. 2. A linear string (square array) of m roughly equally
spaced traps of total linear span t (t ' ).

in which Zeizeiiezs/Ss reduces to ——,'(1+e/4) ' for a
connected triple where e,z

——e for' the (possibly) nonadja-
cent pair of traps. We can also deduce from (2.22) that in
2D, (n)-cia lnN, as in the single-trap case, and that
corrections affect the O(X) term, and that in d &3D,
(n ) -(u+detIej j/S, )X, so corrections affect the dom-
inant large-X behavior.

It is appropriate to note, at this point, that characteriza-
tion and enumeration of the e,j-product terms in such
determinant quantities as det[e,z j and S, is quite easily
achieved using ideas from flow graph theory, and specifi-
cally the Coates graph' (see Appendix A).

We are particularly interested in characterizing the
behavior of the correction term to the average walk
length, detIe, j j/S„ for a large number of traps (particu-
larly when these form a connected cluster). To illustrate
this behavior in 20, consider the case of a symmetric
nearest-neighbor random walk on a square lattice, where
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o 1 ——o 2
—2 ' . First consider a linear string of m

(roughly) equally spaced traps of total span t (see Fig. 2).
We let t become large while holding m & 2 fixed, so the
separation between adjacent traps is -t/m. Thus one has
ej ——(2/m)ln(

~

i —j ~
t/m), assuming that the traps are

labeled from left to right 1,2, 3, . . . , and so to leading or-
der, for large t, and m fixed, the e;J.——(2/m)lnt are
equal. It is then a simple matter to show that'6

T

detIe" I -(—1) +'(m —1) ——lntEJ
'7T

P„(l')(n )t0

8 G (0}( ~12 20+ ~10) 12~20

Bz 6 (0)( —2e12) —e'12
, z=l

t'

8 ~12+e20 e10

BZ 2E)2
, z=1

+ —,'(n &,. (2.25)

and P (l )(n )t, t, follows from interchanging 1 and 2
on the right-hand side (rhs) of (2.25). One can straightfor-
wardly show that (3!Bz)e,j. at z=1 is bounded with
respect to N in d & 3D, but not in 2D T.he average walk
length to trap l, given by

so

S,-(—1)™Im ——lnt
7r

[(1—z)P( l') ], ,/P „(l'),
for t =2 becomes

( n ) -N@(0,1)—N —lnt,Pl —1 2

for large t For .any m, this result clearly provides an
upper bound on the large-t behavior of the average walk
length for a string of t contiguous traps. In fact calcula-
tions following indicate that, for a linear string of t con-
tiguous traps (t-lin), one has

&, ;„-N@(0,1)——N 1 t .2
(2.23)

For comparison, one naturally considers (n) for a
square array of m traps of total horizontal and vertical
span t'~ (see Fig. 2). Similar arguments to those above
show that e; ——(2/m )lnt '/ = —(1/m )lnt, and

(1—z)-'( —~») =(n)
N —2 Bz G(0)( —2@12)—+12

for both l' and l {as required, since l' and l are
equivalent). Corresponding expressions for t & 3 can be
easily obtained, but are rather complicated.

III. LARGE-N ASYMPTOTIC RESULTS
FOR SYMMETRIC NEAREST-NEIGHBOR RANDOM

WALKS ON A SQUARE LATTICE

As demonstrated in the previous section, the quantities
of interest here can be obtained from the behavior of
4(O,z) and the e;J, as z—+1. For symmetric nearest-
neighbor random walks on a square lattice, these are
determined from the appropriate structure function,
A,(81,82) = —,(cos81+cos82). From Montroll's analysis,
we have that

&-NC(0, 1)-N m —1 I @(0,1}= —lnN+0. 195056—0.1170N

—0.051N +O(N ) . (3.1)

( n ) -NN(0, 1)— N in&', —2
(2.24)

for t large and m fixed. This leads to the speculation that
for a contiguous square array of t traps ( t-sq),
(n ), ,q-N4(0, 1)—( I /m')N lnt, and, more generally, that
for a general contiguous compact array of t traps

Our primary task is thus to determine, for z =1 (assumed
implicitly below), the e;i= e(r,s}, s—ay, where r(s) denotes
the horizontal (vertical) separation inQttice vectors be-
tween the sites i and j. Clearly, we have that
e(r,s)=e(s, r), the e(+r, +s) are equal, and we already
know that e(1,0)= —1, and that

for large t, where H is a suitably defined perimeter func-
tion. Validity of these relationships is investigated in the
next section.

The expressions for trap-specific walk lengths are, in
general, more complex. Of course for a single trap (t =1),
these are given by (2.21) and (2.22) with t =1. For a pair
of traps ( t =2},one has

e(r, s) ——(1/m)ln(r +s ),
for large r +s .

Here we are content to determine the e(r, s) to leading
order in N=L, as illustrated by the (Euler-McLauren
formula based) decomposition

2
L —' exp[

e(r, s) =L
k) k2 ——0

cos
2

2@i (rk1+sk2)] —1
t I

2+k) 2'+cos

, =@0(r,s)+0(N '~ ), (3.2)
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where

1 —cos(r 8i )cos(s 82)
ep(r, s) = — d 8i d 82 . (3.3)

0 0 2 —cosOi —cos02

TABLE I. Transcendental forms for E'p(T, $) for random
walks on a 2D square lattice.

It is obvious that

2
ep( 1 0)+ep(0 1)= — f f d8id82= —2

so ep(1,0)=ep(0, 1)=—1, as required. All of the ep(r, s)
can be evaluated exactly as demonstrated below. '

One can easily show that

4

8
1 ——

8

8
1——

7T

16
3m

48

92
3

—1—
377

736 80
3m

49 160

472
15m

2 1 —cos(r8, )
ep(T, O) = —— d 8,

(1—cos8i)'i (3—cos8, )'i2

i(x)
(1+x)' (3—x)'i (3.4)

(which is clearly bounded as T~ oo, for fixed s), we start
by rewriting

cos(s82) —1 = Hi (cos8i, cos82)(2 —cos8, —cos82)

where F„(x)=[1—T,+i(x)]/(1 —x) is an rth-order poly-
nomial ( T, denotes the first kind of Tschebysheff polyno-
mial of order r). A recursive formula relating

fdxx"/(a+bx+cx )' for different n allows exact
evaluation of (3.4). Note that making the transformation
p =r8i in the first expression for ep(T, O), and expanding

' 1/2

1 —cos+ =2 ' [1+O((P/r) )]r r
L

shows that ep(T, O)- 2lnr/n, as r—~ ce (as required) To.
evaluate

5ep(r~s) =ep(r~s) —ep(r&0)

cos(r 8 i )[cos(s 82) 1]—
d8i d82

0 0 2—cos8i —cos82

(3.5)

+ Hz(cos8i) .

For
i
s

~
(

~

r ~, only the H2 term contributes to (3.5)
which can be rewritten as a single integral of the form

+' T
I

&
l
(x)

5ep(r s) = —— dx i G l~ I
(x)(1+x)'~ (3—x)'~

for is (
& fr (, (3.6)

where Gi(x) =1, G2(x) =6—2x, G3(x) =25 —20x
+4x, . . . . Clearly, (3.6) can be evaluated exactly.

In Table I, we have presented transcendental forms for
several ep(r, s) and, in Table II, a more extensive set of nu-
merical values which should be compared with the
asymptotic behavior —(1/m. )ln(r +s ). Note the mono-
tonic increase in magnitude of Ep(r, s) with increasing
r +s, as must be the case given their relationship to
site-specific walk lengths for a single trap [here

TABLE II. Numerical values for ep(r, s) for random walks on a 2D square lattice.

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0.000000
—1.000000
—1.453 521
—1.721 125
—1.907 975
—2.051 609
—2.168462

2.267 041
—2.352 328
—2.427497
—2.494 702
—2.555 475
—2.610940
—2.661 953
—2.709 176
—2.753 134
—2.794 249
—2.832 867
—2.869 267
—2.903 660

—1.000000
—1.273 240
—1.546 479
—1.761 503
—1.929 582
—2.065 000
—2.177 598
—2.273 688
—2.357 386
—2.431 478
—2.497 919

- —2.558 128
—2.613 167
—2.663 848
—2.710809
—2.754 555
—2.795 498
—2.833 975
—2.870271
—2.904 648

—1.453 521
—1.546479
—1.697 653
—1.848 826
—1.983 849
—2.101 213
—2.203 243
—2.292 725
—2.372 051
—2.443 111
—2.507 367
—2.565 952
—2.619750
—2.669 464
—2.715 655
—2.758 780
—2.799213
—2.837 265
—2.873 193
—2.907 196

—1.721 125
—1.761 503
—1.848 826
—1.952 301
—2.055 775
—2.152 758
—2.241 436
—2.321 919
—2.394 983
—2.461 548
—2.522487
—2.578 561
—2.630419
—2.678 603
—2.723 S68
—2.765 696
—2.805 309
—2.842 679
—2.878 041
—2.911610
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0.552 0.552 0.544 0.520 0.480 0.456 0.448 0.448

0-568 0.576 0.576 0.546 0 ' 454 0.424 0.424 0.432

0.584 0.608 0.637 0.637 0.363 0.363 0.392 0.416

P (i1,3)
1 1

1
4 m

=0.3667 (bent),

—=0.3927 (linear)
8

0.593 0.634 0.727
T

0.273 0.366 0.4072

1 ——=0.2146 (linear)
4

(3.7)

0.463 0.464 0.455 0.427 0.377 0.340 0.324 0.322 0.325
P (l )=

1 1

2 7T
=0.2665 (bent) .

0.483 0.494 0.497 0.465 0.356 0.297 0.289 0.297 0.309 '

0.504 0.534 0.572 0.581 0.285 0.205 0.236 0.270 0.295,

0.515 0.565 0.677 2 3
RT 0.181 0.151 0.288

FIG. 3. Infinite-lattice trapping probabilities for the leftmost
trap, lT, in a pair, and linear triple of traps.

(1l )tp= —E10N —eo(p $)N as N~ 00, where l =(r,s)]
In Fig. 3 we have shown, for various starting sites, the

N~ ao values of the probability, P„(l'), that the walker
is captured by the end trap I' in a pair or in a linear triple
of traps. Clearly, as the starting site becomes far removed
from the cluster of traps, these site-specific probabilities
converge to the lattice average trapping probability
P (l'). This follows from (2.15), (2.16), and the logarith-
mic behavior of the e1J for large

~
~i

—j( (. To illustrate the
latter quantities, we consider the cases of linear and bent
connected triples of traps l', l, l, where the central one is
l, and use (2.19) ta show that as N~ ao,

In Table III we have presented trapping probabilities for
all members of linear strings of traps of length m (so
t =m) for 1 & m & 20.

It is also interesting to consider trapping probabilities
for decimated linear strings of traps. Here the results can
be interpreted in the context of particle cluster-aggregation
as describing what proportion of the linear and various
branched clusters are formed by aggregation with a linear
cluster. For example, for aggregation with a dimer (adja-
cent pair), as N +oo, 42.7—3% (57.27%) of the trimers
formed are linear (bent). A more extensive set of results
for aggregation with m-mers (so t =3m +2), for
1 & m (16, is shown in Table IV.

It is obvious, particularly in the context of the above ex-
ample, that a trap for which all nearest neighbors are also
traps .cannot be reached by the walker, and thus has zero
trapping probability (see the remarks in Sec. II). Obvious-
ly this is true for the simpler N~co form of trapping
probabilities, and reflects rather complicated relationships
between the eo(r, s). The simplest example is a decimated
single trap I' (m =1 above) where one has that

1 e(1,0) e(1,0) e(1,0) e(1,0)
1 0 e(1 1} e(2 0) e(1 1}

SsP (l') ——= 1 e'(l, l) 0 e(1,1) e(2,0)
1 E(2,0) e(1,1) 0 e(1, 1)
1 e(1 1) e(2 0) e(1 1) 0

=e(2,0) [e(2,0) —4e(2,0)e(1,0)+8e(1,1)e(1,0)—4e(1, 1) ]

—+0 as X—+00 (3.8)

Reduction of this determinant to polynomial farm (which
was simplified by symmetries and Coates graph tech-
niques) is unnecessary if one notes that, as N~00, all
rows sum to —3, guaranteeing a vanishing X—+ 00 limit.

Finally, we consider site-specific walk lengths, (n)to,
and corresponding lattice averages, (n ), for various con-
nected arrays of traps. I.et (r,s) denote the position of lo.
Then for a single trap at the origin (0,0), (n ) to
= —e10N-

~
eo(r, s)

~
N, as N~ ao, so the dominant

N +00 behavior can b—e read off from Tables I and II.
For an adjacent pair of traps at (0,0) and (0,1), one has

( n ) Q-t—,
' [ ~

ep(r, s)
~
+

~
Eo(r —1,$)

~

—1]N,

as N~ao, for which some values are shown in Fig 4. .
For t traps, we have from (2.22) and (3.1}that

( n ) = [N@(0,1)—5N+O(N'i )]
t

—N lnN+(0. 195056—5}N+O(N'~'}
N —t

(3.9)

and here we shall provide 5 values for a range of trap con-
figurations.

For an adjacent pair of traps one has 5= —,', and for a
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IV. EXACT ANALYSIS OP RANDOM WALKS
ON FINITE LATTICES WITH MULTIPLE TRAPS

Here we consider only symmetric nearest-neighbor ran-
dom walks on a finite 2D square lattice (of N sites) with
periodic boundary conditions, and one or more completely
adsorbing traps. Extension to more-complicated walks is
straightforward. For the case of a single trap, there are
extensive previous calculations for the site-specific mean
walk length (providing the lattice-averaged walk length}
until trapping. We start by demonstrating the straightfor-
ward extension to the case of multiple traps,
L = I lr, lz, . . . , lT I, where analysis is always based on the
intuitively obvious set of equations

(n )t ———,
' y'((n ) +1}, l eL . (4.1)

Here the sum is over sites adjacent to l, and we set
(n)&, ——0. The average walk length is again calculated

'T
from (n ) =(N t) 'gt+L—(n )t.

We use the example of an adjacent pair of traps on a
lattice of size N=L, with I, even, for illustration. Re-
flection symmetry about horizontal and vertical axes
through the traps guarantees equivalence of various sites.
Nonequivalent ones can be labeled as shown in Fig. 5 for
L =14. [The reason why we did not choose a inore con-

connected linear [bent] triple of traps 5=~/4=0. 785 398
[5=(m'/2)(m' —1) '=0.733471]. In Table V, we have
displayed 5 values for linear strings of m traps with
1 & m & 20 (so t =m), and in Table VI, 5 values obtained
from decimating a string of m traps (to produce 2m+2
extra traps, so t =3m+2} are displayed for 1&m &16.
In both cases we have also given values of

=(5 —5,)/[ln(t +a) —ln(t —1+a)]
for a few choices of a, in order to estimate
h=lim 6 (which is independent of a). This corre-
sponds to fitting 5 to the asymptotic behavior
5 -hln[P(t+a)]. Note that H =2(m +1) [H
=2(m +3)] corresponds to the standard choice of perime-
ter function for the linear string [decimated linear string]
of m traps. Our speculation that 5=2/m. (see the previ-
ous section) is supported by the results for the linear
string of traps, and not inconsistent with results for the
decimated string. In the former case we have chosen an
optimal a value, so b, zo ——2/m. , and checked that the 5
varies slowly from 2/m as m is reduced from 20. For a
decimated single trap (m =1, t =5), the result 5=1, ob-
tained previously in Ref. 9, follows trivially from the ob-
servation that the mean walk length for return to the ori-
gin on a perfect finite lattice is N [cf. (4.6)]. For a general
decimated linear string of traps, reduction in the average
walk length with increasing string length reflects the in-
crease in the rate of destruction by irreversible aggrega-
tion with random walkers of corresponding immobile
linear clusters (in the same walker or cluster gas environ-
ment).

A limited set of results for the 2D triangular lattice,
analogous to those discussed in this section, are presented
in Appendix B.
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veniently shaped (L)X(L —1) lattice is because we want
to compare with the asymptotic large N=L results of
the previous section. ] The equations (4.1) for this case,
rewritten in matrix form, become

'(n),
A (n) = 1 (4.2)

1.5040. 1.4006 1.30516 1.13380 1.13380

1.4163 1.2732 1.1220? 1.00000 1.00000

1.3455 1.1540 0.90986 0.63662 0.63662

1.3145 1.0873 0.72676

where the "fundamental" matrix A satisfies 2 =—I+6,
with (cf. Fig. 5)

FIG. 4. The coefficient y in (n )i-yN, as N~ oo, for ran-
dom walks on a lattice with an adjacent pair of traps.

1

4

0
1

4
1

4

0
0 0

1

4

0
0

1

4

0
I 0

1

4
2
4

I 0
I 0

1

I

I

0
0

0

1

4 0

0
0

1

4 0
1

4

0 0 0
0 0

1

4

0 0
0 0

0 0

I

10 4

0 0
0

0 0 0 . 0 0 0

(4.3)

Solution of (4.2) is obtained by matrix inversion. If addi-
tional equivalent sets of sites in the above case are de-
cimated (to create a multiple-trap problem preserving the
symmetry of the two-trap problem), the corresponding
matrices are obtained from A (or 5) by removing the rows
and columns corresponding to the additional traps. For
example A(m)=I(A);i, for i,j)m} corresponds to de-
cimating sites labeled 1,2, . . . , m —1 [so A(1)=—A]. The
similarly defined b, (3) and b, (6) submatrices are indicated

t

above in (4.3).
Results from these calculations applied to deterinina-

tion of the average walk length (,n ) for various lattice
sizes N =L are presented for linear strings of m traps (so,
t =m) with 1 &m &9 in Table VII, for a bent triple of
traps in Table VIII, and after decimating a linear string of
m traps (where t=3m+2) with 1&m &9 in Table IX.
Values of 5 obtained from setting (n ) equal to
(llir)N lnN+(0. 195056—'5)N are also listed, and their

TABLE V. Random walks on a square lattice of X sites with a linear string of m traps. Values of
in (n)=(N/N t)[N(0, 1) —5N+O(N'~ )], a—nd of 5 =(5 —5 i)/[in(t+a) —In(t+a —I))

(cf. 2/m =0.636 620), are shown.

1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0.000000
0.500000
0.785 398
0.983 258
1.134376
1.256 553
1.359076
1.447 386
1.524 943
1.594079
1 656 AAA

1.713246
1.765 395
1.813 596
1.8S8 404
1.900267
1.939 546
1.976 543
2.011507
2.044 650

a= —1

OA11 742
0.487 983
0.52S 295
0.547 526
0.562 320
0.572 881
0.580 815
0.586 978
0.591 920
0.595 970
0.599 33S
0.602 191
0.604 631
0.606 773
0.608 613
0.610264
0.611 703
0.612 996

a=O

0.721 348
0.703 878
0.687 773
0.677 223
0.670 118
0.665 083
0.,661 343
0.658 473
0.656 185
0,654337
0.652 811
0.651 515
0.650416
0.649 458
0.648 651
0.647 905
0.647271
0.646 676
0.646 147

a= —0.287 389

0.570 230
0.620 575
0.630481
0.633 601
0.634 903
0.635 558
0.635 924
0.636 158
0.636 297
0.636400
0.636476
0.636 519
0.636 557
0.636 576
0.636 616
0.636 613
0.636 636
0.636626
0.636 620
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26 32: ~ ~ :

'49 49 50:51:52:53;54:5555

26 ' 32 37:41:44:.46: 48

19;24:30:35:39'43:47
13:.17:22:28:34:40:45

: 8 8;11:15:21:29;36:42
4 4:. 6:10 16:23:31:38

: 1 1:3: 7:12:.18:25: 33 33 ';

: T T': 2: 5; 9.:14;20:27 27

1. 3 7 ~

FICx. 5. Equivalent site labeling for one quadrant of a 14& 14
square lattice with an adjacent pair of traps.

convergence to the X—+00 asymptotic values, given in
Sec. III, should be noted.

We now turn our attention to evaluation of site-specific
trapping probabilities for a general set of t traps, L. If Pt
denotes the probability that a walker, starting at /, is
trapped at l~, then one obviously has that

1 2P3 P3

P41 P4 0
2

A(3) P =—0 A(3) P =—1 (4 5)1 2 1

P 0 P 0

. ~

As mentioned previously, these P~' and the correspond-
ing lattice averages give the proportion of bent to linear
trimers formed by aggregation with a dimer (adjacent pair
of filled sites).

Another useful application of the Pt is in relating the
walk lengths (n )t to those corresponding to decimating
all neighboring sites to the original set of traps L. We
denote the enlarged set of t' traps by L', the correspond-
ing walk lengths by (n )t, and the corresponding trapping
probabilities by Pt', for m HL' and l&L'. Note that
Pt' =0 for m EL It is.clear that

(4.4,)
( n)t =(n)t — g Pt' (n)

mEL' —L
(4.6)

where P&,
—5;J. Equation (4.4) implies that

'T

XP' =-'X' XP.'
i=1 m i=1

which, together with the imposed boundary conditions, is
consistent with the requirement that g', iPt =1, for al.l I.
The lattice-averaged trap-specific capture probabilities P
are again calculated from P'=(N t) 'g&+&—Pt'. For the
above example of an adjacent pair of traps, the Pt' are not
invariant with respect to reflection in a vertical line
through the traps, so the matrix A is not appropriate. A
larger matrix accounting for the lower symmetry must be
introduced. However, full symmetry is preserved in the
important case where sites labeled 1 and 2 (in Fig. 5) are
also decimated and we consider only PI' . Here the ap-
propriate matrix is A (3), and one has that

since, to reach L, the walker must first reach one of the
sites m in L' L(with—probability Pt ), and then the ad-
ditional mean walk length from m to L is (n) . Using
(4.6) to calculate the average walk length, (n ) '

=(N —t') 'gt+~. (n )'t, for the decimated case, one ob-
tains

r(n)'=, (n) — g P' (n)
ei CL' —L

(n ), (4.7)
m GL' —L

where P' =(X t') 'g&+~—,Pt are the lattice-averaged
capture probabilities. That is, given the (n)i, we need
only calculate the P' to determine (n )'.

Returning to the example of an adjacent pair of traps,
walk lengths for the case where neighboring sites 1 and 2

TABLE VI. Random walks on a square lattice of X sites after decimating a linear string of m traps
(producing 2m +2 extra traps, so t =3m +2). Values of 5 and 6 (cf. Table V) are shown.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1.000000
1.175 138
1.306 508
1.412 524
1.501 803
1.579 115
1.647 402
1.708 618
1.764 132
1.814945
1.861 809
1.905 308
1.945 902
1.983 964
2.019797
2.053 651

(x=2

0.608 790
0.588 724
0.581 478
0.579 167
0.578 980
0.579 769
O.S81 015
0.582 456
O.S83 981
0.585 487
0.586 968
0.588 380
0.589 756
O.S91063
0.592 284

a=2.5

0.696 888
0.654 655
0.634 621
0.623 889
0.617690
0.613950
0.611650
0.610233
0.609 403
0.608 931
0.608 727
0.608 684
0.608794
0.608 985
0.609 215

0.784 867
0.720 540
0.687 743
0.668 599
0.656 393
0.648 127
0.642 282
0.638 009
0.634 824
0.632 375
0.630485
0.628 989
0.627 831
0.626 907
0.626 146
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TABLE VII. Random walks on an L XL square lattice with a linear string of m traps. Values of the average walk length &n )
and 8, where &n) =[XI(N —m)][(1/n. )NlnlV+(0. 195056—8 )|V], N=L2, for various L.

(n&

9.00000
31.6667
71.6154

130.604
209.937
310.649

3
5
7
9

11
13

31 2290.61
33 2638.78
35 3013.97
37 3416.45
39 3836.41

0.005 565
0.003 656
0.002 150
0.001 358
0.000 926
0.000668

4.00000
14.0909
35.4367
69.5359

117.667
180.867

0.000 115 1539.83
0.000 101 1787.56
0.000089 2056.00
0.000079 2345.46
0.000070 2656.22

0.598 158
0.723 656
0.754 940
0.767 180
0.773 263
0.776 732

0.783 877 1209.66
0.784055 1412.78
0.784 204 1633.83
0.784 329 1873.11
0.784435 2130.88

1.129003
1.129 636
1,130 163
1.130606
1.130983

10.0000 0.899 656
22.4861 1.021 787
45.3801 1.068 188
79.6320 1.090 683

126.193 1.103 341

1000.48
1174.91
1365.46
1572A3
1796.11

1.347 705
1.349050
1.350 169
1.351 110
1.351 909

18.6667 1.107 330
33.6910 1.213 860
58.7271 1.264 333
94.4457 1.292 2S1

849.613
1002.86
1170.90
1354.04
15S2.56

1.505 388
1.S07 711
1.509 643
1.511267
1.512 644

30.0000 1.264 635
47.6161 1.357 352
75.0153 1.407 714

11.0476
32.2790
67.7156

118.859
186.870

6
8

10
12

30 1678.41
32 19.51.25
34 2246.93
36 2565.76
38 2908.04

0.473 433
0.488 900
0.493 878
0.496 112
0.497 309

0.499 S67
0.499 619
0.499 662
0.499 698
0.499 728

m=6

14.0000 1.011651
27.7455 1.125 989
51.6703 1.175 227
86.5650 1.200 899

1247.96
1460.95
1692.92
1944.16
2214.98

0.979 863 1007.90
0.980274 1187.07
0.980 615 1383.03
0.980900 1596.08
0.981 141 1826.52

1.247 899
1.248 952
1.249 823
1.2SO 552
1.251 169

6.666 67 0.765 098
17.9257 0.893 117
39.9223 0.934070

' 73.8282 0.952 176
120.740 0.961 814

&n&

843.749
999.315

1170.14
1356.53
1558.77

1.431 160
1.433 143
1.434 782
1 436 154
1.437 312

24.0000 1.190745
40.3159 1.290021
66.5156 1.340745

are decimated can be obtained from (4.6) as

(n),'=(n), (P (n)i+—P,' (n),).
=g[(A ')p Pq'(A ') i; —Pj~(A ')2;]—forj & 3 .

TABLE VIII. Random walks on an L XI.square lattice with
a bent triple of traps. & n ) and 8 as in Table VII.

3
5
7
9

11
13
15
17
19
21
25
27

3.272 73
14.7107
37.4129
73.2098

123.434
189.136
271.184
370.318
487.184
622.354
949.614

1142.60

0.652030
0.701 838
0.717080
0.723 504
0.726 781
0.728 674
0.729 863
0.730660
0.731 218
0.731 625
0.732 166
0.732 3S1

(4.8)

An alternative and more complete understanding of this
result comes from the observation that (see Appendix C)

[A(3) ']J;——(A ')J, PJ (A ')i; PJ(A —')2;—
for i,j & 3, (4.9)

, &Pi &n &'i

i=1

consistent with the requirement that (n )i =g,'. ,Pi(n )I—
[cf. (4.1)]. We can now also calculate trap-i-specific
lattice-averaged walk lengths

& n &'= gZ/&n &PP',X —t I~~

which satisfy (n )=g,' iP'(n )', as required.

(4.11)

and, thus, that the sum in (4.8) can be taken over i &3
only (rather than i & 1). Equation (4.9) is characteristic of
the general relationship between inverses of fundamental
matrices for the original and decimated problems. Each
row of the decimated inverse is obtained from the corre-
sponding row of the original inverse after subtracting a
trapping probability weighted average of rows (in the orig-
inal inverse) corresponding to sites decimated to traps.
This result generalizes the procedure given by Walsh and
Kozak for some simple special cases. '9

Finally, we consider the mean walk lengths (n )i for a
walker starting at site l to be adsorbed at trap lr. Clearly
one has that

P,'(n)', =-,'gP'((n}' +1), igL (4.10)
m

which can be solved for the (n )i given knowledge of the
Pt from (4.4). Equation (4.10) implies that
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TABLE IX. Random walks on an L)&L square lattice after decimating a linear string of m traps (so t=3rn+2). (n) and 5 as
in Table VII.

m=1
(n)

2.000000
9.20000

25.7622
53.2678
93.0383

146.129

3
5
7
9

11
13

33 1556 51
35 1795.84
37 2054.46
39 2332.66

0.795 6&9
0.925 256
0.961 750
0.976 819
0.984465
0.988 869

4.79121
14.5592
32.8320
60.8790
99.7446

0.998 265 1231.27
0.998 457 1429.13
0.998 618 1643.82
0.998 756 1875.62

1.112333
1.203 436
1.243564
1.264211
1.$76164

10.5918 1.292695
22.8104 1.371 346
43.3107 1.413 953
73.1172 1.438 828

19.1673 1.424412
33.8708 1.494 888
56.7396 1.537 908

1.301 777 1027.68
1.302 301 1199.17
1.302 743 1385.93
1.303 118 1588.24

1.630 593
1.632 46S
1.634041
1.635 380

m=8

1.492 046 879.327
1.493 130 1031.21
1.494042 1197.17
1.494 818 1377.52

763.888
900.049

1049.36
1212.12

\

1.738 224
1.741 120
1.743 556
1.745 625

30.4489 1.530 271
47.6819 1.594 227

3.00000
11.5145
28.8027
56.2993
95.1789

6
8

10
12

32 1268.86
34 1475.64
36 1700.17
38 1942.73

0.983 848
1.086 955
1.125 083
1.142 974
1.152 752

1.171972 1034.38
1.172332 1210.04
1.172 635 1401.53
1.172 890 1609.15

1.405 090
1.405 938
1.406 649
1.407 250

7.335 83 1.211 196
18.32&6 1.295 132
37.6889 1.336 803
66.5454 1.359 804

14.5389 1.362 690
27.9939 1.436 976
49.6669 1479992

24.4716 1.479 838
40.4350 1.546 898

873.27&
1027.15
1195.51
1378.65

1.686170
1.688747
1.690904
1.693407

1.565 258 751.489
1.566 843 888.439
1.S68 171 1038.84
1.S69 294 1203.98

Finally we return to the example of a decimated pair of
traps (where the decimated sites adjacent to the pair are
denoted by 1 and 2 as in Fig. 5). In Table X, we have
given values for (n )' and (n ) for a range of lattice
sizes. These can be interpreted as lattice-averaged walk
lengths for the formation of bent and linear trimers,
respectively.

4
6
8

10
12
14
16
18
20
22
24
26
28
30

(n &.;d.

3.00000
11.6082
28.8432
56.2841
95.1143

146.294
210.632
288.824
381.481
489.149
612.322
751.447
906.936

1079.17

(n) d

3.00000
11.3790
28.7467
56.3201
95.2663

146.548
210.976
289.248
381.978
489.713
612.947
752.129
907.671

1079.96

TABLE X. Random walks on an L &L square lattice after
decimating an adjacent pair of traps (producing six additional
traps, four on the sides and two on the ends). Values of the cor-
responding trap-specific average wa1k lengths are given for vari-
ous L.

V. CONCLUSIONS

We have shown that the formulation of Montroll can be
developed to provide explicit, results for the large-lattice-
size (N) asymptotic behavior of trapping probabilities and
walk lengths on a lattice with multiple traps. Procedures
for exact calculation of these quantities on finite lattices
(N(10 ) were developed. A simple characterization of
the reduction of walk lengths for a decimated problem (as
compared with the original) leads to an elucidation of the
relationship of the matrix structure for the two problems.
All of the finite-square-lattice results presented here are
for L &I. (square) rather than rectangular lattices. How-
ever, the techniques of analysis described here readily ex-
tend to the latter case and results for symmetric nearest-
neighbor random walks for some corresponding 5
values (as defined by (n ) =(N/N —t)[(1jn)N lnN
+ (0.195056—5)N] ) are shown in Fig. 6.

These results for N~ 00 trapping probabilities are par-
ticularly significant in the context of Witten-Sander
particle-cluster aggregation, ' where it is clear that these
determine the shape distribution of clusters formed. This
applies in the standard case where the cluster nucleates
around a single filled site as well as to generalizations,
where (nearby) pairs, triples, etc., of filled sites act as nu-
cleation centers.

For another application, we consider a process where a
gas of random walkers irreversibly aggregate, forming im-
mobile clusters (a Brownian aggregation process). Mean-
field —type kinetic equations for the cluster size (and
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shape) distribution in this process are based on identifica-
tion of appropriate rates for formation and destruction of
clusters by aggregations with individual walkers (at the
simplest level, ignoring the effect of a walker irreversibly
linking two smaller clusters to form a larger one). Each
of the former rates is naturally related to (the reciprocal
ofl the average walk length for a random walk on a suit-
able sized (N, ) lattice with an appropriate decimated clus-
ter of traps. This time-dependent size N, is naturally re-
lated to the reciprocal of the density p, of clusters of one
or more atoms. To see this, one thinks of dividing the lat-
tice into regions of size N, =1/p, about each such cluster,
and considering the fate (i.e., the average walk length) of
an additional "test" walker artificially confined to one
such region. To assess the validity of this scheme for
determining rates, we have performed direct simulations
involving a single walker on a lattice with several immo-
bile clusters [where destruction rates are taken as the cap-
ture probabihties divided by the average walk length (for
capture anywhere)]. These indicate that a choice of
equal-sized (N, ) regions for all clusters overestimates (un-
derestimates) destruction rates for larger (smaller) clusters,
so a larger (smaller) region should be associated with
larger (smaller) clusters. In fact, it appears that the sizes
of these regions should be chosen so as to equalize average

( n ) =(NlN —t)[(1/m )N 1nN+(0. 195 056—5)N]

are shown for random walks on various L &L' square lattices
(of N =L XL' sites) with (a) a single trap, (b) a linear triple of
traps aligned with the side of length L. When L~op with
L —L' constant, 5 converges to the L =L' value. The deviation
from this limit when, e.g., L~oo with L'=2L —1, is exactly
accounted for by a change in c2 in (2.11a).

walk lengths, and then (for comparison with the
walker —multiple-cluster simulations) destruction rates are
taken as the fraction of the total unoccupied area associat-
ed with regions surrounding clusters of the size and shape
under consideration, divided by this equalized walk
length. Corresponding shape-specific creation rates in-
volve an additional appropriate capture probability factor
The resulting kinetic equations do not have the standard
Smoluchowski form ' because of the complicated func-
tional dependence of average walk lengths on N. Such
equations will be investigated in later work.

All these analyses could be extended to include the ef-
fect of attractive or repulsive interactions in particle-
cluster aggregation by introducing more traps surround-
ing the cluster or introducing trapping probabilities less
than unity, respectively. A further natural extension in-
volves calculation of (complete) walk-length distributions
(rather than just the means). Its use in the analysis of
simple single-cluster growth models has already been sug-
gested. - These distributions could also be applied to the
development of non-Markovian kinetic equations for
Brownian aggregation. Finally, we remark on the need
for a more sophisticated analysis of the appropriate r Xt
determinant structure for a large number of traps, t, in or-
der to provide a more detailed understanding of the basic
quantities of interest in this regime. For example, we
would like quantitative estimates of the shielding effect by
the arms of fractal clusters (from trapping close to the
cluster nucleus).
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APPENDIX A: DETERMINANTS
VIA COATES GRAPHS

Evaluation of det [g;1 I, where 1 &i,j& t, can be
achieved by first constructing a Coates flow graph G, in-
volving points 1,2, . . . , t where each nonzero g;J is
represented by a directed bond from i to j, with
"transmittance" gj. If H is a subgraph of G, then II(H)
denotes the product of transmittances, and c (H) the num-
ber of one-way circuits. Then one has that'

det{g,jI:detG=(——1)' g ( —1)' 'II(H),
HES

where S is the set of spanning subgraphs in which each
(disconnected) component is a one-way circuit. The sim-
plest application of this result here is the determination of
dette,

& I where e;1 =ej; and e,j ——0. Some examples are
given in Fig. 7. Examples for the more complicated
determination of
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det 1-~—~2 — - 1

g5 = det
2
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1 3
det - 2
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-2 W det
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FIG. 7. Diagrammatic representation of det [ep ) for

t =2,3,4, . . . . Each line on the rhs represents a factor of e;J..
Factors of 2 are associated with circuits of more than two points
since the flow can have two directions (flow arrows can be
dropped s1nce Eg~ =CJOY.}.

1-. 3

z+~

FIG. 8. Diagrammatic representation of

1'4 '3

~12 &13

are shown in Fig. 8. Here summation over permutations
of labels leads to expressions for S, .

APPENDIX B: RANDOM WALKS
ON A TRIANGULAR LATTICE V%TH TRAPS

It is convenient to shear the triangular lattice, as
described by Montroll, so that its sites superimpose those

I

for t =2,3,4, . . . . Each line on the rhs represents a factor of
e,~. Dashed lines representing factors of unity transmittance are
included for completeness only, and can be ignored.

of a square lattice (see Fig. 9). Again we set
ej ep(r, s)+O(N—— ' ), where r(s) denotes the horizontal
(vertical) separation, in lattice vectors, between sites i and
j. Here we determine only ep(r, s), the dominant N~ao
behavior of e(r,s), which is given in terms of the
triangular-lattice structure function

A, (8~,82) = —,
' [cos8&+cos8z+cos(8&.—82)],

as
+e' +m'

Ep(r, s)= f d8~ f d8z[cos(r8~)cos(s8z) —sin(r8&)sin(s82) —1]/[1—A(8&, 82) J
(2~)2 n.

It is a straightforward matter to show that

ep(r, O) =—3 1 —cos(r8&)
d8i

(1 cos8, )'/ (—7 cos8& )'/—
Fi„ i

i(x)
(1+x)' (7—x)'

3 +1f —dx—

+m'

ep(r, 1)= d 8&K,(cos8& )
4m

2+K, (cos8&)(3—cos8i)
d8i

4m. —~ (1—cos8i )
' (7—cos8i )

'

where F,= (1—T, +~)/(1 —x), as previously. Clearly
ep(r, O)- —(2/m)lnr from arguments analogous to those
given in Sec. III. A more complicated analysis shows
that"

E„(cos8)= —cos( r 8)sin( r8)sin8
1+cos8

AM/V~A/V'~P A/~P R./

LLLL
,LXLL

PIG. 9. Shearing of a triangular lattice so that its sites are su-

perimposed on those of a square lattice.

=(sgnr)(1 —x)U~„~ ~(x) —T~„~ (x),
with x=cos8; sgnr= —1,0, 1 for r &0, =0, &0, respec-
tively; and U, denoting the rth-order Tschebysheff poly-
nomial of the second kind. The second integral can be
reexpressed as
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+& (sgnr)(3 —x)U~„~ $(x)—E~„~ (x)
dx (1+x)'"(7—x)'"

where F,(x)= [(3—x)T, (x)—2]/(1 —x) is an rth-order
polynomial.

Clearly these integrals for e&&(r,0) and Eo(r, l) can be
evaluated exactly, and one obtains, e.g.,

eo(1,0)= —1, eo(2, 0)= —8+6v 12/u,

eo(3, 0)= —81+72v 12/m. ,

eo(0, 1)=—1, eo(1, 1)=2—3v 12/n. ,

eo(2, 0)= 15—~12/vr,

From Fig. 9, it is also obvious that there are various
equivalences between the Fp(r, s). For example, one

must have that ep(1 0)=Go(0 1)= to( —1 0)=Ep(0 —1)
=Go(1 —1)=Go( —I 1) and lEp( —j,k)=Go(j —k k). Such
equalities are not transparent in the above expressions,
however it is obvious, using the basic defining expression
for eo(r, s), that the six eo's for nearest-neighbor sites (list-
ed above) sum to —6. These results are used in the fol-
lowing calculations.

For a linear, bent, or triangular triple of connected
traps I', l, l (where l is central), we obtain from (2.20)
that, as N~ ~, P„(l"}:P„(l')=1:( 6+6v—12/m),
1:(72& 12/n. —79), and 1:1, respectively [so P (l' )
=0.3823, 0.3715, and 0.3333, and P„(l )=
0.2355, 0.2571, and 0.3333, respectively]. For a trap l'
surrounded by six other traps, the determinant associated
with P„(I'), as X~ no, can be shown to vanish since all

of its rows sum to —7 [cf. (3.8)]. The change from
single-trap behavior in the average walk length (n ) is re-
flected by 5= —detIe;J. j/5, [cf. (2.22)]. As %~00, we
have that 5= —,

' for an adjacent pair of traps, and
5=sr(3V12 —2m) ', (2m. /3)(2n. —@12) ', and —', for a
Iinear, bent, or triangular connected triple of traps, respec-
tive1y.

APPENDIX C: INVERSES GF DECIMATED
FUNDAMENTAL MATRICES

Let A denote the fundamental matrix for some
multiple-trap problem, and A the fundamental matrix for
some corresponding decimated problem. We shall thus
write

and
Xw-'= z

Then from the
and F= —8 'C

standard relations U = (A DB '—C)
U, one has that A = V+A 'D 7 or

')J; =(U)J, +g g(A '),. (D) k (&)k; .
k m

for the probability of capture at trap lT" for a walker start-
ing at site j.

Finally, from (4.4) [or (4.5)], one can straightforwardly
make the identification

PJ":Q(A ')—
1 (D) k
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