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Response theory as a free-energy extremum
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We show that the formal results of many-body, isothermal response theory can be generated from
thermodynamic extremum principles. It is shown that this method yields the correct time-
dependent response to a perturbing external field.

I. INTRODUCTION

The introduction of thermostatted equations of motion
by Hoover, ' Evans, and Nose has made the discussion of
nonlinear-response theory far simpler than it would other-
wise have been. In the absence of thermostat dynamics
the only way that nonequilibrium steady states can be
achieved is with cumbersome (inhomogeneous) boundary
conditions. Recently, Morriss and Evans have derived
formal expressions for the nonlinear, Gaussian isothermal
response of many-body systems.

They found that if the external field F, induces an adi-
abatic dissipation,

Ho ——J(I ) F, ,

where

2

Ho ——g +4(q),

then the time-dependent distribution function f(t) takes
the form

f(t)=exp P I ds J( —s) F, exp( PHp) . —

In deriving Eq. (2), Morriss and Evans assumed that the
initial ensemble was canonical and that in the absence of a
thermostat the external field couples to the system so as to
satisfy the adiabatic. incompressibility of phase space
(AII )

ad

(3)

Later, Evans and Holian showed that a formally identical
equation could be derived in the circumstance where the
thermostat is of the Nose form. In both cases, the ther-
mostatted field-dependent equations of motion are used to
generate the time dependence J ( —s) appearing in (2).

Equation (2) is a generalization of the nonlinear
response to adiabatic planar Couette flow derived by Ya-
mada and Kawasaki in 1967. In their case the external
field was the strain rate and J was equal to -the shear
stress times the system volume. In their paper, Yamada
and Kawasaki acknowledged the fact that it is unrealistic
to discuss the nonlinear response in the absence of any
thermostatting mechanism.

To date, each of these derivations has been carried out
using time-dependent perturbation theory. In this paper
we give a simpler derivation based upon the thermo-
dynamic postu1ate that the system will respond to the per-
turbation in such a way as to minimize the free energy.
In contradistinction to the situation at equilibrium, an im-
portant constraint is found to be that each time-dependent
nonequilibrium state must have evolved from those exist-
ing at previous times. This "continuity" constraint intro-
duces a functional Lagrange multiplier which "chains" to-
gether the nonequilibrium states in time.
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qg

——— + C;.Fe ~

p =F+D F —gp
~ 1 gp; /m —3NkT

In these equations g represents the coupling to the ther-
mostat. In the absence of an external field (Ii, =0) time
averaging of a single NH trajectory generates a canonical
average characterized by the canonical distribution f, , '

—P(HO+ Qg~/2)

(5)
ef.= —P(lto+ ay'n)

The external field is coupled to the system through the
phase variables C;, D;. We do not assume the existence
a Hamiltonian wh'ich can generate the adiabatic equations
of motion. The dissipative flux J, induced by the external
field, is given as

Ho =J'F = g —— ~ D. F.~ C.
Pl

F

The Liouville equation for this system is

II. EQUATION OF MOTION FOR THE ENTROPY

The equation of motion for the entropy in Newtonian
or Hamiltonian mechanics is trivial. It is a constant of
the motion. 7 This is still the case if the system is subject
to an external field. We will now show that under Nose-
Hoover (NH) dynamics a useful equation of motion for
the entropy can be derived.

The NH equations of motion are '
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r

I +g f(t) f(r)—A . (7)

PA (0)=PA (t) f—ds (PJ(s) F,(s) )

= f dFdg I3(HO+ —,'Qg )f(t)+f(t)lnf(t)
t'—f ds PJ(s t)—F,(s)f(t)

Evans and Holian have given a formal solution of this
Liouville equation. They found that the isothermal
response takes the Kawasaki form (2).

If the entropy S(t) is defined as

S(r)= —k f dI dg f(r)lnf(r), (8)

Now since the initial free energy is an extremum we can
equate the functional derivative of PA (0) with respect to
f(t), to zero. Solving for f ( t) we find

f(t)=Cexp f dsPJ(s —t) F,(s)

then using the Liouville equation (7) we find that Xexp[ —P(H, + —,
' Qg')] . (16)

S(t)=k f dl dg[l+lnf(t)] 1 *. , +fA (9)

where I' =(q&, . . . , q&, pi, . . . , p~,.g). Integrating by
parts (twice) and assuining AII [Eq. (3)], we derive the
equation of motion for the entropy

S(t)=k f dI deaf(t)A

= —3%k(g(r)) . (10)

Consider a canonical ensemble of N-particle systems
subject for t ~0 to an external field F, . We assume that
the system volume is fixed. Because the system is at
equilibrium at t =0 we know that the Helmholtz free en-

ergy A(0) is a minimum. If

then U is the total internal energy of the N-particle sys-
tem and its thermostatting degree of freedom g,

U =HO+ Q0'y2 . (12)

Using Eqs. (1), (4), and (10) we see that for positive time
the equation of motion for the total Helmholtz free ener-

gy 1s

A(t)= f dI dgJ F,(t)f(t)=(H 0 ) . (13)

The adiabatic derivative of the system internal energy
Ho(I ) is the same as the thermostatted derivative of the
total Helmholtz free energy A(I, g).

At any positive time r, the Helmholtz free energy divid-
ed by kTis

PA(t)=P(U(t))+ f dI dg f(t)lnf(t) . (14)

We can calculate the initial Helmholtz free energy A (0)
by integrating (13) backwards in time. Using the
equivalence of the Schrodinger and Heisenberg pictures
we know that A(s) = J(s) F,(s)) can be written as

f dI'J(s) F,(s)f(0)= dI J(s —t) F, ( )fs(t) giving

For Nose-Hoover dynamics the thermostat acts as an
entropy source or sink. Analogous equations can be de-
rived for Gaussian isothermal or isoenergetic dynamics. '
It should be emphasized that the average ( ) taken in (10)
is an ensemble rather than time average.

III. RESPONSE THEORY

the average total energy is constrained by the thermostat,
I

f dl dg Uf (t) = ( U(t) ); (18)

and finally for all times s in the range 0 & s & t, the dissi-
pative flux J(s) is constrained,

f dl dg Jf(s)=(J(s)), 0&s &t . (19)

To maximize the entropy subject to these constraints we
introduce a penalty function W(t) through Lagrange mul-
tipliers A„P, and M(s) associated with constraints (17),
(18), and (19), respectively:

W( t) = f d 1 d g f(t)lnf (t)+(A, —1)f(r)+pUf(r)

+ f ds M(s) J(s t)f(t) . —(20}

If the total entropy is a maximum, then d8'=0 implying
that

lnf (t)+A, +PU+ f ds M(s) J(s —t) =0 . (21)

It is important to realize that the constraint on the dis-
sipative flux is "chained" in time. For each new time t
the new value of the flux is constrained in two ways. It is
constrained at the new time t and the flux is constrained
to have evolved from all previous values J(s). This
means that the Lagrange multiplier for the flux is in fact
a functional M(s), rather than a constant.

Substituting into the Liouville Eq (7) shows that C is a
time-independent normalization constant.

This equation reduces to a number of well-known spe-
cial cases. If it is linearized in the external field F,(t), we
obtain the usual time-dependent linear-response equation.
If the full nonlinear response is retained but the external
field is made constant in time we obtain the equation first
derived by Evans and Holian. Our fundamental result
(16) can be derived in another way which perhaps makes
the thermodynamic elements of the derivation more obvi-
ous. Suppose that at t =0 we subject a canonical ensem-
ble to an isothermally applied external field F, (t) We.
can calculate the distribution function f(t) by maximiz-
ing the entropy S(t) [Eq. (8)] subject to the following set
of constraints.

Firstly, the distribution function must be normalized,

f dl deaf(t)=1; (17)
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Prom Eq. (21) we see that the form of the distribution
function is precisely the same as we derived earlier, Eq.
(16). The values of the Lagrange multipliers can be found
by realizing that W(t) =A (0). This second derivation re-
lies on the thermodynamic role played by the entropy of
the nonequilibrium states.

IV. SUMMARY

We have used thermodynamic principles to derive a
new result: the time-dependent nonlinear response of a
classical system to a mechanical perturbation. In special
cases where the field is constant in time or where al-
though the field is time-dependent the response is linear-
ized, our present formula (16) reduces to previously
known results. ' The present derivation avoids the
technical difficulties of previous purely microscopic treat-
ments. The fact that at least in special cases, our present
thermodynamic derivation is in agreement with previous
formal solutions of the Liouville equation, suggests that

thermodynamic principles may be useful in understanding
further microscopic details of nonequilibrium states far
from equilibrium. It is significant that in the linear re-
gime at least, our de'rivation based upon entropy maximi-
zation, not only yields the correct time ind-ependent steady
state but also the exact time-dependent approach to that
steady state and the correct linear response to time-
dependent external fields. Further, it is impossible to car-
ry out this derivation without an explicit mathematical
treatment of the thermostat. In the absence of a thermo-
stat, entropy maximization reveals nothing of the N-
particle distribution function since in that circumstance
the entropy is fixed at its initial value.
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