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Weighted-density-functional theory of inhomogeneous liquids and the freezing transition
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Starting from an exact expression for the Helmholtz free-energy functional of an inhomogeneous
classical liquid, an approximate functional is presented which depends on a weighted average of the

physical density. It retains the nonlocal character of the exact expression, but requires only the prop-
erties of the homogeneous liquid. A physical choice of the weighting function used to construct the
weighted density is made by appealing to the structure of the homogeneous liquid. The resulting
weighted-density approximation |,'WDA) corresponds to an approximation for some of the third- and
higher-order terms in a density-functional expansion of the true free energy, the first-, second-, and
a subset of higher-order terms being retained exactly. In this respect the theory differs crucially
from earlier functionals based on weighted-density ideas. As an application of the WDA, the freez-
ing of simple liquids is considered within the framework of mean-field theory and is briefly com-
pared to previous theories. In particular, the freezing transition of the hard-sphere system is studied
using the WDA formalism, the resulting freezing parameters and the equation of state for the solid
being in good agreement with computer-simulation studies.

I. INTRODUCTION

The theory of classical liquids has progressed rapidly in
recent years largely as a consequence of the advent of
functional methods' and the availability of computer-
simulation data. The thermodynamic potentials of these
systems are all unique functionals of density, or of an
external potential, and the formal statements which can be
made as a result of this uniqueness have provided a guide
for approximate functional theories. In addition, func-
tional perturbation theory introduces a systematic ap-
proach to the study of both uniform and inhomogeneous
liquids. For inhomogeneous systems, the natural expan-
sion variable is, of course, the one-particle density p(r).
The free energy I'[pj also can be modeled by a local-
density approximation, which consists of approximating
F by FLD —— dr p r, where is the ree-energy den-
sity of a homogeneous liquid. On occasion, the first non-
local correction to Fr D is also included. The application
of such approximate functions usually requires an accu-
rate knowledge of the properties of homogeneous liquids
over a wide range of densities. The success of these ap-
proaches is, however, mixed. For example, calculations of
the liquid-vapor surface tensions and surface profiles of
simple liquids and monovalent metals are in reasonable
agreement with experimental results where available. '

On the other hand, results for liquids in contact with a
rigid wall are on the whole less encouraging, since it is not
clear that the oscillations in the density profile near the
wall or the subsequent wetting phenomena are accurately
described. Nevertheless, the functional ideas have been .

sufficiently successful that they have been extended to
consider the formation of a solid from a liquid, about
which we will have much more to say below.

Work on the liquid-based theory of freezing has tended
to view the emerging solid as a grossly inhomogeneous
liquid with a rapidly varying one-particle density p(r) re-

fleeting the lower symmetry of a lattice. ' In what fol-
lows, we will also retain this statistical (i.e., non-phonon-
based) view of the solid. Given such a picture, a number
of recent approaches to freezing have applied functional
perturbation theory, ' with the uniform system taken as
the zeroth or unperturbed system. Generally the key ob-
jective is the determination of the solid and liquid coex-
istence conditions. In the calculations reported in the
literature, they are often found to agree quite well with ex-
periment. Yet, in spite of this agreement, the application
of low-order perturbation theory (i.e., linear response) to a
case in which the density variation typical of a solid is
a priori strongly varying would not appear to be well
founded. Indeed, for the hard-sphere system it has al-
ready been found'" that- the partial inclusion of the next-
higher-order terms in a direct density expansion has rath-
er important consequences in the calculations of its freez-
ing transition.

The primary purpose of this paper is to provide a foun-
dation for a functional description of the inhomogeneous
liquid which, as we shall see, circumvents some of the
above difficulties. We present an approximate free-energy
functional which is constructed in such a way that the
free-energy density of an inhomogeneous liquid at a given
point is interpreted as that of a homogeneous system, but
taken at an auxiliary density which depends parametrical-
ly on the chosen point. The appropriate density is ob-
tained approximately by weighting the physical density
over a physically relevant range about the given point.
The resultant weighted-density approximation (WDA)
thus accounts by construction for the short-ranged, nonlo-
cal effects present in a real, interacting inhomogeneous
liquid at the given point. The approximate functional has
no local-density piece and for this reason is expected to
give much better results for highly inhomogeneous sys-
tems (such as the developing solid) than functional ap-
proximations involving local-density contributions. We
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note here that the functional we will discuss is similar to
one used by Tarazona, ' although ad hoe, Tarazona's
scheme succeeded in locating a first-order phase transition
for simple liquids in qualitative agreement with simula-
tion studies. In addition, good results for the liquid in
contact with a hard waB were also obtained. However,
the status of this approach has not been established, in the
sense that the chosen free-energy functional is somewhat
arbitrary and has not, as yet, been shown to result from a
well-defined approximation of the exact functional. We
mention here that the %'DA also has an analog in the
electron-gas problem (where effective densities are fre-
quently employed) as an approximate exchange-
correlation energy functional and has been analyzed in
that context. "

The secondary aim of this paper is the determination of
the liquid-solid transition in simple systems, which we
pursue through an application of the WDA. This approx-
imation does lead to such a transition, and we find the
freezing parameters for the classical hard-sphere solid to
be in reasonable agreement with computer-simulation
studies. More importantly, the physical picture of freez-
ing which emerges is one which depends solely on the na-
ture of the weighted density with no further crucial or
ad hoc approximations invoked. At sufficiently high
average densities the solid phase becomes stable relative to
the liquid of the same density. The reason for this is that
in spite of the loss of the communal-like entropy present
in the liquid resulting from the localization of the parti-
cles to lattices sites, there is a gain in entropy from locali-
zation (the entropy is less negative) resulting from a de-
crease in particle interactions, each particle sensing to a
far lesser extent the presence of its now localized neigh-
bors. This more than offsets the lost entropy. The excess
free energy of the solid is interpreted in the WDA as that
of an effective liquid of much lower density than the aver-
age solid density. It is precisely such a low-density liquid
that is required to approximate the correlations in the
solid, and the description arises naturally in the VfDA, as
we shaH see below. The picture presented here goes
beyond the scope of the simple cell theories of the solid by
approximately including correlations between near parti-
cles, correlations which are naturally built into a phonon-
based description of the solid. As we shall see, the result-
ing equation of state and free energy for the solid are both
good.

In the next section we will begin by examining the exact
free-energy functional of an inhomogeneous liquid and
then describe in detail the approximation we make to ob-
tain a weighted-density functional. %'e then proceed to
derive an explicit expression for the optimal weighting
function, optimal meaning here that all known relations
between two-point functions and functional derivatives of
the free energy are preserved in the homogeneous liquid
limit. We are then able to provide an interpretation of the
content of the WDA. In Sec. III we present the function-
al approach to freezing, discuss previous approximate
freezing theories, and briefly compare them to the WDA,
for which arguments can be given to show that it is the
preferred approach, to date. In Sec. IV we study the
freezing of the classical hard-sphere liquid within the

WDA and compare our results to computer-simulation
studies. Section V presents further discussion and con-
clusions.

II. FORMALISM: THE WEIGHTED-DENSITY
APPROXIMATION (%'DA)

We shall restrict our discussion to simple monatomic
systems in which the particles interact through pairwise,
spherically symmetric potentials P(r). For N atoms in a
volume V the underlying microscopic Hamiltonian is thus

N
H = g P; /2m + —, g g'P(r; —rj ) .

At temperature T (P= 1/kT) and for single-particle den-
sity p(r) the intrinsic Helmholtz free energy, a unique
functional of the one-particle density p(r), may be written
exactly as

F[p]=Fd+ —,
' f f dridr~(r, )p(rz)p(ri —rz)

1

X f dag(ri, rz, a),
where a is introduced as a coupling constant for the pair
potential. In (2), g(ri, rz;a) is the pair correlation func-
tion for an inhomogeneous system with single-particle
density p(r) and pair potential aP(r); it is also a function-
al of p(r). F;„ is the ideal-gas part of F. We rewrite F in
the compact form

F[p]=F~+ f «ip(ri)q'[iz;ri] (3)

where

1
1

4'[p;ri] = —, drzil(rz)P(rz —r, ) dag (rz, ri,'a) (4)

is the excess free energy per particle of the inhomogeneous
liquid at r, . It is clearly a functional of the density.

Since little is known about the details of g (ri, rz,'a) and
+[p;ri] for inhomogeneous systems, practical approxima-
tions usually involve a knowledge of the properties of
homogeneous liquids. For homogeneous systems, the
functional %[p;ri] becomes merely a function of the den-
sity, %'(p). Therefore, the most desirable approximation
to V[p;r, ] using only homogeneous liquid information is
one in which the uniform reference density p(ri), at which
%(p) is evaluated, is itself a functional of the one-particle
density and satisfies

lI'[p;ri] =Wp(ri)),
which guarantees that E is evaluated exactly. For the
hard-sphere system %(p) is a monotonic function of densi-
ty over the entire range of densities and the identification
(5} is unambiguous, in principle. In any case, the identifi-
cation is intractable in practice. To proceed further, it is
necessary to obtain the density P(r} of the equivalent
homogeneous system, which must be a functional of the
real density. We take p(ri) to be a weighted average of
the real density which we write, following Tarazona, ' in
the form

P(r)= f dr'w(r' —r;p(r))p(r') .

Equation (6) illtl'odllccs lllto tllc theory a wclghtlllg fllllc-
tion w(r;p) which has an essential dependence on the
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density ptr) to be discussed below. The function w should
be chosen physically not only to best approximate the free
energy I' but also to reflect the range of nonlocality in the
exact functional (4). The weighted-density approximation
(WDA) thus consists of writing I' [p] as

+wD[p]=+'d+ f «e«i)q'(p(ri)) . (7)

Here,

ql(P(r)))= ,'p(—r()f drys(r2 —r)}
IX dag-(, ) (r2 —r),a) (8)

has the interpretation that it is the exact interaction part
of the free energy per particle of a homogeneous liquid of
constant density p(r&) and pair correlation function g&, ~.p(r))
Now, p(r&) appears in two places in (8). However, we may
substitute (6) for the p(r&) prefactor, interchange integra-
tions, and relabel coordinates to obtain

qi(p(r$})= —,
' f dr~(r2)w(r2 —r$,p(r$))

X f dr3$(r3 —r&)

1

dag&, ~(r3 —r~,a), (9)

so that P(r&) only appears in the evaluation of g". Equa-
tion (9) may be compared directly to (4), and we observe
that the WDA is actually an approximation only for

1

(t}(r2—r&) f dag(r2, r&,
.a)

rather than for the full free energy per particle, %[p,r&].
Note that the term in large parentheses in (9) also depends
only on the coordinate r~ and hence the range of nonlocal-
ity in (9) is precisely the range of the weight function.

It is now necessary to prescribe the weighting function
w (r;p). We first observe that the choice w (r) =5(r) leads

to the well-known local-density approximation (LDA).
The LDA is not expected to be physically acceptable for
the case of a rapidly varying density, as is the situation we
face for a solid developing out of a liquid. For a less
singular choice, u will clearly serve to smooth out the
sharp density variations (which are overemphasized in the
LDA) to a degree determined by its spatial range. The
free-energy density at r will thus depend not only on p(r),
but also on an average of the density in some region about
r. As noted, little is known about the exact properties of
the inhomogeneous liquid, and so we will extract the op-
timum form for w by appealing to the homogeneous limit
of (7). In particular, we insist that w be chosen so that the
known relation between the direct correlation function
c' '(r;pp) and the second functional derivative in density
of the excess Helmholtz free energy @=F——F~d be
strictly obeyed for the homogeneous liquid of density pp.

The direct correlation function of the inhomogeneous
liquid is, generally,

(2) . 5 @'[P]' '" "'"=~5p(.,)5p(., )
(10)

The complex expression for c ~ ~ resulting from the use of
4=4wD simplifies considerably in the homogeneous lim-
it since many terms involving density derivatives of w
vanish identically. For example,

f dr'p(r')Bw/By~po(B/BP f dr'w (r' —r;p) =0,

where we have used the normalization requirement

r'm r' —r;p r =1

independent of r and p(r). The uniform liquid direct
correlation function is given by

c' '(rq —r~,pp) = —P(W'/Bpo)w(rz —r~,po) —Ppp(B 'IIIBpp) f dr"w (r—r";pp)w(rz —r";pp)

—Ppp(BV/Bpp) f dr" I [Bw(r2 —r";p(r") )/Bp ][5p(r")/5p(r& )]+[Bw(r& —r";p(r" ) )/Bp][5p(r")/5p(rz)] J.

For strongly inhomogeneous systems (such as a solid}, the choice of p(r) =p(r} as the density argument in the weight
function is required for important reasons to be discussed below. Hence,

5p(r}
5p(r) }

w(r& r;p(r))—
~w(r& —r;pp),

1 — r"p r" m r"—r],'p r& p

and so w (r' —r), which only depends on
~

r' —r ~, must satisfy

c' '(rz —r&',po) = —2P(BV/Bpo)w (r2 —r~,pp) —Ppp(B 0'/Bpo) f dr"w(r" —r2,'pp)w (r"—r~', pp)

—Pp, (B+/Bpp) f dr"[w(r& —r";pp)Bw(r, —r",p, )/Bpp+ w(r& —r";pp)Bw(r& —r".,pp)/Bpo] . (12)

Alternatively, after Fourier transformation the condition
on w(k, po) is

c'2'(k ~po}= —2P(B+/Bpo)w (k ~po)

Ppp(B 4/Bpo)w2(k;—pp)

—2Ppp(B+/Bpp)w (k ~po)Bw (k 'po) /Bpo (13)

In particular, for k —+0, the compressibility rule reads

c"~(0;p,) = 2' /Bp, 13p—,B'q /Bp,', — (14)

which is independent of the weight function, since
w(k =O,po)=1.

We are now in a position to examine the content of the
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c(")(k,o, . . . ;po) =(a"-2/apo 2)c(2)(k;po) (15)

is preserved for all n. Now the WDA can be constructed
to preserve the direct correlation function c' ' exactly for
both of the physically acceptable choices of density argu-
ment in the weight, function, namely p(r) =po and
p(r)=p(r). However, it is only the choice p(r)=p(r) that
leads to higher-order correlation functions' which also
satisfy (15}. Since c' ' is assumed known, all two-point
functions and hence all the thermodynamic functions of
the homogeneous liquid are reproduced exactly in the
WDA. The WDA is thus an approximation which (i) is
exact to lowest orders in the density variations, in the lim-
it of nearly constant density but with arbitrarily rapid
spatial fiuctuations, (ii) includes terms to all' higher or-
ders in a density expansion by providing approximate ex-
pressions for the three- and higher-point correlation func-
tions [the subset of terms involving (15) being included ex-
actly] and thus uses all available information from the
two-point functions of the homogeneous liquid, (iii) re-
tains an implicit functional dependence of + on p(r), and
(iv) is expressible in a fairly simple, compact form, namely
(7}. In addition, the WDA is devoid of a local-density
contribution to the excess free energy (i.e., w has no 5-
function piece). It therefore differs fundamentally from
previous approximations which also satisfy (i) in the near-
ly homogeneous limit but retain a local correction to the
excess free energy, even in the highly inhomogeneous
11qu1d.

The nonlinear differential equation (13) for w(k;po),
which has been previously encountered in the electron-gas
context, ' is difficult to solve. For the classical liquid,
neither of the desired boundary conditions [w{k =O,po)= 1 and w (k —+ ao,'po) —+0] can be transformed into boun-
dary conditions in the density variable. For fixed k and
density, however, we may guess the desired solution to

WDA. With (o determined from (12), a functional expan-
sion of N—=EwD E;—d about a uniform reference densi-
ty is guaranteed to be identical to an expansion of the true
4 to second order in density differences. Explicitly, the
approximate free energy is

Ewo ——E;d — dr dr'c' '(r' r—;po)
2P

X I P(r) —Po] [P(r') —po]

I drdr'dr"cwD(r", r', r;po)[p(r) po]

X [p(r') —po][p(r") —po]+
The higher-order direct correlation functions for the
homogeneous liquid, c("'(r&, . . . , r„&,po), which appear
in the higher-order terms of the functional expansion, cor-
respond within the WDA to well-defined approximations
and are obtained by taking further functional derivatives
of NwD and then taking the homogeneous limit p(r)~po.
Given that the higher-order direct correlation functions
are difficult to evaluate even for simple liquid approxima-
tions (e.g., the Percus-Yevick approximation), the c wD for
n~2 are not easy to compare with their exact values.
However, the exact relationship between c' '(k,po) and
c("'(k,k', . . . ;Po) given by

o. I 0

0.06-

0.02—

0.00

-0.02-

(13) and then iterate until satisfactory convergence is
found. Our first estimate for to(k, po) is obtained by solv-
ing the quadratic equation which results when the deriva-
tive term in (13) is neglected. The proper root is deter-
mined by the k=0 and k —+ca boundary conditions at
fixed density. In practice, computation of the neglected
term using the initial solution and then iterating results in
convergence within 5—10 iterations to I part in 10 . The
resultant w(k, po) differs from the initial estimate by at
most 10% for the densities we consider. Figure 1 presents
our results for (o(k,po) as calculated within the Percus-
Yevick approximation' for a hard-sphere liquid with
hard-sphere diameter o. which provides a convenient ana-
lytic form for the direct correlation function'9 (see Sec.
IV). Figure 2 shows w(r, po), the Fourier transform of
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FIG. 2. Weight function in real space, w(r) vs r/cr for the
hard-sphere liquid in the Percus- Yevick approximation at densi-
ties po =0.3, 0.5, and 0.7, respectively. The basic length scale
of w(r) is the hard-sphere diameter o., with M(r) positive for
r/0 ~1 and w(r) negative and small for r/or~1. Note the
scale change for «/a& 1. The range of w(r) narrows with in-
creasing density.
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FIG. 1. Fourier transform of the weight function, w(k), vs
ko. for the hard-sphere liquid in the Percus-Yevick approxima-
tion at densities po. =0.3, 0.5, and 0.7, respectively. w(k) is ob-
tained from Eq. (12) and requires c' '(k), the two-particle direct
correlation function of the uniform liquid, as input. Note that
w(k) &&1 for ko. &5 at all densities. The oscillations in w(k)
shift to slightly larger k with increasing density. Inset: w(k) vs
ka. for ko. &5. Note the change in scale. w(k=0)=1 is re-
quired by normalization and the compressibility sum rule.
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ic (k,po), at several densities, and it is clear that w

possesses the range of the short-ranged function c' '

which, as noted originally by Ornstein and Zernike, is
characteristic of the range of interactions in the liquid
rather than the range of correlations. It follows that the
averaging range of p(r) [see Eq. (6)] is comparable to that
of the short-range interactions that exist in a uniform
fluid of density po (e.g., on the scale of the short-range
repulsive part of the pair potential). That this is physical-
ly reasonable may be seen by examining the exact func-
tional with the simple low-density, density-independent
approximation

If we write

F=Fd —cy=p ' f drp(r)Iln[Ap(r)] —1 j —@[p]

po(r) =A ' exp[ —Pp —PV,„,(r) + c "'(r;p(r ) )] (20)

and the corresponding grand potential is

Q[po]= —4[po]+P ' f drpo(r)[c"'(r;po(r)) 1—] .

(with A the cube of the thermal wavelength), then (18) be-
comes

The coupling constant integral in (2) may be carried out
exactly for this g and the resulting free energy is

F=I';d+ —, r) r~ r) p r2 1—e

which may be compared to (7) to tandem with (9). The
weight function which appears in (9) (and which is shown
for several densities in Fig. 2) is qualitatively similar to
the short-ranged quantity 1 —e @, which, for the hard-
sphere potential, is simply equal to 1 for

~
r2 —r,

~
& o and

zero elsewhere. The detailed behavior of io is, of course,
quite important in actual applications.

Equations (6) and (7) [with Eqs. (12) or (13) prescribing
the choice of weight function] constitute the basis of the
weighted-density functional formalism to be used below in
an application to freezing. The application of this method
to inhomogeneous systems proceeds by minimizing
FwD[p] with respect to a suitably parametrized density in
order to find the appropriate density profile and free ener-
gy. As is usual with approximate density-functional tech-
niques, no strict variational principle applies to the ap-
proximate functional. Instead, FwD is to be viewed as a
thermodynamic potential which is assumed to take its
maximum equilibrium value at some density.

Here,

c'"(r,p) =ft54[p]/5p(r) (22)

is the one-body effective potential acting upon a particle
but having its origin in the totality of interactions with all
other particles. It is the first member of the hierarchy of
direct correlation functions, of which the Ornstein-
Zernike function c' ' [Eq. (9)] is the second. The gradient
of the natural logarithm of (20) leads to the first member
of the Yvon-Born-Green hierarchy.

A number of approaches to freezing into a crystalline
solid are based on the general mean-field results discussed
above. ' ' ' We note that the mean-field theory em-
bodied in (20) and (22) should be an acceptable theory of
the solid phase and hence of the liquid-solid transition
since the freezing transition is first order, implying the ex-
istence of a latent heat and a resultant suppression of fluc-
tuation effects. The dynamic solid is described by a one-
particle density p, (r) which possesses the space-group
symmetry of the assumed structure. In terms of the
reciprocal-lattice vectors I G j characterizing the solid
structure of interest, the density is expressed as

III. FUNCTIONAL THEORY OF FREEZING

We turn now to the application of the WDA to the
freezing of a homogeneous, simple liquid into a solid
structure characterized by an inhomogeneous one-particle
density. The discussion is valid for all types of solids:
crystalline, quasicrystalline, or glassy, and application of
the WDA to each is only limited by the ability to accu-
rately parametrize the one-particle density appropriate to
the solid of interest.

We begin with the grand potential Q[p] for a liquid of
density p(r), chemical potential p, and initially in the
presence of a one-body potential V,„,(r):

Q[p]=F[p]—p f drp(r)+ f drp(r)V„, (r) . (16)

The equilibrium density po(r) for this system is found by
applying the condition

[5Q/5p(r) ]p (,)
——0,

p, (r)=p, + g'pGe'G'.
G

(23)

pG
——(pi/V) f dre' 'exp —f dr'c' '(r' —r;pi)

In several recent theories, ' (20) is approximately solved
for p, (r) (i.e., p„IpGj&0) in the limit V,„,~O. This is
achieved by expanding the effective one-body potential
c"' about its value for the uniform liquid at the coexist-
ing liquid density pi to first order in the difference
p(r) —pi. Subsequently, the set of IpG j is obtained self-
consistently, but usually only for a few of the smallest or
most important reciprocal-lattice vectors. Freezing is
then asserted to occur for that particular density p, (r)
which (a) satisfies (20) after expanding c"', and (b) satis-
fies Q[p, ]=Q[pi] after expanding both c'" and @ in (21)
to lowest orders in the density difference.

The subsequent equations are

which requires that po(r) satisfies

5F/5po(r) —p, + V„,(r) =0 . (18) for each pG retained and

X [p, (r) —pi]
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AQ=[co" +"/n!+(n —1)co"'/n!]ri", n & 1 (25)

attributable to the nonzero fractional density change
g=(p —pi)/pi upon freezing. Here, co"' is the Fourier
transform of the nth-order direct correlation function
with aB n —1 wave vectors set to zero, and is related to
c~ i(k =O,pi) by (14). The terms EQ are not negligible,
and it is therefore highly desirable to include corrections
to all higher orders whenever possible.

To compare the WDA approach to those of the density
expansion theories of freezing, we first note that the
WDA is exact to the same order as the theories which
reduce to (24). However, it also incorporates higher-order
terms, some terms being included exactly. The theories of
freezing based on density expansions may be recovered
from our approach by expanding c'" about p„ truncating
at first order and then further expanding the uniform
liquid quantities c"'(p, ) and c' '(p, ) about the liquid den-
sity pi. Evidently, the WDA (with the properly chosen
weight function) provides a somewhat better basis for
studying the freezing transition than theories based on
functional expansions about the uniform liquid, despite
the fact that only information about the uniform system
is required in all theories to date. From a more physical
point of view, the earlier theories implicitly assume
[through the use of only c' '(rz —ri,pi)] that the structure
of a high-density liquid is able to accurately describe that
of a solid. We. will see, via the inclusion of the higher-
order terms previously neglected, that if some uniform
liquid is to be chosen so as to best describe a solid, that
liquid should be a much lower density than the coexisting
liquid density.

The WDA functional is an approximation for the func-
tional @[p] and thus makes a particular but approximate
statement about the form of c"'{r,p(r)), which appears in
(20). In principle, the equivalents of (20) and (21) can be
studied directly without resort to further expansion. As
an alternative procedure, the density p, (r) of the dynamic

Q[pl]=Q[pil —(1/P) f «[p.«) p—il

+(1/2P) I drdr'c' '(r' —r;pi)

X fp, (r') —p, ][p(r)—p, ] . (24)

It should be noted that at this level of approximation the
only input required by the theory is the crystal structure
and the quantity c' i(k =O,pi). Generally the density
change observed at freezing and the solid density itself are
given reasonably well by this limited first-order expansion
method. However, it is not easily extended to higher or-
ders because the requisite c'"'(ri, . . . , r„;pi ) are not readi-
ly available. The inadequacy of retaining only the low-
order corrections to the I.DA is a well-known difficulty
for the electron-gas problem. Correspondingly, for the
classical fluid, Haymet' has shown that the inclusion of a
limited set of third-order terms, involving of course c' i,

does have important consequences on the predictions of
the theory. Moreover, in expanding about the coexisting
liquid density rather than the average solid density, there
is complete neglect of contributions to the free energy of
the form

solid can be parametrized and E minimized directly with
respect to p, (r) at constant average density p„and p and
Q both calculated at the minimizing density. For fixed T,
freezing is attained when the chemical potentials and
pressures of the two phases are equal, i.e.,

p(p, )=p(p, ) and Q(p, )/V=Q(p, )/V, (26)

IV. FREEZING' OF HARD SPHERES

The classical hard-sphere (HS) liquid is a traditional
testing ground for liquid theories because of the availabili-
ty of accurate computer siinulations and thermodynamic
functions. ' The HS liquid provides a satisfactory
description of many aspects of real dense liquids and for
this reason has also been a basis for perturbation theory.
Of particular interest here is the liquid-fcc sohd transition
observed in simulation studies near p&0. =0.94. In the
following, we discuss (i) the thermodynamics of the uni-
form HS liquid to be used in describing the inhomogene-
ous solid, (ii) the parametrization of the solid density and
relevant length scales in the solid, (iii) the structure of the
weighted density, and (iv) the freezing transition for hard
spheres, using the WDA as described in the preceding sec-
tions. Although the hard-sphere system is chosen, the
general features of the weighted density, its role in deter-
mining the freezing transition and the physics underlying
the transition itself are not limited to the hard-sphere sys-
tem.

A. Thermodynamics of hard spheres

The hard-sphere potentia1 is
r

p(i)=
0, r &o.

thereby giving the coexistence densities and the solid den-
sity profile. The procedure just described has been carried
out by Tarazona, who initially used a simple density-
independent weight function w. More recently' he em-
ployed an improved form for w which included some den-
sity dependence. While these choices do lead to a freezing
transition, the F[p] assumed in Tarazona's work still re-
quires physical justification, and although the results are
reasonable, it remains difficult to see why. In particular,
it is not clear why weight functions appropriate to low-

density liquids give reasonable results for high-density
systems. We show below that even for a physically
motivated weight function, corresponding to the choice of
p(r) =p„ freezing does not result even though the resul-
tant functional is exact to second order, includes terms to
all orders, and seems physically reasonable. We remark,
however, that the important corrections of (25), arising
from an expansion about p„are included exactly for any
weight function used since the compressibility (14) from
which all terms in (25) are derived is independent of w.
Further, the relation of the WDA approach to the theory
embodied in the approximate forms of (24) has not been
previously established %'e have now provided this con-
nection and have shown why the WDA as applied to the
freezing transition is to be preferred.
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and the excess Helmholtz free energy is thus entirely en-
tropic. There is no temperature scale and the only
relevant quantity is the packing fraction g=(vr/6)po .
The equation of state (EOS) for the uniform liquid is best
described by the semiempirical form suggested by Car-
nahan and Starling,

(28)

(29)

(z) a +b (r/o)+c (r/o), r & o.
c r;po ——.

0, r&o (30)

where

a = —(1+2') (1 —g)

b =6'(1+ ~ ri) (1—rt)

and

C= 2'Qa
1

where I' is the thermodynamic pressure. However, the
Percus-Yevick (PY) approximation provides an accurate
equation of state, as derived from the compressibility, and
an analytic form for the direct correlation function, '

namely,

Both real and Fourier space representations will be useful,
as we shall see. For a fcc lattice, the lattice constant a is
related to the density by a =(4/p, )'~. The nearest-
neighbor distance is thus d =a/& 2=1.12o at p, o =1.0,
and the smallest reciprocal-lattice vector, (2m/a)(1, 1,1),
has the magnitude G& ——6.89/o at p, o =1.0. Lastly, all
real-space integrations may be reduced to integrals over
the region 0&z &y &x &a/2 by elementary symmetry
considerations.

C. The weighted density

The general behavior of the weighted density may be
ascertained by simple arguments. The weight function m
has a range o. Since the nearest neighbors of a given lat-
tice site R are more distant than o, at large values of a,
p, (R) has important contributions mainly from the peak
at R. The remainder of the region of integration in (6)
lies in the very-low-density interstitial regions. Thus,
p, (R) must be lower than the average density p, . In con-
trast, near the edge of the Wigner-Seitz cell, two or more
lattice peaks are well within the range of w, and P, (r) may
be larger than the average density in the interstitial re-
gions. The fact that w&0 for r &o accentuates the
difference between lattice site and cell-edge weighted den-
sities, although the average density remains unaltered.

The calculation of the self-consistent weighted density,
at fixed a and p„ is most conveniently carried out using
the RLV description of the solid. Using (23), Eq. (6) takes
the form

The excess Helmholtz free energy per particle 4' may be
obtained by integrating the equation p(r)=p, + gpow(C;p, (r))e' ',

IGJ
(34)

PP/p= 1+qd(P+)/Bri . (31)

To employ the WDA, we require c' ' for the homogene-
ous liquid. We will use (31) for c' ' and the correspond-
ing equation of state (30) in determining 'k. Despite the
high average solid density of g, =0.5, the Percus-Yevick
EOS will prove to be quite accurate at the weighted densi
ties of importance in the freezing problem.

p, (r)=(a/m) ~ +exp[ —a(r —R) ] . (32)

Here, a=0 corresponds to a constant. density, i.e., a uni-
form liquid. We also observe that acr »1 corresponds to
sharp, nonoverlapping peaks centered on the lattice sites.
The solid density may also be written as a sum over the
reciprocal-lattice vectors (RLV) G of the solid [see Eq.
(23)] as

p, (r)=p, +p, +exp( nG /a)e'—
G

(33)

B. The solid density

To parametrize the solid density, we assume the one-
particle solid density to be a sum of identical Gaussians
centered on the solid lattice sites. The lattice structure
must be specified a priori; we use a single parameter a to
determine the width of each Gaussian. The precise form
IS24, 12, 13

where po ——p, exp( —m G /a). Since all the reciprocal-
lattice vectors of the solid are larger than 2m. /cr, the
w(G;p, (r)) are quite small in comparison to unity (see
Fig. 1), the variations in P, (r) will clearly be much less
drastic than those of the physical density p, (r). In addi-
tion, larger 6's are actually less important since both
w{6) and po decrease with increasing G. In practice, a
careful truncation of the sum in (34) is required. We have
examined the weighted density at a lattice site,

p, (R)=p, + gw{G;p, (R))po,

to determine the number of shells (RLV's equivalent by
symmetry) which must be retained. Since w(G) oscillates
in sign, groups of shells either add or subtract from P, (R),
and the truncation should be performed with care in order
to take advantage of the cancellation between positive and
negative contributions to the weighted density. By re-
stricting the sum to the first 29 shells of RLV's, we find
that p, (R) is underestimated by at most 1% of the exact
value for the range of densities and a's we consider.

Figure 3 shows the weighted density along the [100],
[110],and [111]symmetry lines of the solid at p, o =1.0
and ao =91.2. The real solid density normalized to its
peak value and calculated using (32) is also plotted. As
discussed, the weighted density is a local minimum at the
lattice sites where the real density is very large
[p, (R)cr =156.6]. The dips in P, (r) near the cell edges in
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TABLE I. Liquid-solid coexistence data for the hard-sphere solid. The Lindemann parameter I. is
related to the structural parameter a by 1.={3/aa )' for the fcc lattice.

ps pi ps —pl M /kg

Lindemann
parameter

L
Peak in S(k)

k S(k)

Simulation
Theory

1.04
1.025

0.94
0.905

0.10
0.12

1.16
1.31

0.126
0.104

7.15
6 90'

2.85
2.82'

Using the Percus-Yevick form for S(k). Using the more accurate Verlet-Weis parametrization (Ref.
22) would lead to a slight increase in k and a slight decrease in S{k)at the peak.

teraction contribution to the free energy of the dense,
highly localized liquid is evidently comparable to that of a
uniform liquid of much /otoer density. A lower effective
density near the lattice sites is just what is required to best
model the solid correlations by those of a liquid and arises
naturally in the WDA functional description of the inho-
mogeneous liquid. %'e will discuss this point in some de-
tail in Sec. V.

The two contributions to F(a) discussed above add and
can lead in principle to a minimum in F(a) at finite a, re-
flecting the competition of the local and nonlocal terms in
the free energy (see Fig. 4). As the solid density is varied,
the values of a and F at which Ii is a minimum change.
Figure 5 presents the solid free-energy minima as a func-
tion of the average density p„along with the free energy
of a homogeneous liquid of the same density. In addition,
the localization parameter o. is shown at each density.
The liquid free energy is calculated using the Carnahan-
Starling equation of state, which is considerably more ac-
curate than the Percus-Yevick EOS for the high-density
liquid. At about po =0.96 there is a change from the
liquid being the global mini~urn to the solid being the
global minimum in the free energy. We have not exam-
ined the absolute stability of the solid phase.

Two important points may be noted at this juncture.
First, we can now determine the consequences of choosing
a weight function which depends on p, rather than on

p, (r) Such a.choice would lead to a higher weighted den-

sity at the lattice sites, for which —P@(a) is larger, im-

plying the occurrence of the solid phase to be less favor-
able. In fact, E(a) possesses no loci l minimum at a&0 if
the weight function depends only on the auerage density

p, . For freezing calculations, this observation points out
the importance of using the self-consistently-determined
weight function [i.e., p(r) =p(r)], which gives the best ap-
proximation for the higher-order correlation functions,

even though the real-space scale of the weight function is
roughly cr for all reasonable densities. In essence, the
self-consistent w allows for the range of lower densities
required to describe the solid to be obtained while the al-
ternative choice for w artificially restricts the weighted
densities to values closer to the average density. Second,
since the important contributions to —P4(a) are from
weighted densities much smaller than the average solid
density [e.g., from Fig. 3, 0.3 &p, (r)o &0.5 in the region
where p, (r) is appreciable], the error introduced by using
the Percus-Yevick EOS for the solid is actually quite
small, and is much smaller than the error incurred by us-
ing the PY approximation at densities near p, cr =1.0.

To locate the hard-sphere freezing transition, we first
calculate the chemical potential and grand free energy per
unit volume of the solid phase from

p(p, )/& ='d Idp[F (p, )II/]

and

~(p, )=II(p, )IIr=F(p, )/I p,p(p, ) . —
The corresponding quantities for the uniform liquid at
density p, are easily calculated from the Carnahan-
Starling EOS. The coexisting solid and liquid densities
are those satisfying p(p, )=p(p~) and co(p, )=co(p~), as
mentioned earlier. We find p, o = 1.025 —1.03 and
p&o. =0.905—0.908 at coexistence, and hence a density
change upon freezing of p, o —p&cr =0.12. Table I
presents our results for various thermodynamic quantities
and those obtained from computer simulation. The satis-
factory agreement between theory and simulation holds
not only at coexistence but over a wide density range, as
shown in Table II, which compares the free energy and
EOS obtained for the solid in the WDA with those of
simulation. The theory consistently deviates from "exper-
iment" by only 5% and 10% for the free energy and EOS,

TABLE II. Free energy per particle and equation of state for the hard-sphere solid at various densi-
ties.

Solid density

ps Theory Simulation'

Free energy per particle
PF/Ã

Theory Simulation

Equation of state
PI'/p,

1.000
1.025
1.050
1.075
1.100

4.391
4.623
4.861
5.108
5.370

4.661
4.868
5.099
5.354
5.663

9.14
9.62

10.1.6
10.89
11.62

10.26
10.84
11.54
12.28
13.12

'Extrapolated at lower densities from the data of Ref. 3(c) using the form suggested in Ref. 25.
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respectively. Improvements in the form of a better direct
correlation function and EOS for the liquid20 22 are pos-
sible, but may not substantially improve the agreement
with simulation since the functional employed is only ap-
proximate at the outset. The general agreement, however,
is quite good and is to be attributed to the accuracy of the
functional we have used.

V. DISCUSSION AND CONCLUSIONS

We have formulated and discussed the foundations of a
weighted-density functional theory for classical inhomo-
geneous liquids. By optimally choosing the weight func-
tion, we have shown that the WDA corresponds to an ap-
proximate resummation of a functional expansion in den-
sity of the exact excess Holmholtz free energy which
preserves all the two-point correlation functions of the
homogeneous liquid. At the present stage of development
of inhomogeneous liquid theory, the WDA appears to be
the best approximation which can be made by using only
the known properties of homogeneous liquids. It results
in an expression for the excess free energy which has a
particularly simple form, involving an integral over the
exact excess energy of a homogeneous liquid but evaluated
at a weighted density. The latter is a nonlinear functional
of the physical density which preserves the nonlocality in-
herent in the exact functional. In applying the WDA to a
study of the freezing transition, we find that the WDA is
preferable to previous approaches based on truncated den-
sity expansions because the %DA retains terms to aH or-
der in a density expansion, the first two terms of which
are given exactly.

We have also provided a detailed analysis of the freez-
ing of the hard-sphere liquid for which, as in most simple
systems, the liquid-to-solid transition is dominated by en-
tropy considerations. At sufficiently large average densi-
ties, the solid structure is thermodynamically preferred to
a uniform liquid of the same density because localization
of the particles about lattice sites leads to a higher entropy
from interactions despite an obvious loss of entropy due
to localization. The increase in interaction entropy is ac-
curately reflected in the structure of the weighted density,
which is a minimum where the real density is a max-
imum, and hence implies that the localized particles have
an excess entropy corresponding to that of a uniform
liquid of much lower density.

We have alluded a number of times to the importance
of a low-density liquid in describing the solid. To under-
stand why such a density is appropriate, we must compare
the particle pair correlations of the liquid, p~ ', and the
solid p,' '. The pair correlation function p' ', defined as
the joint probability of two different particles being simul-
taneously within dri of r, and dr& of ri, may be ex-
pressed as

p' '(r2, ri)=p(ri)p(r2)g (r2, ri),
which serves to define g. In the homogeneous liquid, the
one-particle density is a constant and hence all the
structural information in pI

' is also contained in gt. In
the hard-sphere liquid, as an example, g is necessarily zero
inside the hard core and has a peak at r =o.+ which

grows rapidly and sharpens with increasing density. Al-
though gI approaches its uncorrelated value gI ——1 at large
distances, it greatly exceeds this value at cr+ for high den-
sities, being expressable in the PY approximation as

gt(a'+) =(1+Y~q)81 —71)

Subsidiary oscillations in gt corresponding to further
neighbor correlations also grow with increasing density.

In contrast, the structure in p' ' of the solid is dominat-
ed by the highly structured one-particle density which,
even in the supposed absence of two-particle correlations,
gives p,

' ' the long-range order characteristic of the solid.
The additional correlations contained in g, are only those
resulting from the presence of the hard core (which is
perhaps not to crucial since the localized particles are
separated by more than o) and from the correlations
(u(R) u(R')) between the displacements u(R) and u(R')
of particles at the different lattice sites R and R', respec-
tively. In fact, the Einstein model, which gives a reason-
able description of the high-temperature solid, assumes

g, =1, i.e., that no pair correlations between particles ex-
ist. Within a harmonic approximation for the solid, g,
may be obtained from (u(R) u(R') ) (although this is not
usually carried out) and is a relatively featureless function
in comparison to its liquid counterpart gI. In the hard-
sphere system, which is highly anharmonic, one expects
g, (r) to be zero for r & cf but to remain otherwise devoid
of any structure comparable to that of the dense liquid. If
one is to now ask for what density of liquid would gi be
most similar to g, (aside from the lattice structure which
will be built into g, ), the answer is clearly a loic density
since liquids of densities comparable to that of the solid
are too highly structured in physically inappropriate re-
gions.

The weighted density at which gt is evaluated in (9)
models the required behavior quite well. Near the lattice
sites, which are the only important regions in the solid,
the weighted density is small and the solid correlations are
likely to be best represented. Although the weighted den-
sity rises in the interstitial regions to satisfy normalization
requirements, the free energy is unaffected by its behavior
away from the lattice sites. Now the excess entropy can-
not be expressed only in terms of the low-order correlation
function g at a=1 (in contrast to other thermodynamic
quantities such as the internal energy and pressure).
Hence, the effective liquid density which appears in the
WDA is one which attempts to account for all .the corre-
lations simultaneously and cannot be determined only by
examining g, . However, the above discussion gives a de-
finite interpretation of the role of the weighted density
and indicates why the results obtained for the excess en-
tropy are so good.

The ability to describe theoretically the excess entropy
in non-phonon-based views of the solid has long been a
problem. The "free-volume" theory, often compared to
the early simulation results, assumes that localizing the
particles to individual cells and neglecting correlation
motion is sufficient to describe the solid phase. This
model corresponds to an effective potential c"' which is
zero at points in a cell more than o. away from the near-
neighbor sites and infinite elsewhere. The free-volume
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theory, although asymptotically exact in the limit of close
packing of hard spheres, does not adequately describe the
free energy of the solid phase at near coexistence densities
primarily because the correlations are neglected. A lack
of knowledge of correlation effects also hampered the ear-
ly developments of the statistical theory of solids, as
represented in the work of Brout. (Brout's work did,
however, show how phonons evolve from the liquid view
of the solid. ) The liquid-based WDA goes beyond a sim-
ple anharmonic Einstein model of particle interactions by
assuming the short-ranged, multiparticle correlations in
the solid to be liquidlike. The effective potential in the
WDA is thus a minimuIn at the cell centers but increases
away from R=O. And while it does rise sharply at points
a distance tr from the near-neighbor sites, it is not infi-
nite, which reflects the fact that with correlated motion
included there exists a finite probability for particles to be
within o of the near sites. Since the short-ranged correla-
tions are most important to the entropy of the solid at
high temperatures, the neglect of the long-wavelength
correlations in the liquid-based approach (corresponding
to the small q phonons of the solid) does not lead to sub-
stantial errors. As a result, the WDA predicts free ener-
gies which are only 5% smaller and an EOS which is only
about 10% lower than the simulation values over the
range 1.0&p,o &1.1. While it has been recognized that
the internal energy of a solid could be well-approximated
by replacing g„&;d by g~;q„;d at the same density, our
scheme is apparently the first in which the solid free ener
gy is also accurately obtainable within a liquid approxima-
tion.

As expected, an attractive potential, although crucial to

the existence of the liquid-vapor transition, is not required
to obtain a liquid-solid transition. The inclusion of an at-
tractive interaction between particles has not yet been con-
sidered here. It would, of course, impose a temperature
scale on the problem but should not otherwise affect the
basic picture of freezing presented here. The WDA for-
malism, of course, is generally applicable to one-
component liquids with pairwise interactions of any form.

Finally, the WDA has been introduced as a general ap-
proximation for inhomogeneous liquids without any
specific assumptions made on the nature of the inhomo-
geneities. Nonetheless, even for the most inhomogeneous
of systems (the dynamic solid) the results we present are
good and suggest that the entire range of inhomogeneities
from nearly uniform liquid to highly inhomogeneous
liquid is within the scope of the WDA. In particular,
with a better understanding of the solid phase from the
viewpoint of liquid-state theory, the extremely interesting
properties of the solid-liquid and solid-vapor interfaces
may now be accessible theoretically. Our future work lies
in this direction.
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