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A Monte Carlo method is used to generate trajectories for a nonlinear stochastic model. A set of
initial conditions distributed according to the equilibrium distribution function of the system is con-
sidered. Then, after averaging, the equilibrium time correlation function can be computed. The nu-

merical results are compared with those obtained by means of the van Kampen expansion method
and also by the local equilibrium approximation. The latter is shown to give a good description of
the behavior over a wide range of values of the parameters.

I. INTRODUCTION

In the last few years, a great deal of work has been de-
voted to the study of the coupling between nonlinearities
and fluctuations in physical systems. Despite this, there
are few results firmly established, both from an experi-
mental and a theoretical point of view. Even computer
experiments which have provided a sufficient and accu-
rate simulation of equilibrium situations are plagued with
difficulties when trying to describe nonequilibrium states.
Perhaps the main reason for it is the lack of a kind of er-
godic hypothesis.

In this paper we study a very simple system described
by a nonlinear Fokker-Planck (FP) equation or by the cor-
responding equivalent Langevin equation. The quantity
we will be interested in is the equilibrium time correlation
function of the relevant variable. It is a well-known fact
that this quantity relaxes exponentially at a constant rate
for a linear system. The question arises on whether the
exponential character of the decay remains valid in the
nonlinear case and, if so, how the nonlinearity would af-
fect the rate of relaxation. '

Several theoretical schemes have been proposed to
answer the questions posed above. In particular, we will
consider here the van Kampen expansion method' and the
local equilibrium (LE) approximation. In order to have
numerical data for comparative purposes, we have carried
out a stochastic simulation of the system. The idea is to
use a Monte Carlo procedure to simulate the stochastic
evolution of the system starting from a set of initial con-
ditions distributed according to the equilibrium probabili-
ty.

The plan of the paper is as follows. In the remainder of
this section we describe our model system and introduce
the notation for the different distribution functions. In
Sec. II the numerical method is presented. As a test of its
validity we consider the simplest case, namely, a linear
model. The data fit the exact analytical solution quite
well. In Sec. III the van Kampen expansion procedure is
applied to our model and the equilibrium time correlation
function to.first order in the diffusion constant is comput-

ed. The LE approximation is considered in Sec. IV where
it is shown that it reduces to van Kampen's expansion in
the limit of the small diffusion constant. The several re-
sults are compared and discussed in the final section, both
for the equilibrium time correlation function and its
Fourier transform, the spectral density.

Let us consider a system characterized by the dynami-
cal variable x, whose evolution is given by the first-order
Langevin equation:

= —U'(x)+F(t),

P(x, t ~x', t')= [ U( )x(Pxtix', t')]

+a P(x, t
i
x', t')

Bx

and the initial condition

(4)

P(x, t' ix', t')=5(x —x') .

Since we are dealing with a Markov process, the
knowledge of P(x, t

~

x', t') allows us to construct all the
multitime probability distributions for a given initial dis-
tribution function P(x,0). In particular, we have

where U'(x) is the derivative of
x' x'

U(x) = +b
2 4

and F(t) represents a Gaussian, white-noise process with
zero mean, i.e.,

(F(t))„„„=0,(F(t)F(s))„„„=2a5(t—s) .

The ( )„„„denote an average over the realizations of the
noise and a is the diffusion constant. Equation (1) may
describe, for instance, the evolution of the position of an
overdamped nonlinear Brownian oscillator.

The equivalent FP description of the system is given by
an equation for the conditional probability density
P(x, t

i
x', t')
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P(x, t)= f dx'P(x, t ix', 0)P(x', 0)

for the one-time distribution, and

P(x, t;x', t') =P(x, t
i
x', t')P(x', t')

(6)

for the two-time joint distribution.
In this paper we will concentrate on the calculation of

the two-time correlation function, defined as

C(r;t) = (x(t+ r)[x —(x(t) ) ])
+f dx dx'x Lbc'(t)P(x, t+r;x', t)

x' ' t x t+~ x', t I' x', t

where M(t)=x —(x(t)) and where we have introduced
the conditional average value

(x(t+r)
i
[x',t])= f dx x P(x, t+r

i
x', t) . (9) O.OO

0

u=0,]
b=o

I

2 3 4 5 7

%Shen the system is at equilibrium, it is

C(r)= f dx'x'(x(r)
~

[x'])P, (x')

with

P,q(x') =A exp ——U(x')
a

A being the normalization factor. A related quantity of
interest is the spectral density defined as the cosine
Fourier transform of the time correlation function C(r),

OO

S(co)=—f dr C(r)cos(d'or) . (12)

y=( —21ni)i)'~ cos(2m')2) (14)

with g~ and g2 being two independent random numbers
uniformly distributed between 0 and 1.

Starting from a given initial value x', we generate a suf-
ficiently large number, M, of stochastic trajectories,
xj(t;x'). The conditional average value is then given by

M
(x(t)

i
[x'])= g xj(t;x') . (l5)

M .

II. MONTE CARLO CALCULATION
OF THE EQUII.ISRIUM TIME
CORRELATION FUNCTION

The numerical method we will follow to evaluate the
equilibrium time correlation function C(r) is based upon
Eq. (10). According to it, the calculation can be carried
out in two steps. Firstly, one evaluates the conditional
average value (x(r)

~

[x']) as a function of x'. After-
wards, the equilibrium average of x'(x(r)

~

[x']) has to
be performed.

To calculate the conditional average we inake use of
Eq. (1). We have integrated it numerically, by means of a
Runge-Kutta algorithm, with a time interval h. The ran-
dom noise has been generated by the expression

F(r) =v'2ah y(r),
where the value of y at each time is obtained through the
Box-Mueller formula

FIG. 1. Spectral density versus frequency for the linear case.
0, Monte Carlo; ———,exact.

We have considered 19 equally spaced values of x' be-
tween —4a' and 4a' and M=500. As we will see this
is adequate to obtain sufficiently accurate results for small
values of a.

Now the evaluation of C(t) is straightforward. Equa-
tion (10) is transformed into a sum of the contributions
corresponding to each of the 19 intervals of the variable
x . Finally, the spectral density is obtained by numerical-
ly transforming C(t) according to Eq. (12).

To test the accuracy of the numerical simulation
method, we have first considered the linear case, i.e., b =0
in Eqs. (1) and (4), for which an exact analytical expres-
sion for the spectral density is available, namely,

2 cx
&(co)=—

1+67
(16)

The plot in Fig. 1 shows the very good agreement between
the numerical simulation values and Eq. (16). The data
correspond to a diffusion constant a=0.1. Actually, the
relative difference is less than 1%.

III. VAN KAMPEN'S EXPANSION

One of the most widely used methods to deal with fluc-
tuations in nonlinear systems is van Kampen's expansion. '

Within our present context, it corresponds to an expansion
in powers of a. A new stochastic variable g is defined by
means of the time-dependence transformation

x =P(t)+a'~ g, (17)

where P and g are independent of a. The idea behind this
transformation has been extensively discussed. What we
want to stress here is the fact that Eq. (17) only holds for
some initial distributions and, of course, for some kinds of
evolution equations. If the initial distribution is very flat,
in the sense that

([m(0)]') —=[(x'(0)) —(x(O) )']»a,
then Eq. (17) is not suitable at least for very short times.
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Therefore, it seems that the right distribution to which
decomposition (17) should be applied is the joint probabil-
ity distribution. From Eqs. (4) and (7) it is clear that
P(x, t;x', t') also obeys the FP equation, namely,

dt
(g'(t)Pt') ) =6(Pt)Pt') ) —3(l+3bf')(g'(t)Pt') )

—9ba'/'&g (t)Pt') &

P(x, t;x', t') = [U'(x)P(x, t;x', t')]

2

+a P(x, t;x', t')
X

with the initial condition

P(x, t', x', t') =6(x x')P(x—', t'), (19)

(24c)

The same analysis can also be carried out for the one-time
distribution II(g;t). The corresponding hierarchy is for-
mally equivalent to the set (24). For further reference we
will write the first few equations,

(P t) ) = —(I+3by')(Pt) )

where in turn P(x', t') is the solution of

, P(x', t')=, [U'(x')P(x', t')]+a P(x', t') (20)
X

for a given initial distribution P(x,0).
We now introduce the distribution functions for the

stochastic variable g. It is readily shown that the two-
time joint distribution II(g, t;g', t') obeys the equation

—1/2j a —1/2 [(y+ 1/2g)II]
Bg' Bg

+ —1/2b [(y+ 1/2g)3II]+B B II
Bg B 2

(21)

3ba—'/ P(g (t)) ab(—g' (t)),
d

& g'(t) & =2-2(1+3by') &g'(t) &

—6ba'/ P(g (t)) —2ab(g (t)),
d 3&g'(t) & =6&Pt) &-3(1+3bq') &g'(t) &

—9ba'/2y(g'(t) ) —3ab (g'(t) ),
(g (t)) =12(g2(t)) —4(l+3by')(g (t))

—12ba'/2P(g'(t) ) 4ab(g'(t) —) .

(25a)

(25b)

(25c)

(25d)

with II(g, t'g', t') =Big' —f )II(g', t'). Identification of the
coefficients of a ' leads to

(22)

This is the deterministic equation in van Kampen s termi-
nology. Taking into account Eq. (22), we get from Eq.
(21)

BII B 1/2 2

Bt Bg
[(1+3bf2)/+a'/23bfg+abf3]II+

(23)

and from here it is a simple task to derive the following
hierarchy of equations:

&g).,=0,
(g2)~=1—3ba+O(a3/2),

&g'&.,=0+a( '),
&g').,=3+o( '") .

(26a)

(26d)

It also follows from Eqs. (24), that by neglecting terms of
order a and higher, we obtain

"
(g(t)g(t ))„=-(g(t)pt )).,

—ab ($3(t)Pt') )„, (27a)

Let us consider an equilibrium situation. From Eqs. (25)
one easily obtains the following by making /=/=0 and
by setting all the time derivatives equal to zero:

"
&Pt)Pt ) & =-(I+3by')&Pt)Pt ) &

—3ba' 'P(g'(t)P t') )

—ba(g'(t)P t') ),

dt
&g'(t)Pt ) &=2-2(1+3bq')&g'(t)Pt ) &

(24a)

&g'(t)Pt ) &.,=-3&g'«)Pt ) &.,
+6(pt)pt') ).,

(pt)g(t') ),q= —(1+3ba)(pt)pt') ),q . (28)

This is a linear system of ordinary first-order differential
equations. Solving formally the second one and inserting
the result into the first. one, we readily get

—6ba'/2y&g'(tg(t ))

—2ba(g (t)pt')), (24b)

Taking into account that

C(r) =a (g(v) g ),„, (29)
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we have that the equilibrium time correlation function
satisfies the linear differential equation

The LE one-time distribution function Pr E(x, r) for our
system is given by

dC(r) = —(1+3ba)C(r),
d~

(30)
PLE(x, t)=2 ( r)exp — U(—x)+y(t)x (36)

which is to be solved with the initial condition

C(0)=a(g )~=a(l —3ba)+O(as~ ) . (31)

, (g'(r) & = —(1+3by')(g(r) &

—3ba'~2$(P(t) ) +O(a), (32)

Before comparing the solution of Eq. (30) with the
Monte Carlo simulation results, some comments seems to
be adequate. First, we notice that the dynamical coupling
between ensemble averages and ensemble fluctuations in-
troduces a correction term in the relaxation of the equili-
brium time correlation function for a nonlinear system, i

and this happens even at the lowest order in the nonlinear-
ity parameter b Non. etheless, the evolution equation for
C(r) is linear.

In the last few years several theories have been pro-
posed to relate the transport equations for the averages
and the evolution equations for the time correlation func-
tions. In many cases, the result is that the evolution
equation for the fluctuations is the linearization of the
transport equation. %'e think it is worthwhile to check
whether this is also the case in the present context. Then,
we come back to Eqs. (25) and consider a general non-
equilibrium situation. We have

.

( )
PrE(x, r)

x x —x, I' x, t;x', t' . 38

With this definition, it is

( x(t)x(t')) rE
—(x(t)x(t')) . (39)

In the LE approximation we substitute the actual joint
distribution function by its LE approximation, Eq. (38),
and write

dt
(x(t)x(t')) = f dx dx'[Dt(x)x]x'PLE(x, t;x', t'),

where

(40)

where A(r) is a time-dependent normalization factor and
y(t) is chosen in such a way that

( x(r) ) = f dx x P„s(x,t) =—(x(t) )LE . (37)

In Ref. 2 we have found that a suitable generalization of
Eq. (36) for the two-time joint distribution is

PiE(x, t;x', r')=Pr E(x, r)Pr s(x', r')

and using again transformation (17) it is a matter of sim-
ple mariipulations to derive D = —U'(x) +a8 8

Bx
(41)

dt
(x(r) ) = —[1+ 3ba([hg(r)]') ](x(r) )

b(x(t)) +—O(a ~ ) . (33)

Inserting Eq. (38) into Eq. (40), we get

8 (lb&(t)hx(t') ) = (M(t)M(t') ) . (42)
5(Dtx )r.E

dt 5xt
In fact, the same equation can be proved to be correct to
order a if one assumes that ((hg(t)) ) can be neglected
to zeroth order in Eq. (25a). Comparison of Eqs. (30) and
(33) shows that within our level of approximation, if we
formally write Eq. (33) as

d (x(r)) =(D"x)„. (43)

Upon writing this expression we have taken into account
that in the LE approximation the evolution equation for
the average is given by

dt
(x(r)) =C((x(r))), (34) Particularizing Eq. (42) for an equilibrium situation, we

get
then

d 54((x(r) ) )
d~ 5(x(r))

a( U (x)&„EC(r)=- C(r) .dr» &~&=o

A simple calculation shows that

(44)

which is the result we are looking for.

IV. LOCAL EQUILIBRIUM APPROXIMATION

a(U'(x))„, (xU(x))„
(45)

We have recently formulated a local equilibrium ap-
proximation within the context of FP models and at the
level of the two-time joint distribution function. The idea
was to extend the usual LE approximation for the one-
time distribution function to allow the calculation of time
correlation functions.

and, then,

(x"),qC(~) = — 1+b, ' C(~),
dv

(46)

with C(0) = (x ),q. It can be seem that if we expand the
equilibrium average values in powers of a and keep the
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lowest order, we recover Eq. (30). This shows that in the
limit of a small the LE approximation and van Kampen's
expansion agree. Nevertheless, it must be pointed out that
the I.E approximation does not correspond to a systematic
expansion in powers of a, and so, it can be used, at least
in principle, even when a is not very small.

It can be shown that in the LE approximation for the
equilibrium time correlation function one

'
neglects

memory effects associated with the nonlinearity of the
system. In this sense, the I.E approximation can be
viewed as a short-time approximation. 0.05-

V. RESULTS AND DISCUSSION

In this section we present a comparison between the nu-
merical results provided by the Monte Carlo simulation
discussed in Sec. II and the analytical results of the ap-
proximations considered in Secs. III and IV. %'e have
seen that the a expansion leads to Eq. (30) with the initial
condition (31), i.e., we have

C„K(~)=u(1 —3ba)exp[ —( I+3ba)~] .

On the other hand, in the I.E approximation, integration
of Eq. (46) yields

Cr,E(i)= (x')„exp — 1+b
x eq

(48)

0.0 0.5

FIG. 3. Equilibrium time correlation function versus time.
~ ~ ~ ., linear (b=O); ———,Monte Carlo; —"—"—,van
Kampen's expansion; —.——,LE approximati'on.
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n= 0.1

b=0.5

0.00—

~, X ~.
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0,0

FIG. 2. Equilibrium time correlation function versus time.
~ ~ ~ -, linear (b =0); ———,Monte Carlo; —'.—-—,van
Kampen's expansion; —.—-—,LE approximation.

In Fig. 2 we have plotted the equilibrium correlation
function corresponding to the values a =0.1 and i=0.5 as
a function of time. We have just plotted the behavior for
short times as the behavior for all times will be discussed
later on in terms of the spectral density. The Monte Carlo
data shows an actual exponential decay with an exponent
which is approximately equal to 1.07. It is seen that the
LE approximation provides a quite good description of
the relaxation of C(r) for the times we are considering.
Of course, as time increases, the difference with Monte
Carlo results becomes more appreciable, as suggested in
the discussion at the end of the preceding section.

The comparison of the a expansion method is not that
good. One could think that most of the discrepancy is
due to the initial value, but we will see in Fig. 3 that this
is not the case. When discussing the applicability of the a
expansion it should be kept in mind that the actual expan-
sion parameter turns out to be the product eb, according
to Eq. (47). In Fig. 2 ah=0.05. A check of the "small-
ness" of this parameter could be to consider the relaxation
of a purely linear system, namely, to set b =0. The plot
shows that, in fact, the linear approximation is not a bad
one in this case.

In Fig. 3 we have considered the case a=0.1, b =1.
We have also plotted Eq. (47), but with the correct initial
value instead of a(1 3ba) On—ce agai.n, it is seen that
the LE approximation gives a good description of the re-
laxation of C(~). On the other hand, for not very short
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FIG. 4. Spectral density versus frequency. 0, Monte Carlo;
~ - ., LE approximation; ———,van Kampen's expansion.

times, the linear approximation gives results at least as ac-
curate as those of the a expansion method.

In Figs. 4 and 5 we present the results for the spectral
density S(to) defined in Eq. (12). In the a expansion ap-
proximation it is given by

S„( )
2a 1 —9b a

(49)
(1+3ba) +to

while in the I.E approximation we have

2 Q'(x'),
q

Sz,E(to) =-
0 +co

with

0.00 10

FIG. 5. Spectral density versus frequency. 0, Monte Carlo;
, LE approximation.

creasingly less good as the frequency decreases is a direct
consequence of its short-time character already discussed.
To check whether the LE approximation remains useful
for greater values of the diffusion constant, we have con-
sidered in Fig. 5 the case a=0.5, b= 1, for which the a
expansion method cannot be applied, as correction terms
are even larger than the leading ones. Again, the compar-
iqon is quite satisfactory except for the very-low-
frequency region. Our final conclusion is that the LE ap-
proximation seems to be a useful tool to describe the re-
laxation in systems where the coupling between fluctua-
tions and nonlinearity is relevant.

(x'),qII'=1+b
x eq

(51)
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