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Squeezing spectra for nonlinear optical systems
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The squeezing spectra for the output fields of several intracavity nonlinear optical systems are ob-
tained. It is shown that at critical points, e.g., the turning points for optical bistability, the threshold
for parametric oscillation, and the self-pulsing instability in second-harmonic generation, perfect
squeezing in the output field is, in principle, possible.

I. INTRODUCTION

Until recently, theoretical treatments of the generation
of squeezed states inside a cavity have focused on the
squeezing in the internal cavity mode, with less than
dramatic results for the maximum obtainable squeezing.
For instance, Milburn and Walls' found that the best
squeezing attainable in the internal mode of a degenerate
parametric oscillator was a reduction in the fluctuations
by a factor of only 2. This result was confirmed by Lugi-
ato and Strini and appeared to be generic to intracavity
systems, as analysis of several optical systems indicated,
e.g., optical bistability, ' second-harmonic generation, '

and multiphoton absorption. '

The situation changed with the realization that the
squeezing in the output field cannot be equated to that of
the internal field; in fact, as the external field possesses a
continuum of modes, there must be a complete spectrum
of squeezing. Yurke gave a single frequency component
analysis of the parametric oscillator with a single-ended
cavity configuration which showed that arbitrary squeez-
ing was possible in the output field. Multimode analyses
by Collett and Gardiner and Gardiner and Savage have
confirmed this result, though only for a limited frequency
band around the cavity resonance. The analysis has re-
cently been extended to include frequencies corresponding
to nearby cavity resonances by Yurke. '

In this paper we wish to study several nonlinear optical
processes occurring inside cavities and calculate the
squeezing in the output field. In particular, we will study
the nonlinear polarizability model of optical bistability,
two photon absorption, and sub-second-harmonic genera-
tion. We begin by outlining the basis of calculation,
which is an application of the input-output theory of dis-
sipative quantum. systems developed by Collett and Gar-
diner and particularly suited to problems of this kind.

functions of the output field to the internal field. For an
optical cavity for which the input field is entirely coherent
or vacuum, it is possible to express the moments of the
output field quite simply in terms of time-ordered mo-
ments of the internal field. In particular,

(a,«(t),a«, (t')) =2y(a (t),a(t')), (2.1)

( a,„,(t),a,„,(t') ) =2y(a [max(t, t')],a [min(t, t')] ),
(2.2)

p= P cz a 0,' e, (2.3)

equal time moments of the c-number variables correspond
to normally ordered moments of the operators. Two time
moments imply precisely the time ordering of the internal
operators that we need to evaluate the corresponding out-
put moments. This can be demonstrated by noting that
the evolution of the system will, in general, mix at and a.
Hence, a(t+~) contains elements of both a(t) and at(t).
In a normally ordered two time product a(t+~) must,
therefore, stand to the left of a(t); similarly, a (t+~)
must stand to the right of at(t) That is, .

(a(t +r)a(t) ) = (a(t+~)a(t) ),
(a (t +)a'( ))t=(a (t)a (t+~)),

(2.4)

(2.5)

where y is the damping constant of the internal field, and
we have used the notation (a, b ) = (ab ) —(a ) (b ). Now
the behavior of quantum optical systems is frequently
described using c-number representations. Implicit in
such a representation is a favored ordering of the system
operators. For example, in the P-function representation
of the density operator"'

II. SQUEEZING SPECTRUM OF THE OUTPUT FIELD

Our objective is to calculate the spectrum of squeezing
in the output field of an optical cavity containing a non-
linear medium. In order to do this, we make use of the
following expressions relating the two time-correlation

where the left-hand side of these equations represent the
average of c-number variables using the P representation.

Including the factor of 2y going from inside to outside
the cavity, we can, therefore, obtain the normally ordered
output correlation matrix using
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'(a,«(t +~},a.«(t) ) (a.«(t),a.«(t+r) )

(a,«(t+~},a,„,(t) ) (a,«(t +r),a,„t(t))

(a(t +r),a(t) ) (a(t +r),a'(t) )
(a'(t+~), a(t)) (a*(t+~),a'(t))

=2y Ct (a(t +~),a(t) ), (2.6)

that is, the two time correlation functions for the output field may be calculated directly from correlation functions of
the stochastic variables describing the internal field using the P representation.

Note that all different time output operators commute. Froin Eq. (2.6) it follows immediately that the corresponding
relation for the spectra also holds,

& a.«(co),a.«)
(a,«(co),a,„,)

(a(oi),a ) (a(oi),a' )
(a,«(co),at«) &a (to),a) &a *(to),a*) (2.7)

BP(a)
Bt

8 Aa;+ ,'D-
Ba; ' ' Baaj P(a), (2.8)

where A is the drift and D the diffusion matrix. This is
equivalent to the stochastic differential equation

a(t) = Aa(t)+D '~'e—(t),
dt

where e(t) is a fluctuating force with

(e, (t)) =0,

(e;(t)e, (t') ) =5"5(t t') . —
(2.10)

The spectral matrix may be obtained directly from Eq.
(2.9) as'3

S(o,'=(A+iso) 'D(A iso—) (2.11)

To study squeezing we need to look at the variances of the
quadrature phases X+ and X,where

a=e' (X++iX ),
at=e 'e(X+ iX ) . —

(2.12)

where the tilde indicates a frequency-space variable.
For a linearized system P(a) obeys the Fokker-Planck

equation

I

by the factor y,«/y where now y =y,«+ y~», .
Thus, we now have a general prescription to calculate

the squeezing in the output field from an optical cavity,
provided the internal field may be described by a Fokker-
Planck equation of the form of Eq. (2.8). In the following
sections we shall apply this formalism to some particular
systems.

III. DISPERSIVE OPTICAL MISAABILIY
AND TWG-PHOTON ABSORPTION

The first system we shall consider is the nonlinear po-
larizability model of optical bistability. ' It is convenient
to treat at the same time the rather less interesting case
(from the point of view of squeezing) of two-photon ab-
sorption.

We consider a single-mode field in an optical cavity
which is subject to cavity damping and is coherently
driven by an external driving field. The cavity contains
an intracavity medium with nonhnear optical properties.
We shall consider two cases where (a) the medium is a
two-photon absorber, and (b) the medium has a nonlinear
polarizability. These systems may be described by the fol-
lowing Hamiltonian:

5
H= gH, ,

j=1

The phase e' will be chosen to maximize the squeezing.
The quantities of interest are

:S+"'.——(X~+ (co),X+«.)

H1=~ca a

Hz ——i fi(Ee a f—E*e a ),
H, =aI c+a~I, ,

(3.1)

=2y —,
' [+e '~Sii(co)+Si2(oi)

+S2i(a))+e ' S2z(co)] . (2.13)

H4 ——AX"a~ a

Hs —a~ I 2+a2r2,=12 2f

This result holds for the most favorable configuration,
that of a "single-ended cavity. " What is really meant by
this is that the only losses from the cavity are through the
front mirror which acts as an input and output port, i.e.,
y =y~«. If there are other significant losses from the cav-
ity, the squeezing spectrum given by Eq. (2.13) is reduced

where H& describes the cavity mode a with frequency co, .
H2 describes the coupling with the coherent driving field
with amplitude e and-frequency col. H3 describes the
coupling to the cavity reservoir Fc. H4 describes a non-
linear dispersive medium with nonlinear susceptibility 7".
Hs describes an intracavity two-photon absorber with
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r

y +26+i 5 'ee
e ~ y+2E—' l5

where y is the damping constant, 5=coL —co, is the de-
!

(3.3)

reservoir operators r2, r2.
The linearized stochastic differential equations follow-

ing from this Hamiltonian have been derived by Drum-
mond and Walls. ' They have the form of Eq. (2.9}with

—ee'& 0

tuning between the driving field and the cavity.
e= —2X I ao ~, where ao is the steady-state solution for a,
and X=X'+iX", where X' (X") is the effective coupling
constant for two-photon absorption (dispersive optical bi-
stability). Hence e is an effective driving parameter, real
for two-photon absorption and imaginary for dispersive
bistability, e ~ is the phase of the steady-state solution and
is of no material consequence in what follows. As we are
principally interested in the limits on squeezing, thermal
fJuctuation terms have been dropped. The spectral matrix
obtained directly using Eq. (2.11) is

where

—ee'4'[(y+2e' i5—)2+ro2+
~

e
~ ]

~A(co) (
2Iel (y+e+e )

2
~

e
~

(y+e+e')
—e'e '&[(y+2e+i5) +co +

~

e ]
(3.4)

A(co)=(y+2e* —i5+ico)(y+2e+i5+ico)
~
e

~

The spectrum of squeezing may then be calculated from Eq. (2.13) with the phase e'e chosen to maximize the squeezing.
The situation is complicated by the fact that the best choice of phase varies with co, while in any practical situation, only
one choice of phase can be made at a time. If we want to optimize the squeezing at some particular frequency coo, the
appropriate choice of phase in Eq. (2.13) is

g2z(o}, .
~

e[(y+2e' —i5)'+o~o+
~

e
~

']
e2i8 =e'& (3.5)

I
g2z(roo)

I I
e

I I
(y+2e' —i5}'+~o+

I
e

I

'
I

A. Dispexsive optical bistability

For the case of dispersive bistability (e=i
~

e
~

) we then have for the squeezing spectrum in the output field where the
phase 8 has been chosen to give maximum squeezing at frequency coo,

:g+"'(ei):=y
~

e
~

(y'+~' ~')(y—'+~02 ~') +4 y'(~' +~ e
~

')
2y I el+ [(yz+oiz gz)2+4y2(g2+

~
e

~

2)]1/2

(y2+ 2 g2)2+4y2g2 (3.6)

where

~'=(3lel+5}(leJ+5)=(2lel+5)' —lel'. (3.7)

To find any points of perfect squeezing we can use the
fact that perfect squeezing in one quadrature must be as-
sociated with an infinite uncertainty in the other, and
hence can only occur at a critical point. At a critical point
the fluctuations diverge to infinity, resulting in divergence
in the fluctuation spectrum (3.6) for some frequency co. It
is readily seen from Eq. (3.6) that the critical points occur
at

y+iA+ico=0 .

The accessible ones are with m =0 and

(3.8)

y2= —bz= —(3
i
e

i
+5)(

i
e

i
+5) . (3.9)

These values of the driving field
~

e
~

correspond to the
turning points of dispersive optical bistability. '~

Setting coo ——0 (to optimize the squeezing for co=0}and
taking a critical combination of the driving and detuning
[as given by Eq. (3.9)] gives

2
:g+'(co ):=-

4/ +co
(3.10)

which reaches ——,'; perfect squeezing at co=0. The spec-
trum of the squeezed quadrature at the critical point is
thus a simple Lorentzian of width 2y and height (or
perhaps one should say depth) of ——,'. The spectrum of
the other quadrature is

2
gOUt (

4p +co
4(e(2+~2

(3.11)

which diverges at co=0. Thus, we have a case of critical
quantum fluctuations which are asymmetric in the two
quadratures.

To gain an overview of the general behavior of the out-
put squeezing, it is convenient to choose the phase of the
quadrature operators so that the peak of the squeezing
spectrum is maximized. Three regions of operation can
be distinguished. For 6 & —y, there is no stable solu-
tion, and the linearized analysis used here cannot be ap-
plied. For —y & 5 &y, the output squeezing spectrum
has a single peak at co =0, of height
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'Sau&(0)'=
—1 I

&
I (3 12)

2r
I

&
I

+81"+~')'+4x'
I

&
I

'&'"

Finally, for b, & y, the spectrum splits into two peaks at
u2= 5 —y with a height

go.ut ( (g2 '

y2 )
1/2 ). (3.13)

lel +(lel +b, )'

The squeezing spectra for several values of the parameters
are plotted in Fig. 1. The squeezing of the internal cavity
mode may be calculated from the integration of the
squeezing spectrum over all co,

(W+,X+.& = Idaho(:S +(co):& .1

2m-
(3.14)

The integral on the right-hand side (rhs) is a maximum
for co0=6 +y which corresponds to the optimum choice
of phase 8 for the internal quadratures. Then the best
internal squeezing is

(~ x .
&

I&f I&I+(r'+~'+ I&l')'"
(315)+p + ~

4

Even at the critical points this reaches only ——,
' .

:S+'(co):=
(x+3

I
&

I
) +~

.s-i( ).
(1'+

I ~l )'+~'
The best output squeezing that can be achieved is

gOllt (0)

(3.16)

(3.17)

(3.18)

B. Two-photon absorption

For two-photon absorption (e=
I
e

I
) there are no ac-

cessible critical points, and hence perfect squeezing cannot
be achieved. If 5 is taken to be zero, the optimum phase
is independent of frequency, and we have simple Lorentzi-
an spectra

(~,x, :&= ——,
'' 1'+3

I
&

I

(3.19)

which is ——,'4 when 3
I
e

I
=y, and has a minimum value

of ——,', when I el »y.

IV. SUB-SECOND-HARMONIC GENERATION

~~ iti i +2~+ 2ti2 +&—(~ i ti2 —~ i~ 2 )
f2 2

2

+ifi(Eia ie ' ' Eia, e'—"')

+jg(E g te 2'~& E+g e»~&)

+a&I, +a~I ~+a&I 2+a212 (4.1)

a i and aq are the boson operators for modes of frequency
co and 2', respectively. a. is the coupling constant for the
interaction between the two modes and the spatial mode
functions are chosen so that a is real. I i, I z are heat bath
operators which represent cavity losses for the two modes
and e~ and e2 are proportional to the coherent driving
field amplitudes. The linearized stochastic differential
equations resulting from the above Hamiltonian have been
given by Drummond, McNeil, and Walls. ' They have
the form of Eq. (2.9) with

We consider a nonlinear medium with a significant
second-order susceptibility which couples a light mode at
frequency co with its second harmonic at frequency 2';
The nonlinear medium is placed within a Fabry-Perot in-
terferometer and both modes are driven with external
coherent phase locked driving fields. The modes are
damped via cavity losses. This system may be described
by the following Hamiltonian

when 3
I
e

I
=y. Again for comparison, the internal

squeezing is

—E'2 —E'
j

0

0

0.00 =——
0 y2

0

0 (4.2)

~ ~

3

, 0

0 0 0

e~ 0 0

0 0 0
0 0 0~

(4 3)

-0.25
-5.0

I

0.0

FIG. 1. :S+'(co): for dispersive optical bistability with

I
e

I =y, and 6 = —y (solid line), y (dashed line), 4y (dotted
line).

where y~, y2 are the cavity damping rates for the two
modes and 62=Ka2 E'}=~a~, where a~,a2 are the steady-0 0 0 0

state values of ai and a2. The subscripts 1 and 2 refer to
low- and high-frequency modes, respectively. The spec-
tral matrix is obtained by the same method as in the pre-
vious section. In this case the best choice of combination
phase is not frequency dependent, so that for the spectra
of the quadrature phase operators we obtain the compara-
tively straightforward expressions
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2 2
.gout ( yi I &21(j 2+~

&»(»+
I

ez I
)+

I el I

' —~'1'+ ~'(r 1+
I

ez
I
+yz)'

'

2
.Soot ( ). rz I ~zl 1~i I

I »(»+
I
ez

I
) +

I
e i I

' —~'1'+ ~'(»+
I

~z I
+yz)'

(4.5)

There are two accessible critical points, the threshold
for subharmonic generation and the instability point for
second-harmonic generation, ' giving four regions of
operation: (a) subharmonic generation below threshold,
with

I ei I
=0,

I ez
I

& y i, (b) subharmonic generation
above threshold, with

I
et

I
&0, I ez

I =yi, (c) second-
harmonic generation below the instability point, with

I ~i I
'=2yz

I ez I, I ~i I &ri+yz,
harmonic generation above the instability point,
I@i I &yi+yz, where a linearized analysis is not appli-

cable.

A; Subharmonic generation: The low-frequency mode

This is just the degenerate parametric amplifier. Below
threshold Eq. (4.4) simplifies for the squeezed quadrature
to

(yi+ I ~z I

)'+~'
a simple Lorentzian increasing in height and width with

I Ez I, until at threshold
2

:Si"'(co):=
z (4.7)

4/&+~

with a peak height of —
~ (perfect squeezing). The same

result has been obtained by different methods by Yurke,
Collett and Gardiner, and Gardiner and Savage. Above
threshold the spectrum is more complicated. The peak's
height reduces for increasing

I
ei I, and at

I
&t

I
'=yzI [rz+(rz+2ri)'1'" —(rz+2yi) I (4 8)

f

I
e,

I

=yz. The spectrum at this point becomes

1

2y2:Sz"(co):=
M +4/2

(4.10)

The greatest squeezing for higher
I
ei

I
is then at

co = + (
I
e i I

—yz)
' and remains ——,. The squeezing

spectrum for the high-frequency mode above threshold is
shown in Fig. 2.

:Si (e, ):=——OIIt

4 Xi+Z2
'

and for the high-frequency mode

(4.11)

C. Second-harmonic generation

For second-harmonic generation there is a less marked
difference in the overall shape of the squeezing spectra of
the two modes than for subharmonic generation, and the
two may usefully be considered together. In both cases,
the peak squeezing increases monotonically as

I
ez I

in-
creases from zero to the critical value

I
ez

I
=y, +yz.

Above the critical point the system exhibits self-sustained
oscillations. ' In a similar fashion to those of the subhar-
monic spectrum, we have divisions into two peaks, first
for the low-frequency mode, and then (provided yz & —,y i)
for the high-frequency mode.

At the critical point itself, with the critical frequency
being co, =yz(yz+2y, ) (which is in fact the initial fre-
quency of the hard mode oscillations) we have for the
low-frequency mode

the spectrum becomes double peaked. The spectrum at
this point is

.gout
( ).

4 X~+X2
(4.12)

:Si"'(co):=
4

I rz —lre+ (yz+ 2ri)'1'" l
'+

P2+ CO

(4.9)

0.00 ——-—=

If the high-frequency losses from the cavity are insigni-
ficant (yz«yi), this splitting occurs immediately above
threshold, with the greatest squeezing being at co =+

I ei I,
and remaining close to —

4 even for large
I ei I. The

squeezing spectrum for the low frequency mode is shown
in Fig. 2 on and above threshold.

8. Subharmonic generation: The high-frequency mode

Below threshold this mode is not squeezed. Above
threshold, the peak squeezing (at ni=0) increases to a
m»tmum»iue « —

s when
I et I

=2yir„and raus off
thereafter. Slightly later, at

I
ei1=2yi+ —,'yz, we again

find a splitting into a double peak.
For the special case of 2@I——y2, the point of splitting

coincides with the point of maximum squeezing,

FIG. 2. Subharmonic generation with y2 ——2@~. ..S~"'(co):
wit

I s~
I
=0

I &. I
=r~ (so»d t«»:g-"~(~): with

I « I
=r2

(dotted line ), :sz ' (co): with
I
e,

I
=rz (dashed line).
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The critical frequency is not, in fact, the one giving the
greatest squeezing, except in the following limiting cases,
but is close to it. If y»&y2 perfect squeezing is ap-
proached in the low-frequency mode at co=0, while, con-
'versely, if y2 »yi, it is approached in the high-frequency
mode at co=+yz. The squeezing spectra for the two
modes at the critical point are shown in Fig. 3.

V. SUMMARY

A direct relationship between the correlation functions
of the output field and those for the internal variables
averaged via the P function exists provided the normally
ordered variance of the input field is zero. We have used
this relation to obtain the linearized output squeezing
spectra for the nonlinear polarizability model of optical
bistability, two-photon absorption, and sub-second-
harmonic generation. At the turning points of optica1 bi-
stability, the threshold for parametric oscillation and the
instability point for self-pulsing in second-harmonic gen-
eration, we have found that it is, in principle, possible to
approach perfect squeezing in one quadrature of the out-
put field.

This is an example of quantum critical fluctuations
which are asymmetric in the two quadrature phases. It is
clear that in order to approach zero fluctuations in one
quadrature it is necessary to operate near a critical point
where the fluctuations in the other quadrature approach
infinity. We note that the linearization procedure we have
used will break down in the vicinity of the critical point
and in practice the systems will operate some distance
from the critical point.

All these results are, for the most favorable configura-
tion, that of a single-ended cavity. That is, it is assumed
that the only losses from the cavity are through the front
mirror which acts as an input and output port. If there

I

0.0

FIG. 3. Second-harnomic generation at the critical point.
:Sq"'(co):against co/y with yq &~y& (solid line), :S2"'(co):against
co/y2 with y2 &~y1 (dashed line).

are other significant losses from the cavity, either from
the back mirror or the nonlinear medium, the maximum
squeezing obtained is reduced. Considerable squeezing
can still be obtained if the other losses are sufficiently
small. However, if a quantized model of the nonlinear
medium is taken (see, for example the two-level atom
model for four-wave mixing' ) quantum fluctuations in
the medium limit the maximum squeezing attainable.
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