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The operation of a free-electron laser with an electromagnetic pump in the presence of a guide
magnetic field is considered. It is shown that several different steady-state helical equilibria are al-

lowed in a given configuration of the pump and guide fields. The study of the dynamics of the
beam shows that the helical equilibrium is an exception rather than the rule. Thus only special ini-

tial conditions and careful tapering of the transition region at the. entrance into the laser allow
launching the beam on one of the stable steady states. The small signal gain in the laser is also de-
rived. It is shown that the gain can be substantially enhanced when the beam approaches the orbital
instability regime. Numerical examples demonstrate that the strength of the pump field in these
conditions can be greatly reduced while still providing enhanced gain in the laser.

I. INTRODUCTION

Conventional free-electron lasers exploit relativistic
electron beams propagating along periodic transverse
magnetostatic structures (a wiggler). Such a configuration
is capable of amplifying electromagnetic radiation of
frequency f—y k„c/vr (for y » 1) where

y = [1—(v/c) ]
' is the relativistic factor of the elec-

tron beam and k =2m/k represents the wave vector as-
sociated with the period A, ~ of the magnetostatic pump
"wave. " Unfortunately, technical reasons put an upper
limit on k, which usually does not exceed -3 cm
thus limiting the frequency of the laser to f -30y (GHZ).

A natural way of further increasing the laser frequency,
for a given value of y, is to exploit an electromagnetic
wave as a pump instead of the wiggler. The lack of a
coherent tunable intense radiation source for operation of
the laser in the attractive subcentimeter regime prevents
simple implementation of the idea of the electromagnetic
pump. Nonetheless, various solutions to the problem have
been suggested in the literature. The two-stage free-
electron-laser approach' is the most developed at present.
In this type of laser a conventional wiggler-based free-
electron laser, in the first stage, generates an intense elec-
tromagnetic wave, which in turn, in the second stage,
serves as a pump for possibly the same electron beam.
Similar ideas have been implemented recently by Carmel
et al. , who demonstrated the first operation of a two-
stage backward-wave free-electron laser.

In addition to the possibility of a significant increase of
k~, there exists an additional advantage in the use of the
electromagnetic pump. It is due to the fact that the
wiggler field B~ has a simple periodic one-dimensional
structure only on the axis of the wiggler. Away from the
axis, for radii r & 1/k~, the radial dependence of 8„,due
to the magnetostatic requirement V&&8 =0, effectively
worsens the quality of the electron beam. Thus, only
beams with relatively small radii can be employed in con-
ventional free-electron lasers. In contrast, in the case of
an electromagnetic pump 7'&8 is balanced by the dis-
placement current, allowing, in principle, propagation of

purely one-dimensional waves in large interaction
volumes. In practice, however, finite dimensions of the
pump source may impose radial limitations. In free
space, for example, these radial effects are due to diffrac-
tion and are dictated by the geometry of the source and
the length of the interaction region. These radial limita-
tions, however, are less severe for shorter wavelengths of
the pump, in contrast to the case of the wiggler.

The object of the present study is to explore the idea of
the use of an electromagnetic pump in free-electron lasers,
which employ additional guide magnetic fields. The pres-
ence of the latter is a necessity in intense (I & 1 kA) rela-
tively low-energy (y &10) electron-beam experiments as,
for example, the one discussed in Ref. 2. It is known
that in conventional free-electron lasers, the guide fields
lead to a variety of nontrivial consequences. For example,
simple stable helical electron trajectories in combined
crossed magnetostatic pump and guide fields are rather
exceptional. Moreover, several different classes of helical
orbits are allowed by the system for a given magnetostatic
field configuration. Also, an attractive possibility of an
enhancement of the small signal gain in the laser exists at
much lower magnitudes of the pump field than in the
laser without the guide field. It is a primary goal of this
work to find and exploit the parallels to all these effects in
free-electron lasers with an electromagnetic pump.
Several steps towards achieving this goal have been re-
ported in the literature. Sprangle et al. describe collec-
tive interaction between radiation and cold magnetized
electron beams in helical equilibrium. Enhanced growth
rates are reported when the frequency of the pump in the
beam frame approaches the electron-cyclotron frequency.
Later, Ref. 6 mentions that in the case of a slow pump
wave ( vz /c =co/ck~ & 1) one can make a coordinate
transformation to the system moving with the phase velo-
city of the pump wave. In such a coordinate system the
pump becomes purely magnetostatic, thus allowing the
use of the conventional theory for combined wiggler and
guide field free-electron laser. Gell et a/. recently
described magnetized electron-beam dynamics in an arbi-
trary strength luminous (u~=c) electromagnetic wave.
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Several recent studies by Stenflo et al. ' deal with a
general theory of stability and radiation of guided electron
beams in a large-amplitude circularly polarized wave.

These studies assume a helical beam equilibrium
without further investigation of the question of its ex-
istence and stability against perturbations in initial condi-
tions and ways of experimental implementation of the
stable helical equilibria. No attempt was made, so far, to
calculate the expected small signal gain in the laser with
electromagnetic pump and guide magnetic fields.

The present work comprises a comprehensive theoreti-
cal investigation of all the above-mentioned issues. The
paper is organized as follows: Sec. II describes the
dynamics of relativistic electron beams in combined guide
and electromagnetic pump fields. Possible helical,
steady-state equilibria are also discussed in this section.
In Sec. III the stability of the helical equilibria is studied,
and possible ways of launching the beam into one of these
steady states are discussed. In Sec. IV we develop a for-
malism for the calculation of the small signal gain in the
laser. Finally, in Sec. V, we present a numerical example
and further discuss the advantages and limitations of the
proposed laser configuration.

II. HELICAL BEAM EQUILIBRIUM

Consider a cold relativistic electron beam propagating
in the z direction in an electromagnetic field given by

] BAp
Eo= — 80=V& Ao+B&e, ,c Bt

where B& ——const and

Ao —— Ao [cos(k—oz coot )e„+—sin(koz —coot )ey j . (2)

We assume that the density of the beam is low enough
and does not influence Eo and Bo. Equation (2) describes
a variety of electromagnetic waves encountered in many
experimental situations. For instance, circularly polarized
electromagnetic waves represented by (2) with koc/coo & 1

are . characteristic for axial regions in circular metal
waveguides The . situation when koc /coo & 1 can be
achieved by using various slowing-down structures in the
waveguides. Alternatively, magnetized streaming plasmas
can support both slow and fast waves described by Eq. (2)
with various dispersion characteristics. Also, the case
koc =cop represents a vacuum wave and the situation
coo ——0, describes the conventional magnetostatic field on
the axis of a magnetic wiggler widely employed in free-
electron lasers.

The dynamics of the electron beam in our case is
described by the momentum equation

a
Bt

+v V (myv) = —e(Eo+VXBo/c),

which, on using (1), can also be written as

e, = —e„sinP+e~cosP,

e2 ———e„cosP—ea sing,

+u3 (yu ] )+(cop —u3ko)(yu2 —ao) = —Quz
dT Bz

(6)

8 8
+u3 (yu2) —(coo —u3ko)(yu& )=Au,

ar az

+u3 (yu3) —koaou jBr Bz

Note that Eqs. (6)—(8) have a particular solution:
Q ~

=Q &0 =0, Q2 =920 =const, Q3 =930=const, P=PP
=const, where

«ou 3o
—~o)ao/yo

Q20 =
kou3o coo 0/yo

and

1/yp ——1 —Q 20 + 30 ~

2 — 2 2 (10)

In the following we will refer to the helical electron tra-
jectories described by Eqs. (9) and (10) as the steady-state
solutions.

Substitutton of (9) and (10) yields a fourth-order poly-
nomial for u3o, describing four possible steady-state solu-
tions for given yo, ao, 0, ko, and coo. Figures 1 and 2
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where P =koz —~or Then a =ed o/mc e2 ——aoe2 and if
we define coo ——coo/c, Eq. (4), in components, becomes

+u V (yu —a)=Qe, Xu —(Va) u,

where we are using the following notations: r=ct,
u=v/c, a=eAo/mc, and A=eBt/mc .

Define the following orthonormal set of base vectors:
FIG-. 1. Steady-state axial velocity u3p vs Q. {a) Up:0 (b)

u~ =0.4. In all the cases, yp ——3, kp ——15 cm ', and ap ——0.3.
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where we defined a=kou3p —cop —Q/pp. Assume ex-
istence of a solution u3p —u3p(Q) of Eq. (11). In substi-
tuting this solution back into Eq. (11) and differentiating
the resulting equality with respect to Q we find after some
algebra

20 0 (cm ')

Uao

du 3o ao(kou 3o —coo )

&u 3o'Y opo

where

ago=~ —koaoQ(1 —
Up lu3o)/yo .2 3 2 2 3

(12)

The critical values of Q are thus described by the condi-
tion

I ] l

ao(kou 3o
—~o)koQ

pO=&2
3 =0.

Q 3OQQQ
(14)

go 0 (cm ')
Further simplification is possible by rewriting Eq. (11) as

(kou30 ~0)ap/( 1 —1/j o—u 3p) 1 p, (15)

FIG. 2. Stead&-state axial velocity u30 vs Q. (a) v~=0.95. (b)
U~=1.05; In all the cases &0=3 k0=15 cm ', and ao ——0.3.

and using the expression

Q/7 o=.—0+kou3o —coo

Substitution of (15) and (16) into (14), after some algebra,
finally yields an algebraic equation for the values of
u3p ——u«at Q=Q«as follows:

show these solutions versus Q for the case ao ——0.3, yo=3,
ko ——15 cm ', and different values of the reduced phase
velocity of the wave Uz

——coo/kp ——0, 0.4, 0.95, and 1.05.
The solution, antisymmetric around Q=O, in the case
Uz

——0 [Fig. 1(a)], corresponds to a previously studied case
of the magnetic wiggler, ' ' where four solutions for u3o
exist when

~

Q
i
(Q„. Only two real solutions for u3p

are present, however, when
i
Q

i & Q„. The situation be-
comes more complex when Uz&0. Hence, as can be seen
in Figs. 1(b), 2(a), and 2(b), the solution u3o u3p(Q) loses
its symmetry and only for Q=O does it have a simple
form u3o ——v~+[1—(ap+ 1)/yp]' . Two different criti-
cal values of Q (Q„,,Q«, ) exist at which du3o/dQ Go

and two real branches of the steady states disappear. An
additional interesting feature of the steady states in the
case Uz&0 is, that for Uz ——[1—(ao+1)/po]' there exist
three coinciding solutions for u3o at A=O, and when

uz & [1—(ap+1)/yo]'i, the topology of the branches
changes with two simply connected pairs of solutions
above and below the line kpu 3p cl)o Q/y p

—0, for——
Q (Q„, and Q & Q„, respectively [Figs. 2(a) and 2(b)].

We will show in Sec. IV that one can considerably
enhance the single-particle gain in a free-electron laser
operating in the helical beam equilibria, described here, if
Q approaches its critical values. In addition we will
demonstrate later that the critical values play an impor-
tant role in trying to experimentally launch the beam on
one of the stable equilibria. Therefore, in the rest of this
section we will derive a simple equation for Q„. The
basic equation describing the axial velocity of the beam in
the steady states is [see Eqs. (9) and (10)]

1 —u 3o —[(kou3o —~o)ao«'Vol =1/'Yo2 2 — 2

ap(1 —1/yo —u«Uq ) =yo(1 —1/yo —u „)2 2 2 31'2 (17)

III. STABILITY ANALYSIS

At this stage we consider a perturbed steady-state heli-
cal equilibrium. Write the solutions of Eqs. (6)—(8) in the
form

u; =u;o+w;, i =1,2, 3 . (19)

If the perturbations w; are small enough, they obey the
following linearized equations:

w i ——aw2 —(ko u 2o —koao/yo) w3

+(kou30 ~0)u2og/ro,

w2 = —Qwi —u2og/7'o,

w 3 —kpaow i /yp —u 3og /) o

(20)

(21)

(22)

where the dots describe the time derivative along the elec-
tron trajectory and g=y —yo is associated with the per-
turbation in energy. The energy equation is

When u„ is found from Eq. (17) we can get Q„by em-
ploying Eqs. (16) and (15). A simple expression for u„

u'. = 1 —1/)'o —[ao(1—14'o) /r o]'" (18)

can be found from (17), in the conventional magnetostati-
cally pumped (Uz ——0) free-electron laser. Note also, that
it follows from (17) that u«=uz, if uz ——1 —(1+ao)/yo in
accordance with the previously mentioned possibility,
occurring at A=0.
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Plc P= —eEQ v

yielding

g =QQQpw (

(23)

(24)

0.3—

0.2

We now differentiate Eq. (20) with respect to time and
substitute Eqs. (21), and (22), and (24) in the resulting
equation. This leads to

~ ~ 2
w) +pgw) =0,

where

ap, =a —ko~oII(1 —
Uq )/'yo .2=322 2 3

(25)

(26)

0.0

-0.f

Thus, the necessary condition for the stability of the
steady-state helical trajectory is p, & 0. The regions of the
unstable helical equilibria are shown in Fig. 1 by the
dashed lines.

Consider now the problem of experimentally achieving
one of the stable steady states. These stable helical elec-
tron orbits are rather exceptional and obviously require
special entrance conditions of the electron beam into the
interaction region.

IdeaHy, one has to launch a cold electron beam
prepared to be initially in one of the steady states and adi-
abatically switch on the pump field along the trajectory in
the transition region of the laser, so that the electron will
adiabatically follow the helical equilibrium until it enters
the homogeneous part of the interaction space. Experi-
mentally, the pump field may be mostly z dependent but
slowly fall radially as one moves away from the axis.
Then adiabatic switching on of the pump is achieved by
launching the beam at a small angle to the axis from the
pump-field-free region. Alternatively, by using quasiopti-
cal cavities or waveguides with variable cross sections we
can taper the z dependence of the pump field and launch
the beam along the axis.

Note, that it follows from (9) that when ao~0 we have
uzo ——0 and therefore, a natural way of launching the
beam into a steady state is to prepare it initially to have
purely axial velocity. In the rest of Sec. III we will con-
sider only these particular initial conditions. In Fig. 2 we
show an example of launching the beam onto one of the
steady states. We employed a(z) =ao[1—exp( —5z)] with
5=0.1 cm ko= 15 cm ', Q= —50 cm a'o=0-3 and
Uz ———0.95. Note that in this example u3Q +0, namely
the beam is propagating in the direction, opposite to the
direction of propagation of the pump wave. Figure 3
shows the adiabatic decrease of the beam axial velocity uz
in the transition region and achievement of the constant
steady-state value in the homogeneous region (z & 1/5).
At the same time the transverse velocity component u]
remains small and u2 starts from zero and reaches its
steady-state value of 0.24 in the homogeneous region. The
small oscillations are due to the transition region and have
frequency p, [see Eq. (25)].

An additional effect we found in this example, was a
slight increase of the y factor while passing the transition
region. In order to arrive at the steady state shown in Fig.
3 with yp ——3, we launched the beam with an initial value
of y=2.97.

As it also happens in conventional free-electron lasers

-0.9—

l
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t I
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50

with a guide magnetic field, the adiabaticity of the transi-
tion region and the aforementioned initial conditions are
not sufficient for achieving the steady state in the homo-
geneous region. Indeed, while passing the transition re-
gion, electrons adiabatically following the steady state,
may encounter a point zo at which the local guide field is
critical for the corresponding set of values of ao(z) ko(z),
and yo(z). At such a point po ——0 [see definition in Eq.
(13), and therefore du qo/dao -(po) ' becomes infinite].
The corresponding real branch of the solutions for u3o
disappears when ao(z) & ao(zo) and an adiabatic transition
to another branch is impossible since it requires a jump in
u 3Q As a result, the beam departs from the steady state
and its motion becomes rather complex.

This situation is demonstrated in Fig. 4 where all the
initial parameters are the same as in Fig. 3 except

0.5

0.0

-0.5
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FICx. 4. Evolution of the velocity components in the vicinity
of orbital instability. In the homogeneous region ko ——15 cm
cx0=0.3, vp = —0.95, 0=—73 cm (solid lines), and 0= —74
cm ' (dashed lines).

FICi. 3. Spatial evolution of the components of the electron
velocity in launching the beam into a steady state. The parame-
ters in the homogeneous region are yo ——3, ko ——15 cm
o =0 3 vp = —0.95, Q = —50 cm
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Consider a configuration in which, in addition to the
pump electromagnetic wave Eo Bo we introduce another
small-amplitude plane vacuum electromagnetic wave
E=e„Ec so(kz pit+a—), B=e,XE characterized by its
frequency co and k =co/c. Conventionally, the small sig-
nal single-particle gain in such a system is associated with
the average electron-energy change over a given distance
L, of the interaction region, with the averaging taken over
an ensemble of electrons entering the interaction region at
different random time moments. Since, usually, the gain
is proportional to E, typically, classical small signal gain
calculations require perturbation analysis of the equations
of motion up to the second order in E. Such calculations,
in the presence of the guide field tend to be algebraically
rather complex. Therefore, here, we are adopting a dif-
ferent recent approach, "which is based on the use of the
correspondence principle and requires only the first-order
perturbation analysis. The new method was successful in
calculating the gain in a variety of free-electron-laser con-
figurations, "' including the laser with a magnetostatic
wiggler and guide fields, which is a special case of a sys-
tem considered here (cop ——0). It was shown in Ref. 11
that the gain is given by

(%co) N,
(u3Q(n ),„), (27)

cf6

where Q=E /8m. is the time-averaged energy density of
the perturbing electromagnetic wave, N, is the particle
density of the electron beam, e=mc yp is the energy of
the electrons, and (n ),„ is the average number of quanta
Ace absorbed by an electron in a single pass through the
interaction region. One can find (n ),„from"

(n),„=(s )„/2(F0) (28)

where s is given by
t2s= —ec u t' . Eo z t', t' +H z t', t' dt', 29
1

where the integration is with respect to the time t' along
the electron trajectory and t j and t2 are the moments at

Q= —73 cm ' (solid lines) and 0=—74 cm ' (dashed
lines). One can see in Fig. 3 the transition to instability at
Q= —74 cm ~ where Q )~ Q2~ and Q3 vary rapMBy w1th z~

from z= 15 cm and on, inside the transition region.
It is interesting to note. that in contrast to the case

where Q= —50 cm ' (Fig. 3) the beam experiences a con-
siderable acceleration in the transition region. For exam-
ple, the final value of yp in Fig. 4 for the case of 0= —74
cm ' was 5.4 (while initially yp ——2.97).

Thus, in conclusion, in launching the beam adiabatical-
ly in transition regions into one of the steady states, one
should avoid conditions where the local value of pp be-
comes small. In these regions, the stability of the beam is
very sensitive to perturbations in initial conditions.
Nevertheless, we wiH see in the next section that operation
of the free-electron laser in the regime in which both sta-
bility parameters p, and po are small in the homogeneous
region of the interaction, allows to enhance the small sig-
nal gain in the laser.

IV. SMALL SIGNAL GAIN

Xcos(kz cot'+—a)dt' . (31)

Correct to the lowest significant order in (31) we can write
z=zp+u3Q~", where ~"=~' ~, T/—2, so—that

T/2
I, =eu2pE cos[(kpu3p —cop)t" +Pi]—T/2

Xcos[(ku3p —cg')w" +g]ds" (32)

where T=L/u3Q is the reduced time duration of the in-
teraction in a region of length L, co' =Q3/c,
= —ruo T/2 Qiori+ko—zo, 0= —coo T/2 co'ri ——kzp—+a,
and zp is the center of the interaction region. Finally, the
integration in (32) yields

sin(Pi T/2)I) ——eu20E cos(P~ —g)

sin(P2 T/2 )
+ cos(P i+g)

2

where

P, =(k —kp)u3Q —(Qi' —coo),

p2 (k+ko)u3p ———(co'+ COQ) .

Consider the case when Pi —0, or (since co'=
I
k

I
)

Qio kQu 3Q
co ~ 2~'f p(cop —kpu3Q) .

1 —u3osgn k
(34)

For ko & 0 (the pump wave propagates in the direction op-
posite to the direction of propagation of the beam), we
deal with the double Doppler upshifted frequency of the
pump, characteristic to free-electron lasers. For these
~o~ditio~s,

I 4 I
=2

I
Qio —kou 30 I ))&i and consequently

we can neglect the second term in Eq. (33).
Next, we consider the second integral in (30),

t2 t2
Iz ———ec w Epdt'= —eApcop w idt' . (35)

t)

In order to find the perturbation w i due to the amplified
wave, we go back to the momentum equations (20)—(22)
and add new electromagnetic interaction terms. This re-
sults in

which the electron enters and leaves the interaction re-
gion. %'e now assume that without the perturbation E, 8
the electrons move on one of the steady-state helical tra-
jectories, described in Sec. II, and subsequently write u in
(29) as u=up+w, so that correct to first order in E

f2
s = —ec f, (upE)dt+ f, (wEQ)dt . (30)

It is interesting to note that the second integral in (30) is
missing in magnetostatically pumped free-electron lasers,
where Eo ——0.

Consider now the first integral in (30)
f2

I& ———ec dt'~ E

=+ecu2QE cos(kpz coot' —)
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w1 ——aw z
—(kou zo —koao/70) w3

+(kou30 ~0)u20g/F0+el(u30 1)/Vo,

wz = —aw1 —uzpg/'/0+A'2(u30 —1)/)'0,

w3 =koaowl/3 0—u30g/Vo —ezuzp/Yo,

where

(36)

w((r")= z cos(P(w" +$1—f) .
2ps

Thus, after the integration (35) becomes

(43)

where eo eE——/mc . This solution can be simplified if,
consistently with (34), we require p(~0 (and (M, &&p().
Then, on retaining in (42) only the low-frequency varia-
tion, we have

e~ —— e& E
mc

eE
2 cos(kz —co 'r+a)sin(kQz cl)or),

PlC

e2 ——
2

e2.E
P7lC

(37)

ca~ORE sin(P(T/2)
I2 —— cos((I}1—1t )

PgC P1

and therefore

IE eo'WpA sin8
s =II +I2 —— eQ2p+ cos(@—(p),

2Q 3o P,'C

(44)

eE
cos(kz co'r ~a—)cos(koz cops),—

UlC

and in contrast to (24)

g =copao W] —e2Q2p . (38)

As in Eq. (33), we can now neglect the rapidly oscillating
part in (37) and write approximately

eE
e,=—. sin[(k —kp)z —(co' —(00)r+a]

2mc

eE
sin(p, ~"+ (}},—g),

2mc

eEez- —
z cos[(k —ko )z (co' coo )r—+a)—

2mc

eE
cos(p, r"+$1—g),

2P12c

where, similar to (32), —T/2&x" & T/2, and p1 and p
are defined as in (33). Now we differentiate the first
equation in (36) with respect to r and substitute in the re-
sulting equation, expressions for wz and w3 from Eq. (36)
and Eq. (38) for g. This yields

w) +Pgw) =AE2 ~ (40)

where, as could be expected, p, is the stability parameter
[see (26)) and A is given by

where 8=p1 T/2=p(L/2. Substitution of (45) into (28)
and averaging over ~, then yields

r 2
erg ap(00~

20+
Q3O

2

F(8), (46)

with F(8)= [(sin8}/8] . This expression can now be sub-
stituted into Eq. (27) for the gain

dI = ——m'N 8 dE'

2
(eL )

2 ao(00~
Q2p+

Q3o CPs
F(8) . (47)

&N e
3

A'pQ)pal d+ dQ3p
2 l2

L3 uzo+ z
((o' —cop) .

4u 330 cpz d 8 de

(48)

We will now make the usual assumption in the theory of
free-electron lasers, that the main contribution from the
differentiation with respect to e in Eq. (47) comes from
the differentiation of F(8). Indeed, since 8=p1L/2u3Q
we have dF/de-L and therefore it leads to the only con-
tribution in I proportional to L . Neglecting for large L
the terms of the order L in the gain, we have

oA dr deI — L, Q2p+

1 QQ 2p 1 —
Up

2

(1—u30)(a+p()+
Vp 'Vo Q3o —

Up

Next, we solve Eq. (40) subject to the initial conditions

w, (r, }=0, w, (r, )=r,
r

w((~")= sin p,
ps 2

p(A ep+ z z sin(p(~1+5)sin[p, , (~—~, )]
2P ((M —P()

'I

aocooA
u2O+

CPs

X [a +ko(u3p —uz} ao]
dF

Finally, Eq. (11) yields

du30 a +ko(u3p vp) ap—3 3 3 2

u30Pprr(c ) pa
2 2 3

and therefore the gain formula becomes

nN, e L (a)' cop)—
I =—

4mC y Q3 PQQ

(49)

(50)

Ae
z z cos(Pr(+5)cos[P, (~—r()]

2( 2 pz)

A co+ z z cos(P(r+P1 —g), (42)

Note that it follows from (50) that operation of the laser
in the regime in which Qp or p„or both are small, may
enhance the gain. This is due to the enhanced response of
the system to perturbations while approaching the unsta-
ble situation. %'e will demonstrate this phenomenon in a
numerical example in the Sec. V.



32 ELECTROMAGNETICALLY PUMPED FREE-ELECTRON LASER. . . 28S5

'l

Ps=0

-50~
-75 -ll

go=Ps=o

0

C3

o 02

0.0—

-&50
0.000 0.004

-0.2
0.000

I

0, 002
I

0.004

FIG. 5. Gain parameter g vs the strength of the pump field.
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FIG. 6. Orbital stability parameter ago vs ao for conditions
of Fig. 5. A, v~=0. B, v~=0.85. C, U~=1.30.

V. NUMERICAL EXAMPLE AND CONCLUSIONS

In this section we compare performance of two free-
electron-laser amplifiers both capable of amplifying radia-
tion of the same frequency. The first is the conventional
rnagnetostatically pumped free-electron laser and the
second is the laser with the electromagnetic pump, dis-
cussed in the previous sections. Consider the case where
in both lasers yo

——3, I.= 100 cm,
i
ui

i
=0.1, and the fre-

quency of the amplified radiation is co'= 180 cm
(f=lO' Hz). We also assume that the strength of the
pump field ac in the lasers is the same. With all these pa-
rameters in mind we choose ko ——12 cm ' in the wiggler-
type free-electron laser and adjust the value of the guide
field in it, so that the transverse velocity of the beam

[u2c ——kpu30ao/(yoke u30 —0)] is the same as in the elec-

tromagnetically pumped free-electron laser (u j ——0.1). On
the other hand, in the electromagnetically pumped free-
electron laser, we consider two possibilities ko ——6.3 and
5.0 cm '. The frequency coo of the pump wave was
chosen according to Eq. (34) so that the frequency co' of
the amplified radiation is the same in both lasers (co'= 180
cm '). This choice of kc and coo corresponds to two
values of Uz

——0.85 and 1.30. The guide field in the elec-
tromagnetically pumped laser was also adjusted so that
u z

——0.1. The calculated small signal gains for the
described three configurations are presented in
Fig. S, where the normalized gain parameter
ri=lOlog&oi I /N, F'

~

is shown as a function of the
strength of the pump field ac. All the graphs show signi-
ficant gain enhancements at certain values of uo. The cal-
culations show (see Fig. 6) that these critical points corre-
spond to the conditions po —+0, p, —+0 which physically

describe the case of an enhanced induced response of the
system in the vicinity of orbital instability. An additional
important feature of the results shown in Fig. 5 is that the
enhancement of the gain takes place at very low values of
the pump field. For instance, for Uz

——1.30 the critical
uo ——1.7S)&10 corresponds to the magnetic component
of the pump of only —18 G. This salient feature is due to
the resonant form of u20 [see (9)] which allows us to keep
the value of u2c constant by using a small value for ao
and, at the same time, approaching the resonance condi-
tion in the denominator. Because of the proximity to the
unstable orbital regime, however, the quality of the elec-
tron beam must probably be very high in the above men-
tioned enhanced-response regime.

We summarize this paper as follows.
(i) The present work presents a comprehensive study of

the free-electron laser in combined transverse electromag-
netic pump and magnetostatic guide fields.

(ii) It was shown that several different helical steady-
state stable equilibria of the beam may exist for a given
beam energy and configuration of the pump and guide
fields.

(iii) Stability of the helical orbits and ways of launching
the beam into one of the stable steady-state orbits were
discussed and illustrated in numerical examples.

(iv) A formalism for calculating the small signal
single-particle gain for beams in the helical equilibria was
developed. The resulting gain formula shows a possibility
of an enhanced-gain regime when the laser is operated in
the vicinity of unstable zero-order helical electron trajec-
tories. A salient feature in this regime is a possibility of
the gain enhancement at relatively low-power densities of
the pump electromagnetic wave.
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