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Spontaneous emission in the waveguide free-electron laser
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The incoherent emission from an undulating electron beam in the presence of metallic boundaries
is analyzed. A general method of solving Maxwell's equations is used to express the field of a single
particle in terms of vector waveguide modes. It is shown that the radi'ation characteristics depend
upon a parameter involving the energy, wiggler wavelength, and the waveguide transverse dimen-
sion. At some values of this parameter the energy spectrum and angular distribution will differ sig-
nificantly from the analogous free-space results. The amount of energy emitted into resonator
modes is also analyzed in terms of a similar expansion.

INTRODUCTION

In the free-electron laser (FEL) a relativistic electron-
beam moves through a static periodic magnetic field (un-
dulator). In a nonlasing operation, electromagnetic radia-
tion is produced by the transversely accelerated particles.
The amount and spectrum of this radiation, usually re-
ferred to as "incoherent*' or "spontaneous, " is a crucial
factor in the start-up process of the FEL oscillator.
Dynamical characteristics such as transverse emittance,
energy spread, and angular deflection are well manifested
in the spectrum and make it a useful diagnostic tool to in-
vestigate electron-beam trajectories.

The analysis of the radiation emitted by a wiggling par-
ticle was first discussed by Motz' using standard methods
of classical electrodynamics. Similar calculations were
made by Kincaid and Colson ' for helical and linear un-
dulators. These articles discuss the polarization, frequen-
cy, and angular dependence of the emitted power. The re-
lated problems of emission from a tapered undulator and
from misaligned trajectories have also been investigat-
ed. The spontaneous emission has been measured ex-
perimentally in several FEL facilities. s The theoretical
investigations mentioned above were all concerned with
the electromagnetic radiation emitted in the absence of
any boundaries, and they all used a well-known expres-
sion: the Fourier transform of the electromagnetic fields
derived from the Lienard-Wiechert potentials.

The need to use guiding structures in the FEL design
(Fig. 1) arises when one wants to operate in the far-
infrared and submillimeter wavelength region. ' The
large diffraction losses inherent in low Fresnel numbers
imply the use of closed resonators rather than open ones.
An additional restriction is the desire to keep a small gap
between undulator plates in order to achieve large magnet-
i.c fields at the center. These considerations lead to a rela-
tively flat and wide resonator for the University of Cali-
fornia at Santa Barbara' '" (UCSB) FEL designed to
operate at wavelengths near -400 pm. The spontaneous
emission spectrum will be the subject of a forthcoming ex-
periment in this facility. '

Emission of electromagnetic waves by undulating parti-
cles in the presence of metallic boundaries has been, how-

ever, a much less treated subject in the literature. Motz
and Nakamura' gave a rather detailed discussion. Unfor-
tunately, they considered an infinitely long wiggler in the
calculation. As a consequence, the outcome did not pos-
sess a realistic bandwidth. In fact, the authors focused on
the repeated interaction of the electrons with waves whose
velocities are close to the electron velocity and whose am-
plitudes diverge for an infinite wiggler. We will discuss
this phenomenon in a later section.

In a recent article by Haus and Islam, ' an energy con-
servation argument is used to study the coupling of the
electron beam to rectangular waveguide modes. It is
shown that in the limit of a highly over-moded guide, a
result similar to the free-space expression is reproduced.
Indeed, by substituting mode wave-numbers for free-space
directions, one obtains a complete analogy between the
two cases in this limit.

Our work has been carried out independently of Ref.14
and concentrates on the differences rather than the simi-
larities between the emission into the free and the bounded
space. In the present article we apply a general method to
analyze the radiation field of an undulating beam in the

Y'

FIG. 1. The waveguide free-electron laser. Relativistic elec-
trons move in a periodic fashion through a linear undulator (not
shown) of length Xi,o. A single electron at point r'(t') moves
with a velocity cP(t'). The system is enclosed inside a
waveguide (a set of two parallel conducting plates separated by a
distance b). The radiation is observed at the point r. A system
of cylindrical (p, g,y) and of Cartesian (x,y, z) coordinates are
shown.
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presence of perfectly conducting boundaries. Maxwell's
equations are combined to form a single inhomogeneous
vector wave equation. This equation is solved by means
of a matrix formalism known as the "dyadic Green's func-
tion. "' The Green's-function method provides a con-
venient straightforward approach to complicated vector
boundary-value problems.

The vector wave equation and the Green's-function
method are introduced in Sec. I. In Sec. II, we show how
this approach is used to derive the free-space-field spec-
trum normally obtained via the Lienard-Wiechert formu-
la. This provides the branching point to the waveguide
problem. In Sec. III, the method is applied to the case of
a two parallel-plates waveguide. This configuration ap-
proximates the aforementioned flat rectangular waveguide
currently in use at the UCS8 FEL facility. The pro-
cedure, however, is very general and may be applied easily
to waveguides of different geometry. The expressions ob-
tained tend to be quite involved in the general case. In or-
der to concentrate on the waveguide features and mini-
mize the algebra, we introduce some obvious approxima-
tions associated with emission from a particle traveling in
a weak magnetic field and suppress the higher harmonic
content of the spectrum. This is unnecessary in general
but allows us to focus on the important new aspects of the
problem. The angular and frequency characteristics of
the spectrum are discussed. It is shown that the emission
line shape in a moderate-size waveguide is quite distinct
from its free-space counterpart and may contain several
maxima associated with the interference of the emission
from the current and its "images. " This results in a sub-
stantial power going into a small number of the
waveguide modes. The number of the excited modes and
their frequency spacing will be shown to be dependent on
a parameter involving the energy, wiggler wavelength, and
the transverse dimension of the waveguide. In the limit of
a very large gap between the plates the spectrum resem-
bles the free-space result. In this situation it is easy to
draw the analogy between the power emitted into a unit
sohd angle in the free-space case and the power emitted
into the corresponding phase-space element in our case.

Section IV is devoted to the resonator problem. The
spontaneous emission power emitted into any of the
modes of a resonator formed by introducing two cylindri-
cal mirrors at the ends of the waveguide is evaluated here
for the first time. Using this result we investigate the ef-
fect of the optical beam diffraction on the bandwidth of
the emission line. Finally, we comment on the relation
between the spontaneous and the stimulated emission in
this particular case, a relation that is well known in the
one-dimensional theory. '

Two appendices are added at the end. Appendix A in-
troduces some notations used in the dyadic Green's-
function formalism and some of its properties are summa-
rized. Appendix 8 contains two different derivations of
the relevant Green's function. The first is the standard
one of eigenfunetion expansion following the methods of
Ref. 15. The second is a direct calculation based on the
concept of image currents. This procedure is not appli-
cable in genera1 but provides a better insight into the
problem.

I. THE VECTOR WAVE EQUATION
AND ITS SOLUTION

In this section we discuss the formal solution of
Maxwell's equation by means of the dyadic Green's func-
tion. Our starting point is the inhomogeneous Maxwell's
equations in the absence of dielectric or permeable media
(in cgs units):

1 BE 4n. J
c Bt c

VXE+ — =0.1 8
c t

We define the Fourier transform and its inverse as

F„(r)=fF(r, t)e'"'dt,

F(r, t) = fF„(r)e '"'de .2'

(1.1a}

(1.2a}

(1.21}

Applying (1.2a) to the time-dependent quantities in (1.1)
gives

VX8„+ikE„=— J
C

VXE —ik8 =0,

(1.3a)

(1.31)

where k =~/c is the free-space wave number. Combin-
ing Eqs. (1.3a) and (1.3b) results in the following vector
wave equations:

VX VXE —k'E„=
C

(1.4a)

VX VX8 —k'8„= VXJ„.
C

(1.41)

V X V X6„—

KING„=

—4m I5(r—r') (1.6)

and the appropriate condition at the boundaries depending
on whether E or 8 is involved. The operation V X V on a
dyad is explained in Appendix A. I is the idem factor or
the identity matrix, (the dyad xx++zz). The advan-
tage of using the vector equations (1.3) rather than the
more conventional wave equations for vector and scalar
potentials lies in the relative simplicity in the construc-
tion of G„ for various boundary-value problems. It also
eliminates the choice of any particular gauge in the solu-
tion since (1.5) relates the source directly to the field. A
standard way to solve (1.6) is by means of an eigenfunc-
tion expansion similar to that used in scalar problems.

With the appropriate choice of boundary conditions a
solution for (1.4) may be written as' '

E„(r)=i—fG„(r,r') J(r'}d .r'
C

and a similar one for 8 with an appropriate Green's

function G. G„ is a 3X3 matrix, the so-called dyadic
Green's function. We will use dyadic notation throughout
this work to represent matrix operations. Some informa-
tion on dyads is given in Appendix A. A systematic pre-
sentation is to be found in Refs. 15, 17, and 18.

G satisfies the following matrix equation:
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VXVxE„—k'E =0 (1.7)

The eigenfunctions are the vector modes of the problem
(in waveguides those may be the familiar TE, TM modes).
They satisfy the homogeneous equation

dE 21 cR2

cke ~, . 2fdt'[n X (n Xp)]e'"' +'~"
4m

(2.6)

G„(r,r') = I— VV' g„(r,r'),
k

where g is the solution of the scalar wave equation

(V +k )g (r, r')= —4m5(r —r') . (1.9)

Solving (1.9) is of course a much easier task than dealing
directly with (1.6).

II. THE FREE-SPACE PROBLEM

and the given boundary condition. In certain problems,
and in particular the free-space case, it is possible to fol-
low a shortcut known as the Levine-Schwinger method.
By some simple manipulations it is easily found that, in

the absence of boundaries G„may be written as

The factor 2/2n is consistent with the definition (1.2)
and with the assumption of equal contribution from nega-
tive and positive frequencies. An electron beam moving
through the wiggler consists of many particles radiating
in an incoherent fashion. The total emitted power, aver-
aged over one light period, is obtained from (2.6) by mul-
tiplying it by the number of electrons flowing per unit
time ( I/e where I is.the current ).

Equation (2.6) is the well-known expression appearing
in Ref. 9 where it has been derived by Fourier transform-
ing the I.ienard-Wiechert fields. Most of the calculations
of radiation from synchrotronlike sources have been based
on it E.valuation of the integral for helical and linear
wigglers are given in Refs. 2—4. We will briefly summa-
rize the results below. Consider a particle moving along
the axis of a planar wiggler; its motion, to leading orders
of IC/y is described by the following equations:

ikR

g (r,r')=CO (2.1)

In this section we demonstrate how the formalism of
Sec. I. leads to the expression commonly used to calculate
the radiation power emitted by the FEL and other syn-
chrotronlike devices in free space. In the absence of boun-
daries (1.9) possesses a solution in the form of spherical
waves

P =P p+ cos(2kpz')1 K
Z Z 8

K cos(kpz'),y.
X

sin(kpz') .
OV

(2.7a)

(2.7b)

(2.7c)

where R —=
~

r —r'
~

. Substituting into (1.8) and perform-
ing the differentiation we obtain

ikR

G„(r,r') =(I—nn) +O(R ),R
(2.2)

where n=R/R. Terms of higher order than R ' are
neglected since they do not contribute to the radiation
field. Combining (2.2) and (1.5) and using the definition
in (1.2) it follows that

ikR + idiot

E„(r)= ' fdt'f d r'(I nn) J(r', t')—
c R

(2.3)

J(r', t') =ecp(t')5[r' r'(t')] . —
Inserting (2.4) into (2.3) gives

ikR+i cot'

E„(r')=ike fdt'[p —n(n p)] R
ikR + leapt

ike fdt'[n x (n—xp)] R

(2.4)

(2.5)

We see that the significance of the I—(1/k )VV' opera-
tor is in picking up the current component transverse to
the line of sight. The total energy emitted per unit fre-
quency per unit solid angle is given by

Now consider the case of a single particle with charge e
moving along a trajectory r'=r'(t') with velocity
p= p(t'). Its current density is

K=
~

e ~8pg/2mmc is the magnet strength parameter,
Bp is the amplitude of the magnetic field, m is the elec-
tron rest mass, y is the ratio of its energy to its rest mass,
and kp ——2n. /Ap where Ap is the undulator period. The
center of motion of the particle is assumed to follow the
wiggler axis. The implications of a finite dimension beam
and other inhomogeneities are discussed elsewhere. '

The greatest contribution to the integral in (2.6) comes
at frequencies where the phase of the integrand
4=kR+cot —kpz', is stationary, i.e., @=0. In the far
field it follows that co=copP, p/(1 —P,pcos8), where 8 is
the angle to the axis and p, p is the initial axial velocity.
This will be referred to as the phase matching condition.
It requires that the phase of the emitted light in any direc-
tion will match that of the wiggling motion. Thus the
spectrum contains a range of Doppler up-shifted frequen-
cies decreasing with angle. The highest is obtained on
axis co(8=0)=2@ cop. The spectral width at a given direc-
tion is associated with the coherence time of the pulse and
is found to be b,eo/co=1/N where N is the number of
periods in the wiggler. For strong magnets, the electrons
tend to complete more of their synchrotron orbits near the
individual magnets and this results in a larger contribu-
tion into higher harmonics of cop/(1 —P,pcos8). We will,
however, restrict our discussion to small values of E,
small enough to reduce the complicated sums of Bessel
functions, appearing in the full expressions, to a concise
form. It also enables us to make some shortcuts in the
following derivation. Indeed, if one intends to keep the
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lowest-order terms in powers of E and y
' only the fol-

lowing terms of Eq. (2.6) should be retained:

2t' —'k '(p p
dcod Q 4g

2

+ Jdtietcoj' i—kn r n 'P (2.8)

where the far-field assumption R =r —n r' has been intro-
duced. The terms proportional to P, will lead to contribu-
tions of the same order of magnitude as the one with P„,
due to the off-axis travel of the charge, as given in (2.7c).

They necessitate the introduction of off-diagonal elements
of Ci into the solution and make it difficult to write (1.4}
as a set of uncoupled scalar equations for the field com-
ponents.

The second term on the right-hand side of (2.7a) con-
tributes mainly to higher harmonics and is negligible
under our assumptions (E,y '«1). Introducing (2.7)
into (2.8), expanding the exponentials to the lowest power
of X (this replaces the standard harmonic expansion and
agrees with it to the lowest order), and integrating over
the time spent in the wiggler gives

'2 '2
d E c e K k sin(XNn}

dcodQ 4+ y kp X

2

1 —n„2 k

p

k+ n~ny
0

(2.9)

'0 2 ~

elm K k
4mc y kp

X6(2y kp —k)

—1
kpy

(2.11)

where 6 is the unit step function

6(u)= 1, .u&0

where X=[k —P,(kcos8+kp) j/kp and P, is now used for
P,p. Equation (2.9) may be integrated over all angles to
give the energy spectrum, or alternatively over all fre-
quencies to give the angular spectrum. This is traditional-
ly done by exchanging the function sin (XXn.)/m2 with a
5 function

sin (X&m ) ~~~( ) (2.10)
X2

which is reasonable for large values of N. In the first case
we get

E=—,me EC y ko& . (2.13)

Equatio n (2.11) has been derived under the assumption of
small anglm but sums to provide a reasonable approxima
tion over the whole range when compared with the nu-
merical results in Ref. 14. The free-space spectrum
shown in Figs. 2 and 3 has a shag cutoff at a frequency
that corresponds to emission on-axis. The power de-
creases toward the low-frequency end.

When integrating (2.9) over all the relevant frequencies
and over the azimuthal angle P one gets

=4me E y kpN (2.12)dcose o (1+&202}s

This expression does not seem to have appeared elsewhere.
A plot of this result is contained in Fig. 4. In what fol-
lows we will show that the situation depicted in Figs 2—4
may be altered significantly with the introduction of me-
tallic boundaries.

When integrating (2.11) over all frequencies up to 2copy
we find the total energy emitted to be

X2 5.2

2.4

0.8

0
0 0.2 0.4 0.6

4)/2 g calp

0.8
I

I.O 0
0.50

I

0.75
m/2)' (uo
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FIG. 2. The free-space spectrum. The frequency is normal-
ized to its on-axis value 2y coo. The energy per unit frequency
interval is normalized to its average value:
E/2y coo me K X/3c.

FICx. 3. The free-space spectrum in the range
—, & ~/2y'coo & 1 (this is to be compared rvith the results of Sec.
III).
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The total average power of a single particle is then

FIG. 4. Angular distribution at small angles. The quantity
dE/d cos8 is normalized to its on-axis value 4me EC2y koX.

g„(y=O)=g (y=b)=0,
g„~O as p —+00,

(3.1a)

(3.1b)

where p=[(x —x') +(z —z') ]'/. By the method of
separation of variables, one easily finds that a solution to
(1.9) that satisfies (3.1) may be written as

g (r, r')= g Hp (k[[p)sin y sin y'
2''l ( ] ~

. Pl 7T . Ptl 7T

m=1

(3.2)

and of infinite extent. The dyadic Green's function is
essentially the field response to a unit current density
flowing through a point r'=(x', y', z'). The general ex-
pression for the Green's function is derived in Appendix
B. It turns out, however, that in our case one may follow
a route similar to the aforementioned Levine-Schwinger
procedure, that is, derive the dyadic Green's function
from the scalar one. This is also shown in detail in Ap-
pendix B. The scalar Green's function g (r, r') for this
problem obeys the boundary conditions

(P(t'))= = —,'e cK y kp .
XAp/ c

(2.14) where H p" (k~~p) is the Hankel function of the first kind.
It is a solution of the two-dimensional wave equation'

r

This is exactly what one gets from the Lienard expression

I'(t) = y'[p ——(px p )], (2.15)
3 c

which is a simple relativistic generalization of the well-
known Larmor formula.

III. THE RADIATION FIELD INSIDE
A TWO PARALLEL-PLATES WAVEGUIDE

In this section we discuss the main subject of this paper
which is the radiation field generated by an electron beam
inside a waveguide. In the presence of metallic surfaces,
electromagnetic waves may propagate provided they satis-
fy the spatial boundary conditions. As a result, a discrete
set of wavelengths is allowed at any given frequency.
This is the waveguide dispersion relation. From the free-
space discussion, we know that there is a phase-matching
condition for an effective particle-wave interaction. That
condition will have to be modified by the dispersion rela-
tion. The result is the filtering out of those components
that cannot interact effectively with the charge and propa-
gate inside the guide at the same time.

Consider a particle undulating in the plane y =b/2
parallel to the plates of a two parallel-plates waveguide
(Fig. 1). The plates are assumed to be perfect conductors

z+ z+k~~ Hp (k~~p)=0
Bx Bz

(3.3)

and may be considered the "unit wave" in two dimen-
sions, analogous to (2.1). In the far field there is an
asymptotic formula'

.
Hp'"(k~~p) (2 /k~~p)'/' "~~'+' "

so that (3.1b) is satisfied. Writing

sin( m ~y /b)sin(m ny'/b)

(3.4)

as

( inc(y y')/b —ime(y +—y')/b)
2

and combining with (3 4) shows that in the far field, one
may think about a mode as a pair of cylindrical waves
(Fig. 5), originated at r' whose normals are given by the
directions of

k+ ——(k~~sing', +me/b, k~~cosg'),

where k~~=(k —k„)', and g' is the angle from the axis
in the (x,z) plane such that p= p(si ngO, cso g). Following
the steps through (2.5) we find that the field of a particle
moving along a trajectory r'=r'(t') with a velocity cp(t')
is given by

OO

E (r')=ike g J dt' I— z
VV' Hp"(k~~p)sin y sin y' p(t')e' '

k' (3.5)

where an integration over r' has been carried out and all the primed coordinates became explicit functions of t'. The
solution for the magnetic field is obtained from (1.3) and (3.5)

B (r')=— fdt VQ p(t )Hp (k[~p)sin y sin y' e'o (3.6)
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The next thing would be to apply the operators in (3.5) and (3.6) which can be done without difficulty. In the far field,
(3.4} may be used. It follows from the interpretation of g„given above that an angle of emission 8 in free space can be
associated with the pair of wave vectors k+ provided cos8=(k~~/k)cosg (Fig. 5). The difference here is that only a
discrete set of directions with respect to the y coordinate is allowed at a given frequency. Since the emission process it-
self is the same in both cases, one may expect, for a relativistic particle, that most of the radiation will go in shallow an-
gles and so the relevant mode numbers fall within m~/kb & y . With this in mind, (3.5) and (3.6) simplify to

ik~~p

E (r')=ike v—'2me' g fdt'
Qk))p

mmk
x P„—P, sing sin y

+iy P, cos y sin y' e'"'+O(p /2, y, J ), (3.7)

& (r')=—
ik( (p2ke~2~e'. /4y

fdic

' rmn. mn . . mn. k[[ . . mn.
x cos y +iy P„sin y —P, singsin y

~ m77—z cos y sm y e +O(p, y
m ir m1T t t'tpdt ~ t 3/2 (3.8)

Thus the particle couples mainly to TE modes. Next, let us calculate the total energy flowing into a unit area dA =dx dy
in the spectral range (co, co+de), in the direction p=(cosg', 0, sing). It is given by the projection of the Poynting vector
along this direction

, „=2, , (E„XS„«)p.d2E ]. c
(3.9)

Substituting (3.7) and (3.8) into (3.9) results in
2

dE 2ck e
d COdsd(

P„—P, sing sin y sin y'
m k([p

ik
) )
p+ ia)t'

mm . mm
P cos y sin y' (3.10)

In the case of a particle traveling on axis (y'=b/2), only modes of even symmetry with respect to the center will con-
tribute to the sum.

Let us now investigate the radiation detected over a slit of width M and length b located at the waveguide exit aper-
ture (Fig. 6). Upon integrating (3.10) from 0 to b the cross-terms vanish and we get

ke Ik
[ ~

P+ldt'tt ikllp+i~

f dt p„—'p, sini' + fdt p,'
m odd k~~p k~~p

2 t

(3.11)

If the slit and the detector are located at the far region with respect to the wiggler the integral in (3.11) may be evaluat-
ed. In other cases it must be done numerically. We found, however, that the characteristic shape of the spectrum is
similar. Apparently, this shape is effected mainly by the phase matching condition and only slightly by the amplitude
modulation that occurs at shorter distances. Using the far-field approximation we write

p =po —z'cosg —x 'sing, (3.12)

where g' is the angle to the center of the slit (Fig. 7) and po is the distance to the center of the wiggler. Approximations
such as (3.12} are implicit in all the free-space calculations. ' Expanding the exponentials and keeping the resonant
terms to the lowest order in IC and y ', Eq. (3.11) becomes

d E e K
dcodg' n bc y

'2
k

k0

1

m odd

sin(X Nir )
2 2 2 '2

1 — sin g + sing'
kii k kii

0 0
(3.13)
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FIG. S. Waveguide mode as a pair of cylindrical waves. In k
space the wave vectors k+,k are perpendicular to the two
phase fronts shown and are symmetric with respect to the cen-
tral plane. k~~ is the projection on this plane. k~ =me/b. The
axial periodicity is given by 2m/k, .

where X~ =[k—P, (k~~cosg+ko)]/ko and k»=m~/b
Figure 7 shows the energy spectrum integrated over slits
of different widths centered on axis. The spectrum con-
tains some distinct maxima corresponding to the zeros of
X~. The different spectral width of the lines is clearly as-
sociated with different angular acceptance in each case.
Setting 7 =0 gives

k=P, (k~~cosg'+ko) . (3.14)

Note that (3.14) is analogous to the free-space result

k =ko/(1 —P,cos8) .
The identification cos8=(k~~ /k)cosg follows directly
from Fig. 5. Solving (3.14}for k we get

ko+[ko —(1—P, cos2g)(ko+k„cos g)]'~

1 —P, cos g

(3.15)
koy'+y [koy' k»'( I +y'0'—)]'"

1+y'0'

where the last equation follows in the limit of small g.
The "+" and "—"signs correspond to the Doppler up-
and down-shifted frequencies, or photons emitted in the
forward and backward directions, respectively, in the elec-
tron rest frame. (In a rectangular waveguide of dimen-

FIG. 7. Energy spectrum integrated over different slit
widths: ykg=0. 1,0.5, 1.0. The 1lIlcs broaden at tile wldcI' slit.
The normalization is the same as in Fig. 2.

sions a and b, Eqs. (3.14) and (3.15) are replaced by the
following: (3.14) k =P,(k~(+ko), (3.15) k=P, Iko+[ko—y (ko+k„+k» )J' I /(1 —p, ), where k„,k» are the
wave numbers associated with a,b.} We concentrate here
on the up-shifted region. In the forward direction g'=0,
Eq. (3.15) reads

k(/=0)=y [ko+(ko —y ~k») ~2] . (3.16)

In fact, Eq. (3.15) may be derived directly and more
meaningfully by using the concept of image currents com-

mX/2

There is a cutoff in frequencies when the quantity
under the square-root sign vanishes. Imaginary values for
k signify coupling to nonpropagating (evanescent) modes.
Those modes are the counterpart of the neglected terms in
Eq. (2.2). The cutoff occurs at k vectors forming an an-
gle 8=k»/k=koy/(y ko)=1/y with the z axis. The
limit on the transverse mode index m is given by

y=b—

y=O

Lc.
Z

FIG. 6. A slit of width dec at the end of the waveguide.

FIG. 8. A waveguide mode (only the half propagating in the
k —direction is shown) will be driven most effectively by the set
of equally spaced image charges provided they see alternating
phases (the actual charge is located in the plane y =b/2).
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bined with the free-space result. The image-currents can-
struction is used in Appendix B as an alternative deriva-
tion for the Green's function. It consists of replacing the
pair of plates with an infinite array of parallel currents of
alternating signs (Fig. 8). All charges move in a similar
fashion; each one emits the familiar wide-band free-space
pattern. At far distances, a detector located on axis re-
ceives the interference pattern of the beam plus its images.
A plane wave at an angle 8 with respect to the axis will be
driven most effectively by the set of charges provided that
consecutive charges see phases which differ by n.. The re-

suiting condition is

mA

2
=hsing . (3.17)

Combining (3.17) with the free-space frequency-angle
dependence k =ko/(1 —P,cos8) far a single particle leads
to (3.16).

Equation (3.13) may also be integrated over the hor-
izontal angle g to obtain the energy spectrum

dE e X
de abc y k0

sin (X Nir)
dg

~m
1 — sing + "

sing
0 0

(3.18)

The integration in Eq. (3.18) has been carried out numerically. Figures 9(a)—9(e) illustrate the change in the spectrum as
the plates separation grows. The total number of excited modes increases with yb/A, o. The density of excited modes is
higher at low indices as is evident from the figure. This corresponds to emission at shallow angles that "feels less" the
effects of the walls. As the mode density grows, the lines tend to overlap and the characteristic slope of the free-space
curve is reproduced, as will be shown shortly. The set of narrow peaks at moderate values of yb/Ao is a manifestation of
the constructive interference of the emission from the charge and its images that occurs when (3.14) is satisfied.

We may also integrate Eq. (3.13) over frequencies to find the angular distribution with respect to the angle g,

sm (X Nn)
dk

~b y ~, k~~ k,
1 — sing + sing

k
ii k»ki(

0 0
(3.19)

Ij

k
=P, cosg, (3.21)

Some plots of this result are shown in Figs. 10(a)—10(e).
These graphs reveal another peculiar feature of emission
in moderate size waveguides —the appearance of maxima
located off axis. [In a rectangular waveguide energy can
propagate only along the axis but similar phenomena still
occur. Equation (3.21) is replaced by ( k —k„
—k» )'~ /k =P, . It is found that for a long wiggler signi-
ficant power is carried by modes whose wave numbers
k„,k» are not the smallest ones. ] These maxima corre-
spond to the excitation of photons moving in such direc-
tions that they can interact with the electron over pro-
longed periods of time. It is evident that the maxima
disappear at shorter wiggler lengths. To investigate this
analytically we may attempt to evaluate the k integral in
(3.19) by replacing the function sin (X Nm)/X with a, 5
function (considering the up-shifted branch only)

sin'(X Nm) N~z5(k~N 5(g )—+, (3 20)
k

1 — P, cosg
ll

where k" is defined by X~(k*)=0. The denominator
vanishes, and the integral in (3.19}becomes infinite when

g f m ~—,
' Jf(k»)dk», (3.22)

where the factor —,
' comes from the selection of odd

modes only. In this case the total radiated energy is

i.e., when the group velocity of the mode equals the com-
ponent of the electron velocity in the direction of propa-
gation. The infinity comes about because of the substitu-
tion (3.20) which ainounts to the assumption of an infinite
wiggler. In free space, the light always travels faster than
the electrons and such situations cannot occur. Combin-
ing (3.21) with (3.14), we find that the peaks occur at an-
gles g&

——[(2b/mQ) —y ]'~ . Small g» requires large
index m and vice versa. In either case a mode made of
such photons will suffer considerable losses (conductive or
diffractive) compared to modes consisting mainly of on-
axis photons and it seems unlikely that it will reach the
oscillation phase in a conventionally designed resonator.

Next, let us calculate the total energy radiated in the
over-moded (the limit of large b} case. In a large size
waveguide, the density of modes is larger and one may re-
place the sum in (3.18) by an integral

1
dk»dg dk

sin [g(k»)Nir]

ko k)) [X(k»)]

2

1 — sin g + k» sing
0 0

(3.23)



AVNER AMIR, ILARIO SOSCOLO, AND LUIS R. ELIAS 32

20
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FIG. 9. (a)—(e) The waveguide energy spectrum for different values of yb/A p. Note that the density of the excited modes is larger
at low indices (the lowest index corresponds to the smallest angle of emission). (e) should be compared with Fig. 3. [The UCSB FEL
parameters are those in (b).]

The physical description of the modes as a pair of cylindrical waves suggests the following change of variables:

kII cosg=k cos8,

kz ——k sin8 sing,

from which we get dk~dg'=k dcos8dg. Equation (3.23) becomes

2 2

~ JI Idled cos8dk
4 y ko' [X(ky )]

k
1 —n~

0

2 2

(3.24)
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FIG. 10. The angular distribution of the radiation shows peaks at angles where the modes travel in group velocities comparable to.
the electron velocity. This behavior disappears at shorter wigglers. (a) %=160, {b) N =80, (c) X =10. The normalization is the
same as in Fig. 4.

where the assumption of small angles has been used to
make k/k~~ =1 and another factor of —,

' is inserted on ac-
count of the fact that kz &0. Equation (3.24) is identical
to the integral of (2.8) and we conclude that

2 2 2
+(over moded) 3 )re + ) ko+ . (3.25)

We have actually shown that the same energy goes into
similar phase-space elements. Equation (3.25) is in agree-
ment with the common intuition that the effect of the
walls in the over-moded case is just to reflect the incident
waves and the total power stays the same. In the opposite
case which is of a very small size waveguide, this fact is
no longer true. It is clear that as we decrease the
waveguide dimension the cutoff frequency increases and
at b =Q/2y all the frequencies in (3.17) become complex;
in other words, the electron excites only evanescent
modes. In intermediate cases we found numerically that a
large portian of the energy in (3.25), though not all, is
coupled to propagating modes. This fraction oscillates
around a number that grows with the waveguide size.

IV. THE EXCITATION OF RESONATOR MODES

mm.0' „(r)=sin y g„(k
~
~,x,z),

b
(4.1)

where

In this section we analyze the amount of power that
goes to each of the possible resonator modes. The resona-
tor is formed by placing two wide cylindrical mirrors at
the ends of the waveguide. " The resulting set of modes
allows the energy to propagate in only a limited range of
angles in the horizontal (x,z) plane. This in turn is
translated into a limited range of frequencies appearing in
the spectrum in much the same way as illustrated in Fig.
7. The empty cavity modes have been discussed before. '

Such modes possess a trigonometric variation in the nar-
row dimension and the familiar Hermite-Gaussian
structure in the wide dimension. They are given by

g„(k~~,x,z) =
'i 1/2

w(z) " w(z)
H„exp[ —x2/w(z)2+ik~~x /2R (z) —i(n+ —,

'
) tan 'z/zp+ik[)z] .

H„are the Hermite polynomials, mp is the beam waist,
zp =

2 k(I N p is known as the "Rayleigh length, "
w(z)=wo(1+z /zo)'~ and R(z)=z+zo/z is the radius
of curvature of the wavefront. In order for these modes
to satisfy the longitudinal boundary condition, the round-
trip phase between mirrors must be an integer number of
2nThis implie. s.some discrete values for k given by

2

km „= + —p+ cas '(s(sz)'
I

where p is an integer, the longitudinal index of the mode,
/ is the resonator length, and s; =1—I/R; where R3,Rz
are the mirrors radii of curvature. The axial mode spac-
ing is, however, normally two to three orders of magni-
tude smaller than the transverse mode spacing and will be
suppressed in the following considerations.

It can be shown that our scalar Green's function (3.2)
may be expanded in terms of such mades upon using the
asymptotic expression (3A) and the Fresnel's approxima-
tion
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1 (x —x')
p z —z +

2 z —z

The result is

(4.2)

g (r,r')= g %' „(r)%*„(r'). (4.3)
4mi 1 1

blip „k(( 2"n!&~/2

In doing so, we have uncoupled the coordinates r, r' and
an expansion of the form

E(r)=g A „4 „(r)
m, n

may easily be written. [It is worth mentioning that in the
more commonly used open resonator (with circular sym-
metry around the axis), one can obtain a similar expan-
sion. The approximation (4.2) has an extra term then
which yields another two factors in (4.3) containing the
y,y' coordinates. ] Such an expression would be rather dif-

ficult to get directly from the wave equation under the as-
sumptions of the paraxial approximation. [In the com-
mon method of deriving the paraxial wave equation one
usually looks for a transversely polarized solution, thereby
obtaining a single scalar wave equation for the transverse
field. This assumption is inappropriate here in light of
the discussion following Eq. (2.8). For a systematic way
of treating the paraxial approximation see Ref. 24.] We
now proceed along similar steps as those leading from
(3.10) to (3.18). As before, it is easy to see that to lowest
order in X and y

' the relevant terms in the operator
I—(1/k )VV' are

»—+&~~8, /k —xzB„B,/k 2 .

Starting from

E (r)= —4mk
e 1 1

bwp „k~~ 2"n! n./2
T

&& fdt' &x+i+zk~~- z +ixzk~~ 2 g~(k~~, x,z)g„*(k~~,x',z') sin y sin
k k

I P(it) l&t
y e

(4.4)

1
X

n, m ~d kll

(4.5)

and carrying out the derivatives, the fields may be found and are given conveniently by a linear expansion in terms of the
modes. After some inore algebra the total energy per unit frequency is found to be

dE 2&e K k
1 —

z z(n+1) A„— z 2(n —1)A„2 + z 2nd„2k(( z )) krak(( ~P
dcp cbwp p kp k kpwo k kowp k kp wp

where the recursive relations for the Hermite polynomials and

vz 1

gn(k)(, x,z)= [ngpg 1(k((ix,z) —2 go+1(k((,x,z)]
x Wp

have been used. For the definition of A„we use the notations q =P,L/zp, r ct /L. It is given ——by

H„(0) in 1

izz f dv'
z i«exp[2~iXiiir+i(n+ —,

'
}tan '(qr)] (4.6)

and A„=O for n &0 by definition. Here 7=[k—P, (kp+k~~)]/kp. Let us investigate the limit of small q (large zp is the
limit of small diffraction). Equation (4.6) reduces to

H„(0) sin[XN~+ , q(n + —,
'

)]-—+
[XNm+ ,' q(n +—')]. —

This leads to a new phase-matching condition

(4.7)

2P, (n+ —,
'

)
k —p, (k +k)))+ 2

=0 .
k~~wp'

We note that the new condition amounts to an effective new wavelength k —+k [1 (2n + 1)/—k ]fI 2 2 1/2 IIwo=[ (mmlb) —(—4n+2)/wp] . The Hermite-Gaussian mode, which is a combination of photons spread over a
characteristic angle $=(4n+2) /k~~wp, is thus best excited in this limit at a center frequency given approximately by

I /2

an expression similar to (3.15),

k=P, y (kp+ fP,kp —[(nim/b) +4(n+ —,
'

)/wp]y zI' ) (4.8)
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1

m odd k((

1l

k kpmp

This is slightly different from the one required to excite on-axis (g=O) photons.
Finally, let us find the amount of energy flowing into the fundamental Gaussian mode. It is given by

dE 2&e N K k k
I Ao [2.

dco p cbMp g kp
(4.9)

In the case of a general q it is not possible to write an ex-
pression like (4.8). In Fig. 11, several plots of
~q I &q

I
( ~

I
Ao

I wo ') as a function of q are shown
for m =1. The broadening of the peak and its height vary
with q due to different angular spread and average on-axis
intensity in each case. A beam of a wider angular spread
introduces more low-frequency components into the spec-
trum which results in shifting the maximum to the left.
[This dependence of the center frequency on q is also evi-
dent in (4.8) since q ~ 1/ut ti.] We see that there is a max-
imum near q=7 from which one can figure out the op-
timum beam waist for a given electron energy and wiggler
length. Figure 12 shows the spectrum of the energy in the
fundamental and the n =2 Gaussian mode, for a typical
value, q =5. We note the shift of the centers of the lines
due to different angular patterns of the modes. A larger
transverse spread in a normahzed mode also imphes
smaller average intensity on axis which reduces the
amount of excitation at higher indices.

Finally, the results of this section when combined with
those of an earlier work seem to indicate that the rela-
tion between spontaneous and stimulated emission for the
particle-wave interaction known as "Madey theorem"'
may hold, at least approximately, in our three-
dimensional case. The only complication arises from the
contribution of nontransverse components of the charge
velocity [which resulted, for example, in the second term
inside the last set of parentheses in Eq. (4.9)]. This rela-
tion will be investigated further in a forthcoming paper.

CONCLUSION

The dyadic Green's-function approach has been shown
to provide a convenient and methodical way for dealing
with the vector character of our problem.

The spectral and angular characteristics of the radiation
emitted in free space and in a waveguide have been calcu-
lated and compared. We found that for large values of
the parameter ybll, o the presence of the walls does not
affect the spectral distribution but simply redirects the
emitted light. At moderate values, interference effects
occur which tend to change the appearance of the spec-
trum into a small number of relatively narrow lines. Each
line corresponds roughly to the excitation of single
wavegulde Il1ode.

The angular distribution shows that some significant
power may be associated with modes containing photons
that travel at large off-axis angles. These modes will
suffer significant losses and are not expected to enter the
lasing phase.

A similar analysis was done in terms of resonator
modes. The spectrum of those was shown to be largely
influenced by their angular spread and the average on-axis
intensity.

The present analysis provides information that can be
used to assess the three-dimensional evolution of the FEI.
oscillator. Such a theory (in the form of a set of rate
equations for the modes coefficients) must include also a
realistic mechanism for gain and losses in the different
modes.

33-
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q =l2
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q=i
q =O. I
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FIG. 11. Energy spectrum in the fundamental ( n =O, m =1)
sine-Gaussian mode.

~
Ao

~

2q'~2 is plotted at different values of
the parameter q. The variations in the width and heights of the
peaks are due to different angular spread and average on-axis
intensity in the different cases. As q gets smaller the beam
looks more like a plane wave and the spectrum tends to have the
"homogeneous" bandwidth 1/¹
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FIG. 12. Energy spectrum at different Hermite-Gaussian
modes (n =0,2, m =1,3,5,7). Only the first term (proportional
to A„) in Eq. (4.5) is significant for the parameters chosen.
Each "horizontal" mode contains the contribution of four "ver-
tical" modes. [Four different values of m contribute to the sum
in Eq. (4.9).] Note that for the n =2 mode the curve shifts and
the peaks are smaller and broader. This is due to different an-
gular spread and on-axis intensity of the two Gaussian modes.
(In this case yb/ko ——4, q =5.)
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APPENDIX A DYADS

In this appendix we summarize some properties of
dyads. This is done merely to introduce the notation used
in this paper. More detailed information may be found in
Refs. 15, 17, and 18.

A dyad is simply a pair of vectors written in a definite
order Fr.om the vectors a and b we can form the dyad
ab. The dyad ab is equivalent to a 3X3 matrix whose
elements are formed by the outer product of the two vec-
tors.

Having written a matrix in this way, the transformation
of a vector may be defined in terms of vector operations
only. Thus the result of the transformation ab on a vec-
tor c written on either side of the dyad may be defined in
terms of the scalar products with the corresponding vec-
tors

given explicitly in the form of (A4) where f;,h; are the
natural vector modes of the system.

APPENDIX 8
In this appendix we present the derivation of the dyadic

Green's function for the two-plates waveguide, in two dif-
ferent ways. The first is the conventional one, using an
eigenfunction expansion method. This approach may be
applied to waveguides of different geometries provided
the solution to the three-dimensional scalar wave equation
is known. The second method, that of the image currents
is of limited applicability, but provides a physically mean-
ingful interpretation to the results of Sec. III.

1. Eigenfunetion expansion

Here we will only outline the derivation briefly. For
more details the reader is referred to the book by Tai. '~

The advantage of Tai's method is that only two sets of
vector modes are needed for the expansion. This makes a
considerable simplification in solving this type of problem
that usually involve a large amount of algebraic manipula-
tions.

The first step is to seek two independent solutions of
the homogeneous vector wave equation

ab.c=a(b.c),
c.ab=(c a)b .

(Ala)
VXVXP —k'P=O.

(A lb)
Two such solutions are given by

The result of this operation is a vector. In a similar
fashion, we may define the cross-product between a dyad
and a vector. The result of' this operation is a dyad

M=V X(giu),

N=VXVX($2u),
(82)

(83)
abXc=a(bXc),
cXab=(cXa)b . (A2b)

where g&, Pq are solutions of the scalar wave equation

(V'+k')/=0

VX(ab) =(Vxa)b . (A3)

This notation appears in Eq. (1.6).
A dyadic G is a linear combination of dyads

In (Alb) and (A2b) we may replace the vector c with V
operator. Thus

and u is a constant vector. In a rectangular waveguide
the choice of u along the axis generates the familiar TE
and TM modes. In our case we choose u=y and the set
of solutions

P?l &
sin y

G=ga, f,h, . (A4)

W7T
cos -y

ik„x+ik z
~X@ (85)

In the solutions of various linear inhomogeneous vector
equations the relation between the source and the resultant
field may be written in terins of a dyadic Green's function

I

The letters e,o stand for even and odd modes with respect
to y=0. From (82) and (83) we obtain

r
I ~

/pe ~ . ppg~, 2 77$7T ., ping ~ . /pe 77 ik„x+ik~z—ik„sin y, K)) cos y, —ikz sin y e
b

(86b)

We note that M, and N, satisfy the required boundary condition for the electric field.
The matrix equation

V X V XG—k G= —4m.I5(r—r') (87)
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is now solved. The modes M„N, satisfy the appropriate completeness and orthogonality relations and can be used to
expand the right-hand side of (87). Using (86a) and (86b) it is then a simple matter to write an expansion for G. The fi-
nal result is

G(r, r') = g fdk„ fdk,
2 b k

II 1 rn~k
II +

M, (r)M,*(r')— N, (r)N,*(r')
kz

—k

g fdk fdk,
l71 vr

II

'2
ik„(x x'—)+ik (z —z')

(88)

where k
II
=kx+ k, and the elements of F are given by

1 2kr . mm' . mwI
2

's1n y s1n
I b

2

mm. . mm
Q sin y sin y' (810)

F ) 1 mm m&
cos y cos y'

J . J

2
z . m&

s111 y s111
m&

mm 1 mm. . mm
Fyx —Ekx 2 COS y S1n yb k' b b

mm ' . mm
s1n y s1n

b

m7T 1 mfa' . m'fl
F~ ——ikz cos y sin y'

b

/pl& 1 . pal& msF~ ———gkx 2
S1n y cos

b

2. The image currents method

Consider. a charge, moving in the plane y =y' located
between the conducting plates, as illustrated in Fig. 8.
The electromagnetic field in the region 0 &y & b, that sat-
isfies the appropriate boundary conditions on the plates,
may be calculated by superimposing the free-space fields
of the "image'* charges. Those are obtained by multipole
reflections of the actual charge with respect to the plates.
They have alternating signs and are situated along a line
perpendicular to the plates in the planes y„=+y'+ 2nb,
n=0, +1,+2, +3, . . . . Using (1.8) the sum of all the
free-space fields is given by

E„=ikefd r' fdt' I— VV' g„(r,r').J(r', t'),

(811)

wheremm 1 . m~
F@,———Ekz 2 Sln y Cos — y'

b

We note that with the help of the integral representation'

ik„(x —x')+ik (z —z')

H,("(kIIP)= ' fdk. fdk, '
kII k„k, — —

ik„(x —x')+ik (z —z')
=—fdk», (89)

(kII —k.')' '

G can be put in a more concise form, similar to the
Levine-Schwinger solution of the free-space problem

ikR +
tf

R„+

ikR n

g„(r,r') =g

R„-=[(x x') +(y+y' 2—nb) +(z —z')]—'~ .z

The relation between the description of the field by means
of the image construction and the mode analysis discussed
earlier, is that of a spatially periodic function and its
Fourier transform. To see this, we first represent the
spherical waves in (89) as a combination of plane waves

ikR dkx y ik (x x )+ik (y —y-')+'ik (z —z')
Z

R 2m' k, (k2 k2 k2)1/2
(812)

We now want to Introduce (812) into (811) and pedo~ a Founer transfo~ operation with respect to the y coord1nate.
A.lternatively, one can use the Poisson summation formula
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f(n)= I e 2m'muf
( u )du (8.13)

Combining Eqs. (811)—(813), we obtain

dkxdky ik„(x x—')+ik (z —z') ik (y y'+—2nb) ik (y+y' 2nb—)g„(r,r')= e " ' (e y —e y )2' k,
00

X2m m =—oo

ky ik (x —x')+ik (z —s') ik (y —y') ik (y+y') oo 2nipnu —2ik bu
~ ~ ~ ~

e -' (e' —e' ) e ' du.
kz 00

The last integral on the right-hand side is identified as a 5 function
r

2uimu 2ik bu— n' m m'~ ~

dO

8 du= —5 k—7 (815)

Inserting (815) into (814) and making the sum over positive integers only yields

2i dkx ik„(x x')+i—kz(z —z') . rri ir . mar
g (r, r')= — e " * sin y sin y'

m&0
(816)

Finally, using the last part of (89) [which is in fact a plane-wave representation in two dimensions analogous to (812)],
me get

g (r,r')= y Ho (k~[p)sin y siil y'2%i (I) mar . m'tr

m=1

as desired.

(817)
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