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Theory of the nonlinear Sagnac effect in a fiber-optic gyroscope
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The nonlinearly induced nonreciprocity of counterpropagating waves caused by an index grating
in a Kerr medium can be used to nonlinearly enhance the Sagnac effect in a ring resonator. A
specific discussion of this effect in the case of a fiber-optic rotation sensor is presented. Our theory,
which holds for any value of the cavity finesse, includes transverse effects explicitly, but neglects
stimulated scattering. Special emphasis is given to pure cavity effects which always occur simul-

taneously with the nonlinear Sagnac effect.

I. INTRODUCTION

The Sagnac effect is the underlying phenomenan for all
optical rotation sensors, and provides a method for
measuring extremely small rotation rates. ' It is caused by
the nonreciprocity (different optical-path lengths) of two
counterpropagating (CP) fields due to the rotation of a
ring resonator. In a ring-laser gyroscope the nonreciproci-
ty manifests itself as a difference between the oscillation
frequencies for two fields going in different directions
around the resonator, and a measurement of the beat fre-
quency between the two fields leads directly to the rota-
tion rate. ' In a passive ring resonator the nonreciprocity
gives rise to a phase difference between the CP fields,
which in turn gives a shift in the fringe pattern (with
respect to the zero rotation pattern) produced by interfer-
ing the CP fields. '

Such rotation sensors have applications in geophysical
research and inertial navigation systems and may provide
a technique for discriminating between the rival metric
theories of gravitatian, one of which is Einstein's general
relativity. For the first two applications a sensitivity of
—10 earth rotation rate (ERR) is required, whereas a
sensitivity of —10 ' ERR is required for the
gravitation-theory test. Rotation rates of 10 3 ERR are
well within the scope of ring-laser gyroscopes and indeed
they are now in use for navigational purposes. Ring-laser
gyroscopes, unfortunately, suffer from a "lock-in" phe-
nomena at —10 ERR, whereby the frequencies of the
CP fields become equal; ' this gives rise to a "dead zone, "
limiting at present their sensitivity to about —10
ERR..'

The need for optical rotation sensors with increased
sensitivity has caused several groups to consider passive
ring-resonator systems, ' ' which do not suffer from
lock-in, but of course have their own particular problems.
Foremost among these problems is the measurement of
the fringe shift produced by the rotation. The fringe shift

produced by a rotation rate of 10 'o ERR can most cer-
tainly not be measured using present technology. Passive
systems have, however, been reported that can compete
with ring-laser gyroscopes in sensitivity. '

In a recent paper, Kaplan and Meystre' proposed a
method of enhancing the Sagnac effect using a ring reso-
nator containing a medium displaying nonlinear refrac-
tion. The method utilizes the directional instability which
can occur in a symmetrically pumped nonlinear ring reso-
nator. '5 This instability arises from nonlinear nonreci-
procity, which in turn is due to the nonlinear phase grat-
ing farmed in the medium by the CP fields. When the in-
put intensities or linear detunings of the interferometer (in
the absence of rotation) are chosen such that it is close to,
but not quite at this instability threshold, then the linear
phase detuning between the CP fields due to the Sagnac
effect can be nonlinearly "enhanced. "' This enhanced
phase shift gives rise in turn to an enhanced fringe shift
that can in principle be many orders of magnitude and
could therefore lead to a device capable of a sensitivity far
greater than a ring-laser gyroscope.

In this paper we develop the theory of this "nonlinear
Sagnac effect" in a specific system, a fiber-optic gyro-
scope. Such gyroscopes are of interest since by using an
N-turn fiber a large area can be enclosed in the plane nor-
mal to the rotation axis, the Sagnac effect being propor-
tional to the enclosed area. Furthermore, optical fibers
are known to display nonlinear refraction, and in particu-
lar a high degree of nonlinear nonreciprocity. '6 This
makes fiber-optic gyroscopes promising devices for utiliz-
ing the nonlinear Sagnac effect described above. Several
practical problems including linear nonreciprocity' and
stimulated scattering' are of course present in. such de-
vices, but we ignore these in the present work.

The optical-fiber gyroscope has a further attractive
feature, by using a single-mode fiber the transverse effects
which would be present in the system proposed in Ref. 14
are essentially eliminated. This makes the interpretation
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of the fringe pattern produced by interfering the output
beams a lot easier.

In the present paper we consider only the static
response of the fiber-optic resonator (an outline of the full
stability analysis is given in the Appendix). In Sec. II we
describe our model of the fiber-optic gyroscope, and in
Secs. III and IV we investigate the static phenomena
which occur in the absence of the Sagnac effect. These
include optical bistability (OB) and the directional insta-
bility which gives rise to the nonlinear Sagnac effect. Sec-
tion V describes the enhancement of the Sagnac effect,
with particular emphasis on the cavity effects which al-
ways occur simultaneously with it. Summary and con-
clusions are given in Sec. VI.

II. MODEL

The fundamental model is shown in Fig. 1. A fiber-
optic ring resonator is pumped in both directions by two
incident beams of the same polarization, mode structure,
power, and frequency co. Fields are coupled into and out
of the resonator through the beam splitter (BS) which has
intensity reflectivity R. The internal fields are coupled
into and out of the fiber using the coupling lenses (CL)
shown in Fig. 1. The optical fiber of length L is wound
into X loops, each loop enclosing an area A. The fiber
plus beam splitter form the basic ring resonator. Later we
shall consider the resonator rotating with angular frequen-
cy co„' meanwhile we take cu, =0.

The optical fiber is assumed to be a single-mode fiber
characterized by a linear (intensity) absorption coefficient
a, linear refractive-index distribution n (r), r being the ra-
dial coordinate transverse to the (z) optic axis, and a non-
linear refractive-index contribution nzI, I being the inten-
sity. In steady state, if we write the positive frequency
component of the scalar transverse electric field as (see
Fig. 1)

E+(r,z)=E, (r,z)e' +E2(r,z)e

then in the usual slowly varying envelope approximation
we obtain the following field equations for the forward-
(Ei ) and backward- (E2) propagating complex envelopes
in the fiber'

N turn
fiber

VT —2ik( —1)J +ko[n (r) —no]+ika E (r,z)2 ~
' ~ 2 2 2

az J

2k — [ )EJ ~

+(1+h) ~E3 J ~ ]EJ, j =1,2 (2)
no

where VT ——8 /Br +(1/r)B/Br is the transverse Lapla-
cian in cylindrical coordinates which describes beam dif-
fraction, and

~
EJ

~

are intensities ( n2 then has inverse
intensity units). Here we have further defined ko ——co/c, c
being the speed of light in free space, no n(0——), and
k=noko. The factor 0(h &1 in Eq. (2) accounts for
nonlinear nonreciprocity which arises from standing-wave
effects in the fiber. ' ' Diffusion degrades h from its
maximum value 1 (pure local response), and if it is strong
enough it destroys standing-wave effects and reduces h to
0.

Since we are considering a single-mode fiber, and the
nonlinear effect in fibers is small, we may assume that
both E& and E2 propagate in the same one transverse
guide mode P(r) which is dictated by the linear fiber
properties and is a solution of

I VT+ko[n (r) no]+i—ka JP(r) =2kPP(r) .

Here, P=8+ia/2 is the complex propagation constant, 0
is the excess phase shift per unit length so that Pf '&L is-
the total linear phase shift accumulated by the field in the
fiber. The transverse-mode pattern is normalized accord-
ing to

f dr 2~r
~

P(r)
~

=1 . (4)

Then defining

EJ ( r,z)=ej (z)P ( r) /P (0),
such that

~
e~(z)

~

is the an-axis intensity, Eq. (2) yields

. Bej. 2 2—( —1) =ipej+ikonzg[ )eJ [
+(1+h) fe3 J J

]ej,z

where we have used Eq. (4) and

g = I dr2mr ~P(r)
~

(7)

is a geometrical factor reflecting the fact that the field
distribution is inhomogeneous.

The boundary conditions for the fields entering the
fiber at their respective input planes are

2 1

ei(0) =&Rscexp(i/0)ei(L)++I „,
at z=0, and

e2(L) =v'R~exp(i/0)e2(0)+V I„,

(8a)

(8b)

FIG. 1. X-turn fiber-optic gyroscope. The system can rotate
about an axis which is perpendicular to the plane of the wound
fiber.

at z =L. Here Po ——P/+P, is the linear cavity detuning,
where P, is the phase shift accumulated during propaga-
tion in free space between the fiber ends, a &1 accounts
for coupling out of and back into the fiber, and I,'„ is the
on-axis intensity of that component of the input beams
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coupled into the fiber. Note that this definition for I „
contains the transmission losses at the BS, and we have
taken the phases of the input fields as zero without loss of
generality. We assume that all radiation not coupled into
the fiber is lost from the system, in particular that there is
no cross coupling of the CP fields due to backscattering.

Equation (6) is easily integrated by noting the identities:

~
e, (z)

~

=
~
e, (0) [ exp( —az),

I
e2(z)

I

'=
I
e2(L) I

'exp[« —L}~]
Substituting the results into Eqs. (8) and defining

S = [Ron2g[1 —exp( —aL)]/a j
'

F(I,}& 0, which corresponds to the negative slope regions
of the OB curve. Note that Eq. (14) can be satisfied even
if h =0.

In the next section we investigate solutions of Eq. (11)
which are not covered by the symmetric case given here.

IV. ASYMMETRIC STEADY-STATE SOLUTIONS

To see if asymmetric solutions to Eq. (11) are possible,
we consider solutions of the form IJ =I,+5J,

~ 51 ~
&&I,:

substituting this into Eq. (11), expanding the cosine term
to first-order in [5J +(1+h)53 J ], and disregarding terms
of higher than first order in 5J yields

51[1+8 —28cos(grs)]
Sei (0)= 8'i, Sez(L) =8'2, +28I,[5J+(1+h)53 J]sin(gals )=0, (15)

8 =v'RKexp( aL /2—),
(9)

where we have used Eq. (12). Adding and subtracting
these equations then yields

where we have taken n2 & 0 without loss of generality, we
obtain, j=1,2,

(5i+52)F(I, ) =0,
(5i —52)G(I, ) =0,

(16)

8'J8 exp(i['$0+IJ+(1+h)l3 j]J8'J+QI;„. (10)

The quantity S has intensity units and IJ. and I;„are all
in units of S . By rearranging Eq. (10) and taking the
modulus squared yields

IJ [1+8 28 cos[$0—+IJ+(1+A)Iq J]]=I;„. (11)

Equation (11) is the main result of this section. Solutions
of these equations produce the steady-state intensities of
the internal fields in the fiber. Note that these equations
are identical in form to those that would be obtained from
the plane-wave treatment of Ref. 14 if the high finesse
limit was not used. Equation (11) does, however, include
the transverse effects, and the properties of the fiber are
implicit in P, g, and K.

where F(I, ) is given by Eq. (14), and

G(I, ) =cos(Pzs)+hI, sin(grs)— I+A
(18)

It is simple to show that the functions F(I, ) and G(I, )
cannot simultaneously equal zero. Thus if F(I,)=0,
5i+5z need not equal zero, and from Eq. (17), 5i ——52, i.e.,
the system retains its symmetric behavior. The condition
F(I, ) =0 simply reproduces the switch points of the sym-
metric solution as discussed in Sec. III. On the other
hand, if G(I, ) =0, then 5, —52 need not equal zero, and
from Eq. (16) we have 5i ———5z. Thus asymmetric solu-
tions are possible. In fact, a linear stability analysis (see
Appendix} shows that the symmetric steady-state solution
is perturbation unstable if

III. SYMMETRIC STEADY-STATE SOLUTIONS
G(I, ) &0. (19)

Due to the symmetry of the problem we expect that
symmetric steady-state solutions such that I~ ——I2 ——I,
should exist. In this case Eq. (11) yields

I,[1+8 —28 cos(yrs )]=I;„, (12)

1+AF(I, )=cos(Prs) (2+h)I, sin(gzs—) =0 . —(14)

A linear-stability analysis (see Appendix) further shows
that the symmetric solution is perturbation unstable for

4z's =40+(2+h)I, .

Equation (12) can clearly show OB in the I, ( =Ii ——Iz)
versus I;„curve since it is identical in form to the plane-
wave result for a unidirectional nonlinear ring resonator. '
In this case both output beams will be identical (i.e., in
power and mode structure). By requiring that
dI;„/dI, =0 at the points of hysteric jump, we obtain the
following condition on I, for the switch points:

For any value of I, such that Eq. (19) is satisfied, if the
symmetric solution is perturbed, Ij and I2 grow apart
and eventually settle into new steady-state values such
that one of them is greater than I„and one less. Of
course, which intensity grows and which decreases de-
pends on the bias of the perturbation. The output beams
will now have different powers, but the same mode struc-
ture. This follows since the output-beam structure is
determined by the guided mode of the optical fiber.

The domain of OB (negative slope regions and switch
points) in the symmetric solution (region I}along with the
domain of asymmetric operation (region II) are shown in
Fig. 2 as functions of I, and $0 for h =1 and various
values of the loss coefficient 8. These curves were con-
structed using Eqs. (14) and (19). They show that it is im-
possible to obtain asymmetric operation before encounter-
ing the first switch-up point, and thus the lowest branch
of the symmetric steady-state curve is always perturbation
stable. This is more clearly seen in Fig. 3 where we have
transposed the domains of regions I and II (the first-order
OB and asymmetric operation domains, respectively) to
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Sei(0, t) =S'i(t); Se2(L, t) =S'2(t)

to obtain

(A2)

with a similar expression for e2(O, t+t ) obtained by in-
terchanging ei(O, t'): =" z(L, t'). Here t =noL/c is the
resonator round-trip time. We now use Eqs. (8) and (9)
with the definitions

phase and intensity stabilities required to achieve a given
enhancement. Obviously, the higher the riz, the more
stringent the requirements placed on these parameters.

Under the conditions described above, the output beams
will have the same mode structure and power, but will
differ in their relative phase. This phase difference leads
to a shifted fringe pattern with respect to the zero rotation
case when the output beams are interfered on a suitable
reference plane. In this connection, we note that the non-
linearity of the fiber introduces no extra complications in
comparison to the linear case." This follows since the out-
put beam structures are identical, and determined so1e1y
by the linear fiber properties. A straightforward calcula-
tion shows that, for low rotation rates co„ the correspond-
ing fringe shift is proportional to gyh, [see Eq. (21)].
The constant of proportionality may be determined exper-
imentally by observing the fringe shift produced by a
reasonable rotation rate in the low intensity (linear) limit
where q = I.

VI. SUMMARY AND CONCLUSIONS

In this paper we have shown how optical-fiber rotation
sensors can in principle be modified to increase their sen-
sitivity by orders of magnitude. This enhancement is due
to a nonlinearly induced nonreciprocity of counter-
propagating waves in a Kerr medium, and is washed out
in the presence of diffusion. We have neglected here the
effects due to stimulated scattering, which are, however,
expected to be important in practice, but have taken fully
into account cavity effects which always occur simultane-
ously with the nonlinear Sagnac effect and further
enhance it. Finally, we note that our stability analysis of
the system indicates the possibility of dynamic instabili-
ties. Their study will be the subject of future work.

f dx
~

S'3, (t +xt )
~

(A3)

S' (t)=S', +re"+pe' ',
with ~e~, etc., obeying ~e~ &&I,. The form of the per-
turbations is dictated by the type of nonlinearity, i.e., a
modulation e ' can be scattered to yield e ' in a Kerr
medium. That A, should occur in both S'i and S'z in (A4)
can be argued from phase-matching consideration. Insta-
bility occurs if Re(A, ) &0.

Substituting (A4) into (A3) and linearizing around the
static solution yields a 4X4 matrix eigenequation which
can be decomposed in two 2 &(2 equations:

gl pNI

r

&+~ e+ I
e ", , =[M+0]

p +p p +p
where

(A5)

(A6)

Z(1+iI, ) iZ S',
iZ* S', Z*(1 —iI,)— (A7)

This equation has a static solution S'i(t)=S'2(t)=S'„
with

~

S',
~

=I, [see Eqs. (10) and (12)]. To investigate
the stability of the static solution we set

S'i(t)=S', +ee~'+pe~ ',
(A4)

APPENDIX 0=(l+ h)b [M ZI], — (A8)

Here we outline the general linear-stability analysis.
First we need to generahze Eq. (6) to include time depen-
dence. This is achieved by adding a term dej. (z, t)/dt to
the right-hand side. For simplicity we assume that linear
absorption can be neglected, and that the fiber fills the
whole resonator. Equation (6) can then be integrated

b (A, ) =sinh(At )/At; Z =Be (A9)

and I is the identity 2)&2 matrix. Note that [M+0] de-
pends on A, through b(A, ), (A5) and (A6) are thus pseu-
doeigenvalue problems. The characteristic equation must
always be satisfied for a valid solution, however, and from
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(A5) we obtain

e
~™2—Be "Icos(Pals) —[1—(1+h)b(A, )]I,sin(PTs) I

+B'=0 . (A10)

Nonoscillatory instabilities arise when Re(A, ) & 0,
Im(A, )=0. This is the case of interest here. Equation
(A10) still admits no simple solution due to the presence
of b(A, ) making it a transcendental equation. We present
here a simplified argument which can be justified by ex-
haustive algebra, and assumes A,t to be small. Then to
first order b(A, )=1, and (A10) can be solved as a qua-

~ A, t
dratic equation for e . The requirement that e "& 1

for instability then yields

cos(P rs )+hI, sin(P zs ) — &0,1+B
(A 1 1)

which coincides with Eq. (19). Consideration of the
eigenvectors of (A5) shows that when (All) is satisfied
the CP intensities grow apart in time, indicating that the
symmetric solution is unstable. If (A 1 1) is satisfied,
asymmetric solutions will result if the symmetric solution
is perturbed.

Similar arguments applied to (A6) yield the condition
for negative-slope instability of the symmetric solution
F(I, ) & 0. The analysis presented here also predicts
dynamic instabilities. These results shall be presented
elsewhere.
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