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We study the inverse free-electron-laser (IFEL) accelerator and show that it can accelerate elec-
trons to the few hundred GeV region with average acceleration rates of the order of 200 MeV/m.
Several possible accelerating structures are analyzed, and the effect of synchrotron-radiation losses
is studied. The longitudinal phase stability of accelerated particles is also analyzed. A Hamiltonian
description, which takes into account the dissipative features of the IFEL accelerator, is introduced
to study perturbations from the resonant acceleration. Adiabatic invariants are obtained and used to
estimate the change of the electron phase-space density during the acceleration process.

I. INTRODUCTION

The application of high-power-laser radiation to the ac-
celeration of particles was considered almost from the be-
ginning of lasers. Various mechanisms and acceleration
schemes were proposed for laser accelerators and their
description can be found in Refs. 1 and 2.
~ One of the laser accelerators studied during recent years
is the inverse free-electron laser (IFEL). Successful exper-
iments with the free-electron laser’ have shown that there
is indeed transfer of energy between the laser and electron
beams in the presence of the undulator magnetic field. In
a free-electron laser the energy is transferred from .elec-
trons to the laser beam. In the IFEL accelerator the ener-
gy transfer is in the opposite direction, from the laser
beam to electrons.

The basic principles of the IFEL accelerator, although
that name was given later, were proposed by Palmer.*
Similar systems using a longitudinal instead of a wiggler
magnetic field were also proposed by Kolomensky and Le-
bedev® and later by other authors.® Several authors have
discussed the possibility of using the IFEL to accelerate
electrons to energies of the order of a few GeV (Refs. 7
and 8) and, more recently, up to the 100-GeV region.’~!!

In an IFEL relativistic particles are moving through an
undulator magnet; a plane electromagnetic wave is propa-
gating parallel to the beam (Fig. 1). The undulator mag-
net produces a small transverse velocity (wiggling motion)
in a direction parallel to the electric vector of the wave, so
that energy can be transferred between the particle and
the wave.

The acceleration rate one can achieve in an IFEL de-
pends on the power of the laser beam. For a power densi-
ty of 3.10' W/cm? the acceleration rate for 10-GeV elec-
trons is of the order of 0.5 GeV/m. At higher energies
the rate of electron acceleration decreases because of
synchrotron-radiation losses produced by the wiggling of
the particles in the undulator. Acceleration of protons or
heavier particles can also be made, with acceleration rates
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of the order of a few hundred MeV/m.

One of the major problems of laser accelerators is the
confinement of a high-power-laser beam over the length
of the accelerator. By focusing the beam one can easily
obtain a very high-power density, but then diffraction
seriously limits the acceleration length.!° To reach ener-
gies of the order of 100 GeV one needs to keep the laser
beam focused to a size of the order of 1 mm? over a dis-
tance of the order of 1 km.

One possibility of doing this, suggested in Ref. 12 is the
confinement and propagation of the laser beam inside a
hollow optical waveguide. Standard metallic waveguides
show, however, very high attenuation at optical frequen-
cies. These high losses can be drastically reduced by a
proper dielectric coating of the metallic walls of the
waveguide.* In an ideal case, without any imperfections,
the losses can be reduced by several order of magnitude
reaching values of the order of 10~° dB/m. With losses
so small it should be possible to transmit a laser beam
with a power of 3% 10> W/cm? without damaging the
waveguide. Having this option in mind we will simplify
our analysis representing the laser radiation by a plane
wave.

In Sec. II we derive the equations describing an IFEL.
We will consider only the acceleration of electrons. We
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FIG. 1. Schematic view of IFEL accelerator.
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also assume the transverse electron motion to be stabilized
by the focusing properties of the wiggler'® or by external
focusing quadrupoles and study only the longitudinal elec-
tron motion. We consider two general types of accelera-
tor. One, with cylindrical geometry, using a helical
wiggler and circularly polarized plane electromagnetic
(EM) wave and the second with planar geometry, a planar
wiggler, and linearly polarized radiation. The accelerator
equations are simpler for the helical wiggler case; the pla-
nar case can be scaled and the equations reduced to the
circular case.

The electron state in the wiggler field in the presence of
the EM wave is described by two dynamical variables: the
energy ¥ and the relative phase ¥ of the electron oscilla-
tion in the wiggler and the electromagnetic wave. They
satisfy a coupled set of equations describing the electron
motion along the accelerator. Defining the resonant elec-
trons as those for which the phase remains constant, we
can design the wiggler structure in such a way that the
corresponding resonant energy is increasing. The ac-
celeration can be accomplished with different wiggler
structures. In Sec., III we investigate in more detail four
accelerator designs in which either the wiggler period A,
or the wiggler magnetic field strength B,, or the wiggler
parameter K are kept constant or A,, and B, are varied to
optimize the rate of acceleration. The synchrotron losses
are an important factor in the IFEL electron accelerator
and are taken into account in our analysis. In the
constant-period and constant-strength accelerators the
losses are growing with energy, limiting the maximum
electron energy. In the constant K accelerator the losses
remain smaller than the acceleration rate and there is no
limiting energy. By varying both A, and B, we can op-
timize the driving term and the loss term and we can
design an accelerator giving the maximum rate of ac-
celeration for a given laser field strength. An analytical
solution of the resonant equations for all four kinds of ac-
celerators is found.

In Sec. IV the stability of acceleration is considered.
The accelerator equations are expanded near the resonant
energy and small deviations from the resonant conditions
are studied. Our treatment is similar to that used in con-
ventional accelerators,'* or for tapered wiggler free-
electron lasers.'”

The IFEL accelerators exhibit, however, some peculiar
properties; contrary to conventional accelerators, the ac-
celeration rate is energy dependent; synchrotron-radiation
losses are very important, while they are negligible in the
tapered wiggler free-electron-laser case.

Because of these peculiarities it is convenient to use new
dynamical variables. Transforming to new variables,
u=f(y,)8y, v=g(y,)¢ with by =y —v,, and p=¢—9¢,,
one can find functions f and g that the system of equa-
tions for u and v becomes Hamiltonian, also in the pres-
ence of synchrotron-radiation losses. One can then use
adiabatic invariants to determine the evolution of nonsyn-
chronous electrons. When the radiative losses can be
neglected, the variables permitting the Hamiltonian
description are simply ¢,8y. It is interesting that we can
find a Hamiltonian description also in situations when the
synchrotron losses are important and the system is evi-
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dently dissipative.

Using such methods we determine the rate of the decay
of oscillation amplitudes for the energy and phase devia-
tions. We illustrate our discussion of the accelerator per-
formance and stability with numerical examples.

II. ACCELERATOR EQUATIONS

In the inverse free-electron-laser accelerator relativistic
electrons are moving along a magnetic wiggler in the field
of a laser EM wave also propagating along the wiggler
axis, Fig. 1. These electrons can exchange energy with the
EM wave. In the accelerator design one must prepare
such conditions that for some electrons the increase of en-
ergy can be continuous and effective.

The equations describing the motion of electrons in the
accelerator can be derived from the Lorentz equation of
motion including also the force of radiation reaction,

md_(d?’_)‘———e EL+’ZTX(BL+Bw) +Freac’ (1)

where E; and B; are the electric and magnetic fields of
the laser radiation, B, is the magnetic field of the
wiggler, y=(1—p8%)"!, B=v/c. Because for a transverse

EM wave B, =kXE; =2XE,, we get
m%(‘yv)=e[BL(l —B,)+2(BEL)+BXBy ]+ Freae -

2)

For relativistic electrons, assuming B <<f3, <1, and not
extremely strong laser fields, the transverse motion is
determined, to order 1/y? only by the wiggler field.!®!”
We can easily determine the transverse velocity if we
neglect the reaction force and assume that the EM wave
and wiggler field depend only on z. The transverse canon-
ical momentum is then conserved

pr=myvr+e(A; + A,)=const, (3)

where Ay, A, are the vector potentials. We have neglect-
ed the transverse component of the reaction force. Later
we give some estimate of this approximation showing its
validity in the situations that we are considering.

The most important terms of the longitudinal com-
ponent of Eq. (2) are those describing the change of the
electron’s energy. Equivalently we can use the energy
component of the equation of motion,

(4)

The loss term is due to the synchrotron radiation by the
electron oscillating the wiggler and is given by!®

dap_2¢*
dt 3 ¢

Equations (3) and (4) are a convenient and accurate
starting set of equations. Using them we will derive the
accelerator equations. Formally the accelerator equations
are slowly varying components of these equations. In our
analysis we will distinguish accelerators with helical
wigglers and circularly polarized laser beam and accelera-

v [B*—(BXBY?] . (5)
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tors with planar wigglers and linearly polarized EM
waves.

A. Helical wiggler
The magnetic field of a helical wiggler is
B, =(B,,cos(kz), B, sin(kz),0) , 6)

where k=27/A, and A, is the wiggler period. The
wiggler period A, as well as its strength B,, can slowly
vary along the accelerator to maintain the resonant in-
teraction of electrons with the laser radiation.

The electromagnetic wave propagating along the
wiggler is described by (w=kc)

E; =(Eysin(kz —wt),Eycos(kz —wt),0) . 7

Using Eq. (3) we obtain for the transverse velocities
K
Uy =c£cos(xz)+c—l‘- cos(kz—wt) ,
14 Y
(8)

K
v, =cKsintn) —c=L sin(kz —wt) ,
14 14

where the wiggler and EM wave parameters K, K; are
eB, A, eB, eE A eE,

—_ 5=

9)

= = ’ L= )
2rme?  mc 2mmce me?k

and having assumed that the injection of electrons is such
that the velocities v, and v, do not have any constant
term. For all cases of interest K; /K << 1; in what follows
we will use this fact whenever- possible to simplify our
equations. For this motion we can estimate the transverse
component of the radiative reaction force. For ultrarela-
tivistic electrons and K >>K; , we get!’

et y
2,5

FT,reac= - 2B3:VT . (10)

For v given by (8) we get

1
| Frreac | = seriAuBoy . an
3mmec

Comparing this with the force created by the wiggler
| F,, | =eB we find that the contribution of the transverse
component of the force of radiative reaction can be
neglected for energies :

2 1020

= [A,(cm)][B,(gauss)]?

3mrmc
reAwBj

(12)

Y <<

It would be very difficult to violate this condition. The
radiative reaction is, however, important for the longitudi-
nal component of the equation of motion and the energy
exchange equation.

The change of electron energy is
N

v, =c¢

472

2+ K24+ K} +2KK; (cos cosy_) 2 K
L L(cosy +cosy . cos(2«z) — Z—L; cos[2(kz —wt)] | . (22)
Y Y '

2815
dy __e o1 dPryg 13
& chEv 7 dr (13a)
% =cA %sim/)— 2, ey UK+ K2 +2KK] cosy) ,
(13b)
where A =eEy,/mc? and the radius of electron
r.=e?/mc2
The phase ¢ is
Yp=(k+K)z—ot (14)
and satisfies the equation
B (k4 —o . (15)

dat
The longitudinal velocity v, can be expressed by means

of the electron energy and transverse velocity given by Eq.
(8). We get

1+ K*+ K} +2KK; cosy
» . (16)

Changing the independent variable from the time ¢ into
the longitudinal position along the accelerator
z(d /dt =v,d /dz~cd /dz) we obtain the final set of equa-
tions describing the electron motion in the helical wiggler
in the presence of the circularly polarized plane wave

v,=c |1—

4y =A§sin¢— 2, Py K24+ K} +2KK, cosy) ,

dz
(17)
1+K*+K? +2KK
db_ g K AR+ IRE ooy (18)
dz 2y

These are the same equations used to describe a FEL
except for the presence of the synchrotron-radiation-loss
term.!® We see from Refs. 17 and 18 the relevant dynami-
cal variables for electrons as their energies ¥ and phases ¢
determining the relative phases of oscillations caused by
the wiggler with respect to the phase of EM wave.

B. Planar wiggler

In a planar undulator the magnetic field can be approx-
imated by

B, =(0,B,sinkz,0) . (19)
The electric field of the EM wave is
E; =(Egsin(kz —wt),0,0) . (20)

In this case we take v, =0 and
K ‘
Uy =c—f——cos(xz)+c-f— cos(kz —wt) . (21)

The longitudinal velocity v, has fast oscillating com-
ponents

2

The energy transferred between the laser beam and electron per unit length of the accelerator is
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e

3

dz |p mec
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1 K, . . KL .
=—7 v E, =54 7(sm¢+ +sing_ )——7/—— sin[2(kz —w?)] | , (23)

where Y. =z(k+k)—owt. The terms at twice the EM wave frequency in (22) and (23) have a very small effect on the

electron dynamics and will be neglected in what follows.

Using Eq. (22) one can express the time ¢ as a function of the distance z,

2+K2+ K} +2KK; (cosyp, +cospp_)

z
ct=cty+z+ fo dz 472

2
+sin(2ez) . 24)
VALY

The last term is an approximation for + f Ozdz( K?/y?)cos(2«z). This approximation is valid as changes of all parameters
of the system over one wiggler period are small. Using the expansion

sin(a +b sing) = i Ju(b)sin(a +nd) ,

n=-—c0

where J,, are Bessel functions, we get

siny . +siny_ =

n=—oc0

where G =kK?2/8ky>.

i [J,(G)+J, _1(G)]sin |kz (1 —2n)—

(25)

24+ K24+ K2 +KK; cospp, +cosp_
kfozdz . +KKp cosy, 14

4y o) 29

The accelerator can be designed in such a way that only one term of all those appearing in Eq. (26) is important be-
cause of its slow variation along the accelerator. We consider the case in which the n =0 term is relevant.
Including also the synchrotron loss term we can finally write the accelerator equations

%Z—=%A—I; [Jo(G)—J (@) ]singh— Lroa*y2{ K2+ KE +2KK, [Jo(G)+J1(G)]cosy} 27)
2 2
K, -
dy_,_ N+K*/2+KL 2+ KK, [o(G)—T(@lcosy o8

dz 292

These equations are the same as Eqs. (17) and (18) de-
rived for a helical wiggler, except for the factor Jo+J;.2°
The dynamical variables for the electron are its energy ¥
and phase ¥. The wiggler is described by two functions:
the wiggler parameter K and the wiggler period A, (or
k=2mw/A,). For a given wiggler both parameters are
slowly varying functions of z. These functions should be
specified to get an efficient acceleration.

The laser beam is described by the parameter A4 propor-
tional to the field strength. In our present analysis we do
not take into account the attenuation of the laser beam
due to the absorption by accelerating electrons. Therefore
the parameter A4 is a constant and not another dynamical
variable as it should be in a more exact theory. Our as-
sumption is justified for low-density electron beams and
low-loss systems transporting the laser beam.

III. ACCELERATION OF RESONANT ELECTRONS
IN DIFFERENT ACCELERATORS

An arbitrary choice of the two functions K (z) and «(z)
very probably will not produce much increase of the elec-
tron energy. Most probably the phase ¢ will vary over a
large range and the acceleration term will change signs
causing cancellations of the energy exchange. To achieve
a continuous acceleration we must restrict the phase vari-
ation so that the acceleration term is always positive
O<yp<m).

It is customary in accelerator design to introduce a
reference particle for which the phase ¢ stays constant;

r

this is also called the resonant or synchronous particle.
The corresponding phase 1,, the resonant phase, is an im-
portant parameter of the accelerator. The rate of ac-
celeration is largest when ¥, =7 /2, but to obtain a stable
acceleration for nonresonant particles one is forced to
make a choice of resonant phases giving a smaller ac-
celeration rate.

If the phase 1 must stay constant, then Egs. (18) or (28)
imply some relation between the wiggler parameter K, the
wiggler period A,, and the electron energy ¥,. For the
helical wiggler case the resonant condition is

1+ K2+K? +2KK; cosy, X K2
27 T2y
We can often neglect 1 and K; as compared with K since
most interesting accelerators have K >>1, K >>K;. This
approximation is valid when studying the motion of the
resonant particle and will be used throughout this section.
This condition removes the freedom of two arbitrary
functions K (z) and «(z) which appear in the accelerator
equations. After it is imposed, only one function, K (z) or
x(z), or some combination of them, is free. We may thus
write the equations for the resonant acceleration in dif-
ferent representations, choosing different functions as the
arbitrary one. In what follows we will write explicitly the
resonant accelerator equation for the cases in which (i) the
wiggler period A, or (ii) the wiggler strength B, or (iii)
the wiggler parameter K « B,A,, is chosen as an arbitrary
function.

K=k (29)
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We obtain for these three cases:

. dv, m | 1err A
W _lAw(z) A= n?’ (30
3 )

.. AV, 2Q,,(2) A 2 Qy 2
(ii) = ” 71/3_Tre 2 31)
... 47y ~K(z) 2m* K%2)

—_—— = - , 2
(iii) = 7, 3 Te o (32)

where 4 = A siny,, and Q,, =eB,, /mc.

All these three equations are completely equivalent and
can describe the same physical situations. The forms (i),
(ii), and (iii) are particularly convenient for accelerators
which keep (i) the wiggler period A,, (ii) the wiggler
strength B,,, or (iii) the wiggler parameter K as constant.

In the constant-period and constant-strength accelera-
tors the loss terms are growing with energy. As a result,
there is a maximum electron energy for any given laser
power, independent of the accelerator length. This is

~ 1/4
A_ |34 5/8 _
Vo= 27207, Au”s Ay =const 33
32(.‘2 3/7 1
B
Vo= 273,173, Q7 B, =const . (34)

The equations for the corresponding accelerators can be
written as

dy 7, |*
dzr =a, |[1— —'S , A, =const (35)
dy, o v, |
= =?rl-/—3 5 » By,=const (36)
where
172
ar= i—k 4, 37
w
20’ 173
ag= w“’, 4. (38)

Both equations can be integrated analytically giving
z=f(v,), the accelerator length as a function of the elec-
tron energy.

For constant A,, accelerator we have

A
w (0)
z=2= g, | X |—ay | X5 |, (39)
A Y Yoo
where
x dx 1+4+x

+larctanx, O<x<l1.
1—x 2

1
Gy(x)= fo P =Zln
(40)

In the limiting cases x —0, or x —1, G, (x) is given by

Gpr(x)=x forO0<x <1,
41)
Ga(x)~—7In(1—x) for0<1—x <<1.

We have therefore

¥,=y,(0)apz fory, <«<v% , (422)
4CZA
Yr=Yw—[Vw—¥r(z0)]exp | ——3=(z —2)
for Y2 —y,(z9) <<y . (42b)

For the case B, =const, we obtain

3 v 1/3
Z=_('y€,)4/3 GB _B;—
ap © )
(O) 1/3
—6; | |5 , 43)
Ve
where
x 3
Gplx)= fo dxl_x7 ) (44)

This integral is given explicitly in Ref. 21. In the limiting
cases we have

Gp(x)~7x* 0<x <1

(45)
Gp(x)~—+In(1—x), O<1—x<<1.

The corresponding energy increases are
,},rz{[,},’(o)]4/3+%a32}3/4, 7<<’VB (46a)
72 (20) 1/3

B r\<«o
Vr=Yeol—=3|1—|——
s 25
7 Qs
X exp —?E(Z—zo) ],
Ve—Vr<<Ve. (46b)

The constant K accelerator has the property that the ra-
diation losses are decreasing with energy faster than the
acceleration rate. Therefore, in principle, the electron ac-
celeration can be unlimited. Also for this accelerator we
can give analytically the length as a function of energy

z=-§: Gx |2 | ~Gx ”’;0) : 7
where

ax=AK, 8=27*r,K°/(\?4),
and

Gg(x)=3x24+x+In(x —1), 1<x . (48)

In the high-energy limit the increase of energy is propor-
tional to the square root of the accelerator length.
Considering the losses due to the synchrotron radiation
the rate of acceleration can be maximized with a proper
dependence of the wiggler parameters on the electron en-
ergy. Taking, for example, Eq. (30), one can notice that
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the right-hand side (rhs) of this equation, and the rate of
acceleration, is maximum when

2/5
_ | 320V r, 8/5 49)
| vaa T
The corresponding maximum-rate accelerator is
described by the equation
d Yr 36/ 5 Z 6/5 1
= (50)
dz 6 r,l/sk 2/5 y:/S
with the solution
~ 5/9
311/5 7 6/5,
v,= |[7,(0))°° + —~ e (51)
r r 10 r¢1/5 k 2/5

The properties of the accelerators we have discussed are
illustrated in Figs. 2—4. In these examples the strength of
the laser electric field is Ep=5X10° esu=1.5x 10"
V/m, the resonant accelerator phase is ¥, =120°, and the
initial energy of the injected electrons E (0)=10 GeV.

Looking at the constant-period and constant-magnetic-
field-strength accelerators we can observe two competing
tendencies. To increase the initial rate of acceleration one
should decrease the period of the wiggler or increase its
strength. Then, however, the acceleration rate saturates
faster and at much lower energies.

The maximum-rate accelerator optimizes both tenden-
cies. Unfortunately, for low electron energies (E <50
GeV) the required magnetic field would be too high and
the wiggler period too small to consider. For higher ener-
gies (E > 50 GeV) the parameters of the “optimum-rate”
accelerator become technically feasible. The scaling prop-
erties of the parameters for different accelerators are
given in Table I.

Our discussion of different accelerators concerned up to
now helical wigglers. In cases of planar wigglers, one can
see from (27) that the equations contain an extra factor,

2 2
F=L gy |25 g [RE 1 (52)
2 8ky 8xy
For a resonant electron the argument in (52) is
250
200
§ 150
>
&
4 100
w
50
% 500 1000

DISTANCE (m)

FIG. 2. Electron energy vs distance for a constant-period
IFEL accelerator E =1.5X 10" V/m. ,=120".
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FIG. 3. Energy vs distance for a constant B,, IFEL accelera-
tor.

1kK*  K?
8 ky?  2(24K?)

(53)

and for large values of K the factor F tends to a constant,
Fo=3[Jo(3)—J1($)]=0.35 .

This allows the reduction of the planar wiggler cases to
the helical ones. Two other modifications are needed: the
change of the resonant condition,

) (54)

and the reduction of the loss term by half. These can be
effectively done by the redefinition of the wiggler parame-
ter K*=K/V2. With the introduction of the effective
laser field strength Eff =E; V2 X Fy=0.495E, , the equa-
tion for the planar wiggler case takes the identical form as
the helical ones. )

IV. STABILITY OF ACCELERATION

The growth of the resonant energy does not completely
characterize the accelerator. In addition to the final ener-
gy of the electrons other characteristics of the accelerator

250

200

a
o

ENERGY (GeV)
Q.
O

] i 1 ] ] ] | | ]

(0] 200 400 600 800 1000
DISTANCE (m)

FIG. 4. Energy vs distance for a constant K IFEL accelera-
tor.
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TABLE 1. Energy dependence of selected parameters in different accelerators.

Accelerator types

Parameters A, =const B,,=const K =const Maximum rate
Wiggler period, A, y° s v’ 8.
Magnetic field, B, y 7° y~? =
Laser acceleration, X ¥° y~1/3 y~! y3
Radiative losses al y? y~? y=43
Amplitude of electron

oscillations y° y173 Y v’

may include the energy spread, initial energy acceptance,
the fraction of electrons which are accelerated to those
which are injected, and the emittance. Many of these
properties can be investigated together with the stability
of the acceleration process. We restrict our discussion to
the stability of the longitudinal motion, directly related to
the acceleration mechanism. Our main interest is to study
what happens to those electrons which deviate from the
resonant parameters.

because their energy is different or because their phase ¢
is not equal to the resonant phase v¥,. Such deviations are
inevitable since electrons are injected without any control
on their phases (on an optical wavelength scale) and all
beams have some energy spread.

In doing the stability analysis one must go back to the
pair of equations describing the evolution of electrons, ei-
ther Egs. (17) and (18) or (27) and (28). Using the equa-
tions for a helical wiggler one can get the following sys-

Electrons can deviate from resonant conditions either
|

tem of equations for the energy and phase deviations:

Sy=y—v, o=¢—1¢,, (55)
dz A, K2(148y /7,7 ’
~ sin( ) s K?+ K7 +2KK
dby K \sm@t¥) 1 pE sy gy, p R AR A2KE coslE ) (57)
dz 14 sing,  1+8v/v, 6v, K21
with the resonant energy defined by
day, ~K 1 K3
& Ay e ) ¥

and
u=r.k*/4, K}=1+K>+K?+2KK; cos, .

In these equations 8y and ¢ appears in a nonlinear fashion. It is important not to neglect the terms 2KK; cos(¢+1,) in
the rhs of (56) and (57) since they contribute to determine the evolution of 8y and ¢.

In this form the system is general. Particular examples of accelerators we have considered can be obtained specifying
the dependence of parameter K on the resonant energy. These are given in Table II.

In this system the electron position along the accelerator z is an independent variable. The resonant energy ¥,, which
in the first two equations appears as a parametric function, is completely determined by (58) and is uncoupled from the
others. Because of this structure and also because in interesting cases K is given as a function of ¥,, it is convenient to
choose the resonant energy ¥, as the independent variable. There is one-to-one correspondence between ¥, and z as the
energy grows monotonically with distance.

- Applying this change of variables we get a system of two equations,

d¢ kK%:/K . 1+K2*+K? +2KK;, cos(¢+1,) (59)
W iy 1— 1, K KF(1+8y /v, ’
r s4 ”
sin(¢+1,) 5 K?+K? +2KK; cos(¢+1,)
ddy _ 1 . ¢ 1!" L HK 1— (1487 /7,7 L+2KK, ¢+, . (60)
dy, ] L#K_ (1+8y/y,)siny, 67, Ki—1
3

Yr
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TABLE II. Energy dependence of wiggler parameter K in
different accelerators.

Accelerator type

Constant K K =K,
|72
Constant A, K= A7
w
173
2Q
Constant B, K= -a;w— 2/3
Maximal K=y} /u\?

The right-hand side of Egs. (59) and (60) depends on ¢
and 8y. The system then appears as a nonconservative
system and the volume of the phase-space span by 8y and
¢ is not conserved. In fact the phase-space area is de-
creasing in the evolution. That is a consequence of the
fact that the divergence of the velocity vector field
(d¢/dy,,dby /dy,) is negative

KR
9¢

The dissipative features of this set are perhaps of no
surprise as we are taking into account the radiative damp-
ing. It is worth stressing, however, that the system is not
dissipative in the absence of radiation losses. In fact put-
ting u=0, corresponding to zero radiation losses, will
make the divergence (61), equal to zero.

We can find a conservative and Hamiltonian system
which is equivalent to Egs. (59) and (60) by a transforma-
tion of variables u =a(y,)8y, v=>b(y,)¢. The functions
a(y,),b(y,) can be chosen in such a way that the pair of
variables (#,v) will conserve the associated phase-space
area and the evolution can be described by a certain Ham-
iltonian. The simplest illustration of this procedure can
be given when the radiation losses are neglected.

No radiation losses. In that case Egs. (59) and (60)

1 5
. sukK
PN T .S S
Yr v,—<sukK

9

¢+_aay

reduce to
d¢ kK2 1+K2+K? +2KK; cos(¢+1,)
dv, 24y,K (1+8y /v, K} ’
(62)
in( )
dSy sin ¢+¢r (63)

dy,  (1+8y/y,)sing,

These can be obtained from the Hamiltonian

1+K2+K? +2KK; cos(p+1,)
(14+8y /v, )K}

kK?
H="2T | 1.8
24K Yr

+é . (64)

Equations (62) and (63) can be linearized and written as
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dp _k Kt sy ¢

i3 , 65)
d?’r A K '}’3 Yr
4 _ (ot )p— 2L . 66)

dy, Yr

This is a phase-space area conserved system when ¢ and
8y are considered to be the phase variables.
Expanding (64) up to second order in 8y we get

H=H(¢,87,y,)=ﬁ(8y)2+ Vig.by,7,),  (67)
where the mass M is
47K Ayr
=_xi 'Vrz - Vr (68)
k K3} kK
and the potential
1
Vig,y,)= sing, {[cos(¢+1,)—cos, ]
X(1=8y/v,)+¢siny,} (69)

is a well-known potential binding the electrons in an ac-
celerating bucket.!> The potential is shown in Fig. 5,
neglecting 8y /y with respect to 1.

We can easily explain some features of our system evo-
lution by considering the case when the “mass” and po-
tential “height” is independent of the energy. The elec-
tron motion takes one of two forms. One corresponds to
an unbound and unlimited motion outside the potential
wells, the second to a bounded and periodic oscillation in-
side the potential wells (Fig. 6). Only the second case is of
interest from the point of view of accelerators. Only these
oscillating electrons are accelerated to high energy. In
this approximation these two motions are completely
separated and particles can switch from one to the other
only by an external interaction (e.g., by a collision with an
atom).

When one takes into account the change of the mass
and “potential” with growing 7,, then the evolution is
more complicated. One can use the adiabatic invariant??

I I I

Yo = 30°8 150°
0=30°8 150 BUCKET OF
ACCELERATING

ELECTRONS

VI(¥)

STABLE
PHASE

UNSTABLE
ACCELERATING
PHASE
ACCELERATING

(¢

°

(o]
°

>0
F—>0

27

3

—2n -

€ O—

FIG. 5. Binding potential V(¢) for accelerating electrons.
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T T T T T T T
NONACCELERATING
ELECTRONS |
,/ g
T BUCKET OF ACCELERATING B
ELECTRONS
1 ] 1 J ] | |
-4 -2 o 2w 4
(¥-¥q)

FIG. 6. Phase diagram in Hamiltonian approximation with
constant parameters.

J=Puds=P M)\ H—V(¢)1d (70)

to determine what happens to the oscillation amplitude as
Yr ErOWS.

Near the top of potential wells the evolution is compli-
cated as the period of oscillation becomes longer and the
change of resonant energy in one oscillation period can be
large so that the adiabatic invariance is no longer
preserved. In this case the phase space does not split into
completely separated acceleration buckets and unbounded
trajectories.

Restricting further to small oscillations near the bottom
of the potential well described by (65) and (66), we can use
the variables

u=y,8y, (71)
v=9¢/Y, , (72)

to rewrite the Hamiltonian as

u 1 2.2

= — = (coty, )yyv” . (73)

2 M}’% 2 d’r 7/7
For bounded oscillations the potential must be positive
having its minimum at ¢ =0. This requires that coty, <0
or m/2 <Y, <.

Calculating the adiabatic invariant (70) we can establish
that

(M)'?H « Kl/ZH const=Cg , (74)
1k KV . v o,
cozzf " u2—7(00t¢,)K—1/2—v . (75

For C, to be constant the amplitudes of v and u oscilla-
tions v, and u, must satisfy

174
Vg =const—575- , (76)
Yr
3/2
ua=const% . (77)

TABLE III. Phase and energy oscillation amplitude vs
resonant energy, when radiative losses are neglected.
Accelerator type da(7:) 5va(v,) Y.(2)
Constant A, yi i z
Constant B, y; 13 yi1e Z3/4
Constant K yi 12 yir z172

The product of u, Xv, is constant and any decay of os-
cillations in v brings amplifications of oscillations in u.
Returning to the energy deviation 6y and ¢ it would
change as

8‘)/ 1/2/K1/4 ¢ K1/4/’)/1/2 . (78)

This equation indicates that for all laser accelerators in
which K is increasing with the energy, the energy spread
is decreasing. Table III gives the scaling of the ¢ and &y
oscillation amplitude in various accelerators.

A more detailed description of these oscillations can be
obtained by solving Egs. (65) and (66). That can be done
either numerically or analytically, using the WKB
method. This method gives

K4 - Y, K12
=4, 73/2 cos [—(k/A)cot¢,]l/2fyr(o)d77+fo

(79)

Aq and f are the constants of integration which must be
determined from the initial data. Notice that the ampli-
tude of these oscillations has the same behavior as estab-
lished before using the adiabatic invariant.

Now we will generalize this procedure to describe also
accelerators in which one cannot neglect radiative losses.
It is interesting that for those situations we can still obtain
a Hamiltonian description and effectively use the adiabat-
ic invariants.

Hamiltonian description with radiative losses. The ori-
gin of the dissipation in the system described by Egs. (59)
and (60) is the presence of terms proportional to u in their
rhs. The transformation

u=a(y,)dy, v=>bly,)$, (80)
where

Yr 7/+ SIJ‘KS
aly,)=ex —1’—————— , @81)
Yr P f 6IJ—K5

7, d
b(y,)=exp ————Y——[ 5| (82)
Y —suK

allows us to rewrite Egs. (59) and (60) in the form

d‘l’r —f(Yr)u » (83)

du
ay,

=—g(y,v. (84)
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TABLE IV. Transformation function a(y,) to obtain accelerator equations in Hamiltonian form.
Accelerator type aly,) b(y,)
Constant K (y, >5) }17(7,—-8)3 1/(y,—8)
41-3/4 41174
Constant A, (y,<y%) ¥, [1—- = yrl1— |
Yao @
7/31-9/7 7/313/7
Constant B, (v, <y%) 7r [1—— Z ] v [1— 5 }
7/00 o0
Maximum rate y8s y/s
In this form the linearized equations can be derived Sy — " 7 (90)
from the Hamiltonian v =cons K72y 36 2y
1 1
H=3fly,)u’+ 38y, 0?, (85)  and for the product ¢(8y) we have
where const
Yog=—"""7—. 91)
Vs b(y,) PaOe= Sty b0y, .

M(y,—Luks) aly,)’

Yr 00t¢r + %MK 4’I(L Sin¢'r a ('}’r)
Yr— 0K bly,)

The functions a(y,) and b(y,), given by Egs. (81) and
(82), can be explicitly calculated for all the accelerators we
have been considering and are given in Table IV.

For the definitions of 72, 2, and 8, see Eqgs. (33), (34),
and (47) of Sec. III. Putting y22= o or =0 we again
get the equations for the no-radiative-losses case which we
considered before.

In the general case, for small oscillations near the po-
tential minima, we can find as before the adiabatic invari-
ant

gy, )=— (87)

2 2
f—i% =const . (88)
(fg)
The oscillation amplitudes satisfy the scaling law
1/4
¢, =const K (89)

yl/za l/Z(,Y' b 1/2(7/’) 4

Table V gives the explicit behavior of ¢, and 8y, as a
function of energy in various accelerators.

We can also establish the dependence of these ampli-
tudes on z, the distance along the accelerator. Table III
gives this dependence for the case when the radiative
losses can be neglected. When the radiative losses are
large, near the saturation energy in constant-period and
constant-magnetic-strength accelerators, the asymptotic
dependence of the energy on z is given by Egs. (42b) and
(46b). Using these expressions we get in both accelerators

—(a/y )
g xdy, xe 07’&2‘ (92)
For the maximum-rate accelerator we get
¢a ocz_29/36, 87/“ ccz'_“/% . (93)

V. CONCLUSIONS

We discussed some features of the inverse free-electron
accelerator. The most important is the high rate of ener-
gy increase. With a power density of the laser light of
3% 10 W/cm?, the rate of energy increase, for low ener-

TABLE V. Phase and energy oscillation amplitude vs resonant energy, with radiative losses included.

Accelerator type 8.
172 372
'Vr y"
Constant K (y, >8)
v 7—8) (7,—8)
) v 471/4 y 411/
Constant A, (¥, <y%) — [1—- | X VA — | =
v 7 v v 7%
7/319/14 i 1 7/313/7
Constant B,, (v, <v%) 31— | —7 [1— IH#
7’» 1,7 Yoo
Maximum rate ——lgw 74
Yr Yr




32 HIGH-ENERGY INVERSE FREE-ELECTRON-LASER ACCELERATOR

gies, is 400 MeV/m. For higher energies (E > 100 GeV)
it is reduced due to the synchrotron losses, but still the en-
ergy increase in 1 km can exceed 200 GeV, giving the
average acceleration rate of 200 MeV/m.

An interesting property of this accelerator is that it
does not distinguish between electrons and positrons. The
accelerator equations depend on e?. Therefore the ac-
celeration of electrons and positrons occurs at the same
resonant phase. This can allow accelerating overlapping
electron and positron bunches, also avoiding space-charge
effects.

During the acceleration the phase-space volume mea-
sured in the energy and phase variables §,,¢ is decreasing,
due to the radiation losses. In consequence, the IFEL ac-
celerator should offer a smaller phase-space area than
linear accelerators, where loses are negligible.

To provide the stability, the resonant phase must be
chosen to give siny, <1. As electrons gain energy the
phase spread of electron bunches shrinks. This allows
changing the resonant phase to values giving a higher rate
of acceleration. Therefore optimizing the structure of the
accelerator one should consider accelerators with a slowly
varying resonant phase. Such accelerators should give not
only higher final energies but also increase the acceptance
efficiency. The energy spread of the beam could be fur-
ther reduced.

In our discussion we have used some simplifying as-
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sumptions. Although we proposed to use a low-loss
waveguide to propagate the laser beam, our analysis was
done for the case of a plane wave. The presence of the
waveguide would bring some new features to the accelera-
tor. One is the spacial distribution of the field intensity in
the transverse direction. The second is a modification of
the phase velocity of the waveguide wave. That modifica-
tion is very small if the cross section of the waveguide is
of the order of centimeters and the wavelength of radia-
tion of the order of microns.

To complete the accelerator design, the transverse sta-
bility of the motion must be studied. One stabilizing
force is due to the longitudinal magnetic field B, present
in the undulator, which produces a transverse focusing
force.!° For better transverse stabilization, focusing sys-
tems similar to those used in other accelerators could be
needed.

The effect of quantum fluctuations, and how they bal-
ance with the radiation damping studied here, has also to
be studied to have a full description of the final beam em-
ittance and energy spread.
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