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Recently, DeVoe and Brewer [Phys. Rev. Lett. 50, 1269 (1983)]observed a striking deviation from
a prediction of the optical Bloch equations by monitoring optical free-induction decay in the
impurity-ion crystal Pr +:LaF3. At low optical fields, the Pr + optical dephasing time T2 arises
from magnetic fluctuations of the local environment, but at elevated optical fields, T2 is no longer a
constant, as assumed in the Bloch equations, because the magnetic line-broadening process is
quenched. Several theories have been developed to explain the phenomenon. In this paper we

present a simple theory of relaxation in solids which al'lows for comparison with earlier work. A
"strong-redistribution" model is proposed where the optically excited impurity ions experience fre-
quency shifts e induced by a thermal bath. Frequency jumps occur at an average rate I and with an
rms value of ep/V2, where eo is the thermal width associated with the frequency shifts. Modified
Bloch equations (MBE) follow that are solved explicitly for two limiting cases, ep « I and E'p)) I,
and qualitatively for the more general case where the ratio I /E'p is arbitrary. Since many of the ear-
lier theories are equivalent to the strong-redistribution model in the limit ep « I, we can assess the
validity of the approximations made by these authors. Finally, we compare our MBE to the analo-

gous transport equations that describe the effects of collisions in atomic vapors. We conclude that
the problem addressed here is a general one, common to solids and gases alike, and is not restricted
to impurity-ion crystals but will occur whenever frequency fluctuations are important.

I. INTRODUCTION

In a recent experiment of DeVoe and Brewer, ' it was
concluded that the optical Bloch equations are incapable
of describing the saturation phenomena observed. Optical
free-induction decay (FID) measurements of the
impurity-ion crystal Pr +:IaF3 were conducted where the
Pr + ions are coherently prepared by a laser field under
steady-state conditions and then freely precess when the
driving field is removed. At low optical fields, the ob-
served Pr + optical linewidth is dominated by magnetic
fluctuations arising from pairs of fluorine nuclear flip-
flops. At high optical fields, this nuclear broadening
mechanism is quenched and the Bloch equations are seri-
ously violated. On physical grounds, this failure is due to
a time averaging of the magnetic interaction as the optical
nutation frequency increases. The phenomenological di-
pole dephasing time T2 of the Bloch equations is there-
fore not a true constant but lengthens with increasing
field strength.

In order to explain these results, Schenzle et al. for-
mulated a microscopic theory which extends Redfield's ar-
guments for related saturation effects in nuclear magnet-
ic resonance. Other theories have also attempted to
explain the DeVoe-Brewer experiments. In all of these
theories, it is assumed that the net effect of the fluorine
nuclear flip-flops is to produce frequency fluctuations e(t)
in the transition frequency of the ions. At each Pr + site,
frequency fluctuations occur at some effective rate I; the
width of the distribution of frequency fluctuations pro-

duced by the fluorine nuclear flip-flops is designated by
Ep. The different theories correspond to different
mathematical models for the frequency fluctuations;
Gaussian-Markovian models with eo « I, ' Gaussian-
Markovian models with the ratio of ep to I arbitrary, ' a
non-Markovian model, and a "random-telegraph" model
with arbitrary ratio of ep to I have been considered.
Some of these theories result in a set of modified Bloch
equations (MBE) which characterize atoms in solids in-
teracting with an optical field and a thermal bath that in-
duces fluctuations in the optical transition frequency. In
each case, the Bloch equations are modified to include re-
laxation rates which are intensity dependent.

It is the purpose of this paper to present a simple model
of relaxation processes in solids that can be compared
with the above theories. The starting point for the theory
is a linear transport equation ' in which the frequency
shift e is considered as a stochastic parameter. Within the
restrictions of the "impact limit" of pressure-broadening
theory, the transport equation can provide a general
description of Markovian frequency. fluctuations in solids.
Each of the Markovian theories mentioned above can
be obtained as some appropriate limit of the transport
equation. In this work, we specialize the calculation to
yet another limiting case of the transport equation, the
so-called "strong-redistribution" model. In the strong-
redistribution model, the frequency shift at each Pr + site
following a fluctuation is statistically determined by a
Gaussian distribution having a width equal to the equili-
b11um width 6p associated with the frequency fluctuations.
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In other words, the frequency jumps occur as shown in
Fig. 1 with an average time I ' between jumps, an aver-
age displacement of zero, and an rms displacement of
eo/~2. Using this model and treating the shift e as a ran-
dom variable, we derive modified Bloch equations which
characterize the atom-field interaction in the presence of
these frequency fluctuations. Use of the strong-
redistribution model greatly simplifies the calculation, al-
lows for a comparison with other theories, and can be
solved without any restriction on the ratio of eo to I'. The
removal of the restriction eo« I used in some earlier
theories ' is significant since the experimental results'
and a Monte Carlo calculation of the low-field linewidth"
seem to indicate that I and eo are comparable.

The model for frequency fluctuations which we use is
referred to as a "strong" redistribution model since each
fluctuation, on average, leads to complete redistribution of
the shift e over the entire width Eo Th.e frequency fluc-
tuations described by such a model are Markovian, but
not Gaussian. In a Gaussian process, each frequency
jurnp 5e is much less than the total width eo. Although
the strong redistribution and Markovian-Cxaussian models
differ in a fundamental manner, they are rnathernatically
equivalent if eo« I, provided that one interprets the I
appearing in the Gaussian model as an effective collision
rate. From a physical point of view, the condition eo « I
ensures that the fluctuation rate is sufficiently great to to-
tally redistribute the shifts e and it is unimportant wheth-
er this is achieved by a few "strong" or many "weak" fre-
quency jumps. From a mathematical point of view, the
equivalence of the two models follows from the fact that
the two-time correlation functions (e(t)e(t +r) ) are iden-
tical for both models and it is only this two-time correla-
tion function which enters the theory when eo «1 . Thus,
for ep« I we can directly compare our results with
those of other authors' who employ Gaussian-
Markovian models of frequency fluctuations. For eo& I,

'

our results will, in general, differ qualitatively from those
of Gaussian-Markovian models' —the applicability of a
given model must be determined by comparison with ex-
periment. It might also be noted that our results should
also agree with those of a "random-telegraph" model if
eo « I, but may differ from that model for eo & I .

In the two limiting cases ep « I and eo»I, it is possi-

ble to average over the variable e to obtain reduced Bloch
equations (RBE). In this manner, connection with previ-
ous work ' is established. One conclusion is that two ap-
parently equivalent methods, a second-order perturbation
treatment and a cumulant expansion approximation,
used previously for the eo « I limit, can introduce some
errors into the RBE, although these errors are not large
for the specific problems discussed by these authors. '

Our method is used to derive an expression for the free-
induction decay signal emitted by impurity ions in a solid
following steady-state preparation by an optical field Ex. -
plicit expressions are evaluated for both cases ep « I and
op~&I while a qualitative discussion of the solution is
given for the general case where the ratio I"/eo is arbi-
trary. %'e will see that when I -eo, it may be possible to
observe an FID signal having two decay constants. ' '

The theory, as developed here, bears a marked resem-
blance to the quantum-mechanical transport equation
used to characterize a vapor in which active atoms in-
teract with a radiation field while undergoing elastic
velocity-changing collisions with a perturber bath. This
result is not surprising, since the frequency fluctuations
produced by the fluorine nuclear flip-flops in the solid are
analogous to the changes in the Doppler-shifted atomic
transition frequency (as viewed in the laboratory frame)
produced by velocity-changing collisions in the vapor. It
will come as no surprise, therefore, to find that the con-
ventional Bloch equations are inadequate for describing
frequency fluctuations in solids since it is well-known
that they cannot correctly model velocity-changing col-
lisions in vapors. ' The recent photon-echo experiment of
Yodh and co-workers' appears to be an example of a case
where it is possible to see effects in vapors which are
analogous, but not identical, to those observed by DeVoe
and Brewer' in solids.

This paper therefore supports the notion that the prob-
lem addressed here is a general one affecting solids and
gases alike and is not restricted to impurity-ion crystals.
In both cases, it is possible for a strong driving optical
field to quench a line-broadening mechanism associated
with frequency fluctuations produced by perturbations in
the vapor or solid.

The approach followed in this work is by no ineans
new. It is always possible to derive an integro-differential
transport equation for density matrix elements which de-
pend implicitly on a stochastic variable e if the following
three conditions are met.

Cp

time

(1) The perturber bath producing fluctuations in e can
be considered as an infinite, unchanging reservoir.

(2) The jump time from one value E to another value c,
'

(represented as instantaneous in Fig. 1) is small compared
to all other relevant time scales in the problem.

(3) The value of e' after a jump depends at most only on
the value of e before the jump.

FIG. 1. A random frequency-jurnp model is shown where the
frequency jumps e occur at an average rate I . The value of e
following a jump is independent of its value before a jump and
is determined statistically by a Ciaussian distribution having an
average value (e) =0 and an rms value (e )'~~=@0/V2.

In the last twenty years, advances in the use of stochastic
equations to model physical systems have appeared to fol-
low two parallel but somewhat independent tracks. The
first of these is the use of transport equations to describe
the time evolution of atoms in a vapor interacting with ra-
diation fields. The second is a somewhat more general
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development of theories of stochastic equations as applied
to both atomic vapors and solids. ' There have also ap-
peared systeinatic treatments' of the cumulant expansion
which leads directly to reduced Bloch equations.

Whereas the method of stochastic equations is not new,
we apply it for the first time to the case of optical free-
induction decay in solids. Previous treatments of this
problem employed an averaging procedure using proper-
ties of the correlation function (E(t)e(t r)—). While this
averaging procedme can be formulated in a manner that
is equivalent to the transport-equation approach, it is not
as convenient. Moreover, we have solved the transport
equation without any assumption of the ratio of I' to eo,
within the limits of the strong-redistribution model. Our
method enables us to examine the form of the free-
induction decay signal for various relaxation schemes (i.e.,
different decay rates for ionic states, spontaneous emis-
sion from one state into another) in the limits eo « I and
Eo» I . Fol Eo & I our predictions can differ qualitatively
from those of Gaussian-Markovian ' and random-
telegraph models.

A discussion of the model and a derivation of the MBE
is given in Sec. II. In Sec. III, the limiting cases under
which the MBE can be averaged over bath variables to
produce the reduced Bloch equations are discussed. A
calculation of the FID signal emitted by atoms after
steady-state preparation is presented in Sec. IV, and the
relationship between the MBE in vapors and solids is ex-
plored in Sec. V. Section VI contains a final discussion of
our results.

p22
p=

pie

A2
A=

0
J

(2)

and the matrix

matrix element.
The atom is conveniently described by the density ma-

trix elements p~~, p22, p~2, and pq~, where the tilde indi-
cates an interaction representation. The linear combina-
tions of these elements u =piz+pzi, v =i (pzi —piz), and
w =pzz —p» are customarily referred to as elements of
the Bloch vector. ' In this paper, we choose to work with
equations of the density matrix elements since they are
somewhat more general than the conventional Bloch
equations. However, we shall still refer to these density
matrix equations as the "Bloch" equations. Those who
prefer the Bloch variables u, U, and w may refer to Ap-
pendix A where all relevant equations are written in this
notation.

A field-interaction representation piz ——pizza' 'pzi is used
to transform into a frame rotating at the optical frequen-
cy Q. Then, neglecting terms varying as e —' + "in this
frame, one finds that the density matrix elements obey the
equations of motion'

p= —Ap+A,
where p and A are the column vectors

T

II. MODIFIED BLOCH EQUATIONS

To arrive at the modified Bloch equations, we consider
a two-state atom (upper state, 2; lower state, 1) interacting
with a radiation field (Fig. 2). The frequency separation
of the atomic levels is co, and each state is incoherently
pumped at rate A; and decays with decay rate y;
(i = 1,2). The branching ratio for decay of level 2 back to
level 1 is yz/yz. The radiation field is characterized by a
frequency 0, and a Rabi frequency X=p izE/A' where E is
the electric field amplitude and p~z is an optical dipole

0

X/2

iX/2 —iX/2

Here

P&2='F12 —» ~

iX/2 iX/2—
iX»/'X /2

—iX/2 Viz

(4)

and

Y )z ——(Y)+Yz)/2,

2-V2

FIG. 2. The two-level quantum system considered shows that
levels 1 and 2 are incoherently pumped by a thermal bath at
rates A~ and A2 and have decay rates y~ and yz. The single-
channel 2—+1 decay rate is y2. The incident field has frequency
0 and Rabi frequency P.

X=pizE/fi .

Equation (1) can be further modified by various
broadening or relaxation processes occurring in the solid.
In this paper we consider two such processes. First, there
is a large scale inhomogeneous broadening produced by
crystalline strains. The atomic frequency varies from one
atomic site to another and the overall distribution of fre-
quencies is governed by a distribution function g(co) cen-
tered at co=coo, the unperturbed transition frequency, or
equivalently by a distribution function g (b, ) centered at

~o=~o—& .
The distribution g(b, ) is assumed to be of the Gaussian
form
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g(h)=(m'~id, *) 'exp[ —(b, —4 ) /(6') ], (9) where

where the linewidth 6* is assumed to be larger than all
other relevant frequencies in the problem,

In addition to this large-scale inhomogeneous broaden-
ing mechanism, it is assumed that local magnetic field
variations (due to the fluorine nuclei} at the impurity-ion
sites (Pr + ions) provide an independent and second source
of inhomogeneous broadening leading to shifts in the tun-
ing parameter

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 —l

(14b)

(12)
where I is the average rate at which frequency jumps
occur and 8'(e'~e) is the probability density per unit
time that a jump changes the local-field frequency from e'

to e. The first term on the right-hand side (rhs) of Eq.
(12) gives the loss of element p(e, t) resulting from fre-
quency shifts taking e to any other value e', while the
second term adds to p(e, t) resulting from jumps that take
e' to e. In the model that we have adopted, the kernel
W(e ~e) is independent of the initial frequency displace-
ment e, and the distribution of e following a jump is
given by Eq. (11). In other words, the kernel appropriate
to the adopted model for e(t) is simply

W(e e) =rF(e) . (13)

Treating e as a stochastic variable rather than a time-
dependent function simplifies the analysis.

Incorporating Eqs. (9)—(13) into Eq. (1) and labeling p
by the parameters e and 6 in addition to t, one obtains the
modified Bloch equations

&p(&,e, t)/8t = Ap(b, e, t)+ieBp(h—,e, t)

r~(S, e, t—)+rF( )fep(S, e', t)de'

+A(b. ,e), (14a)

6+e(t),
where e(t) is the frequency displacement produced by the
local-field variations.

The model for e(t) which we adopt is shown in Fig. 1.
The frequency displacement e(t) is assumed to undergo
jumps at some average rate I . The jumps occur "instan-
taneously" and the value of e following any jump is in
dependent of its value before the jump, being determined
statistically by the thermal-equilibrium distribution of fre-
quency fiuctuations,

F(e)=(ni~ieo) 'exp[ —(e/eo} ] .

Thus the root-mean-square (rms) value of e is eo/~2. As
discussed in the Introduction, this strong-redistribution
model is mathematically equivalent to Gaussian-
Markovian models in the limit eo&~r, but can differ
from those models if eo& I .

Instead of considering e as a function of tiine at each
atomic site, one can formulate an equivalent theory by as-
suming that e is a stochastic variable that characterizes
the ensemble density matrix p(e, t) Owing .to the local-
field variations, there is a contribution (dp/dt)~t to p of
the form

A2

A(b„e)=F(e)g (b, )

0

(14c)

III. REDUCED BLOCH EQUATIONS

The MBE can be reduced if either eo ~& I or
Eo))I,+,/~2, cases which we now consider.

A. Case co~&I'

We expand p(h, e, t) as a power series in e and write

p(h, e, t) =F(e)@(b„e,t)

with

(16}

f(h, e, t)=f' '(b, ,t)+ecP'"(b„t)+e f'i'(h, t), (17)

F(e) being the Gaussian distribution (11). Consequently,
the variable Q(b„t) defined by (15) is given by

Q(a, t)=y~"(~,t)+ &e') @~"(a,t), (18)

Equations (14) are the modified Bloch Equations (MBE)
for the specific local-field model which has been adopted.
Note that the source term (14c) depends on both distribu-
tion functions F(e) and g(b, ) corresponding to the two
inhomogeneous line shapes. In experiments, one does not
measure p(b„e, t), but rather its value averaged over the
variable e, i.e.,

Q(b„t)= f p(h, e, t)de. (15)

In certain limiting cases to be discussed in the next sec-
tion, it is possible to average (14a) over e to arrive at a
corresponding equation for Q(b„t). In that case, we shall
refer to the equations for Q(h, t) as the reduced Bloch
equations (RBE).

The MBE or RBE can be solved once the initial condi-
tions are specified. In typical coherent transient experi-
ments, the applied-field amplitude and frequency are kept
constant during a specified time interval and then
changed to a new value for a second time interval. Thus,
for any one of these intervals the MBE or RBE are a set
of coupled first-order linear differential equations with
constant coefficients. A general solution of the entire
coherent transient problem can be obtained by solving the
equations in each time interval and matching the boun-
dary conditions. In Sec. III, we consider the solution for
an arbitrary time interval in which the applied-field am-
plitude and frequency remain constant. In Sec. IV, an ex-
pression for an FID signal is derived.
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where

(e ) =f e F(E)de=co/2 (19)

P("(b„,t) term, and evaluates the matrix R(t —to) at
t —tp = (x), there results

and we have used the fact that (e) =0.
Using (14a) and (16)—(19) one obtains the following se-

quence of equations:

a (0) a, t = —(a+ r)1l(0)(a, t)+ rQ(a, t)+A(a),

= —(A+A )Q(h, t)+A(b, ),at

R —=R(oo),

(28a)

(28b)

which reproduces the equations of Schenzle et al. and
Yamanoi and Eberly. The R matrix

a (" at = —(2+ I )g' "(h,t)+iBQ"'(b„t), (20b)

a (2) at' = —(a+r)1t(2)(b„t)+iBcp")(b„t), (20c)

0 0
0 0

R R

R2 —R2

0 0
0 0

R) 0 (29)

where the elements of the incoherent source term (14c) are

At(b, )= A,;g(b, ), i =1,2
0, i =34. (21)

Taking the time derivative of (18), we find to second order
in e that

calculated in the limit
r

R, = '"' ~ +rp2

where

(2) L —a+ir
r2+ p2

j. &&y~, y2 then has elements

g2p2

r2+ p2
(30)

(31)

= —AQ(b„t)+i(e')B$")(b„t)+A(4) . (22) p2 +2 +y2 (32)

where to is some arbitrary initial time at which g")(A, t)
and Q(h, t) are specified. Furthermore, to zeroth order in
e it follows from (20a) and (18) that

Combining (22)—(24), one arrives at the RBE

(24)

where

+i(e )Be ' P'"(h, to), (25)

R(~) (E2)B f I'r' —Av'B A—v d P

S(~I=(&)Bf,'e "e "'B(1 e "')-~ id-r-, —--
(26)

(27)

and f")(b„to)must be obtained from (20b). Equation (25)
is the RBE in the limit E'p ((I .

If in (25), one arbitrarily sets S(w)=0, neglects the

Because of the (e ) factor of f")(h,t) in (22), f"'(h, t) of
(20b) need only be solved to zeroth order in e. To zeroth
order in e, it follows from (18) that @( )(b„t)=Q(h, t).
Using this approximation to solve (20a) and (20b) for
i'"'(h, t), we obtain to zeroth order in e,

f"'(6 t)=e 'f"'(5 t )

+i exp —3 + I t —t' 8 5 t' t',
0

Equations (28)—(32) agree with the results of these au-
thors, which are given in Appendix B in their notation for
easy comparison.

The RBE (25) differs from the RBE (28) of Schenzle
et al. 2 and Yamanoi and Eberly. These results differ ba-
sically for two reasons. First, if one considers only those
times (t to) &&I —(which is an implicit assumption in
the work of Schenzle et al. and Yamonoi and Eberly ),
the last term in Eq. (25) can be neglected owing to the
exp[ I (t —to)—] factor, and the upper integration limits
in Eqs. (26) and (27) can be set equal to infinity. In this
limit, Eqs. (25) and (28) differ only by the term
—S(ao )A(b, ) appearing in Eq. (25). This term is absent in
the work of Schenzle et al. and Yamanoi and Eberly, "
since they effectively neglected the inhomogeneous term
in calculating the effects of the frequency fluctuations.
Although this term is absent in their equations and it is
not negligible compared to the RQ term, an analysis of
the overall effect of the SA term on the FID solutions in-
dicates its contribution is only of order (y;/I ), which is
implicitly chosen to be a small parameter in these earlier
calculations. ' ' Thus, the RBE of Refs. 2 and 4 are a
correct starting point within the limits of these approxi-
mations. Quite generally, one can show that (25) and (28)
are approximately equal if I is much greater than y;,

~

6 ~, and X; this result follows if one neglects the t/i")
—1(t —t0)term in Eq. (25) owing to the e factor and evalu-

ates S(t to) and R(t ——to) asymptotically for large I.
Additional analysis of Eqs. (25) and (28) is required to
determine if any more general conclusions concerning the
differences between these equations can be established. At
this stage, however, we must consider Eq. (25) as the
correct RBE in the limit ra~&I for the model problem
under consideration.

For the steady-state problem [d Q( b, t) /at =0;
to ——ao ], it is possible to simplify Eq. (25). The
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Iexp[ —(2+1)(t—to)]jp (6 to) term can be dropped
as to ——ao and the upper integration limit in Eqs. (26)
and (27) can be set equal to infinity. In addition, one can
use (18) and (20a) to show that the SA(b, ) term in (25)
can be replaced by SAQ(b, ) with an error of order eo.
With these inodifications, Eqs. (25)—(27) can be combined
and the integrations carried out to obtain

where

0

5A(h, e)= [pq2'(b„e, t) —pii~(5, e,t)] (42c)

BQ(b, )

Bt
=0= —(A+H)Q(b, )+A(h),

where

H=(d)a(A+I )-'a .

(33)

(34)

(35)

with

We invert the (A + I ) matrix to obtain the explicit result

0 0 0 0
0 0 0 0

H —0

0 0 HP H1

The 5p;;(b„e,t) as well as pi2(b„e, t) and pzi(b„e, t) result
solely from atom-field interactions. Consequently, they
are nonvanishing in a frequency range of order yi2 (or I'
or g) about (b, +e)=0 ("hole burning" ). If eo»y, 2, 1,&,
the "out" (loss terms at. rate I ) are no longer approxi-
mately compensated by the "in" terms, whose contribu-
tions are relatively small [of order max(yiz I' X)/eo]. If
the "in" terms in Eq. (42b) are dropped, one finds that 5p
is essentially equal to F(e) tiines a function of (6+e). If
the resulting equation is averaged over both e and 5 using
the fact that the inhomogeneous width 6' is larger than
all relevant frequency scales in the problem, then one can
obtain the RBE

B[5Q(b„t)]/Bt = —(A+I )[5Q(b, t)]+5A(b, ) (42d)

(w2) +1

D' 4yL

X'(e')2=-
4D'yL

The superscript t denotes the addition of I as follows:

(36)

(37)

with the understanding that 5Q(b. , t) must ultimately be
averaged over b, for Eq. (42d) to be valid. The local-field
fluctuations result solely in a decay of ionic density ma-
trix elements that have been created by the external laser
field.

IV. FREE-INDUCTION DECAY
V1 V1+~~ V2 V2+ ~ ~

'V12='V1Z+~~ 912=91'+~ ~

D —IVi2I +I& yiz/y~

(38)

(39)

(40)

1

VL

1 1 'V2 1

V2 V1 V2 VL

1 1 'Vz

V2 V1 V2

(41)

Equation (33) is the correct RBE to use for the steady-
state problem in the limit eo « I .

B. Case eo&)I,+,y~2

If eo is much greater than all relevant relaxation rates in
the problem but is still much less than the large inhomo-
geneous width 6', it is again possible to obtain RBE of a
certain type. To write RBE in this limit, one must first
separate out the zero-field solution for pii and pzz by writ-
ing

We consider the case where the radiation field interacts
with atoms for times —oo &t &0 and creates a "steady-
state" density matrix distribution p(b, e). At time t =0,
the field is suddenly switched off and the sample radiates
a free-induction decay signal whose amplitude

Q3(t) = J Qi(b„t)dh (43)

represents an average over the inhomogeneous line shape
function g(h), Eq. (9). The quantity Q3(b„t), is the third
element of the vector Q defined by (15) and corresponds
to the third element (pi2) of p in (2). In this section, we
calculate Q3(t) for the two limits, eo« I and eo» I, in
which the RBE is valid and also for the more general
MBE.

A. RBE: so&&I

For times t&0, there is no applied radiation field
(X=O) and the matrix A is diagonal. Setting to ——0 in
(25), evaluating f'"(b, ) needed in (25) from (20a) and
(20b), and making use of (34), one finds that

p;;(&,e, t) =p;', '(b„e,t)+5p;;(h, e, t), i =1,2 (42a)

where p;',.. '(b, ,e, t) is the solution of Eq. (14a) with the field
X set equal to zero. Then 5p=(5p», 5p2z, pi2, pqi) satisfies

BQ,(b„t)/Bt = —p»+ (1—e ') Q, (h, t)

—e "" [HQ(b. ) ]3 . (44)

a[5p(a, e, t)]/at
= —A 5p( 5,e, t ) + t eB5p( 5,e, t ) —I 5p ( 6,e, t )

+I F(e) I p(5b, , te)d 'e+A5(b, )e, (42b)

Here, Q(b. ) is the steady-state value of Q obtained as a
solution of (33). Since H is of order (e )/I' [see Eq.
(34)], the second term in Eq. (44) is down by order
(e )/I from the first and can be neglected, leading to
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the solution For (e )/I «1, the final term in the exponent can be
discarded and one has

Q3(b„t)=Q3(b, ) exp —piz+ t(~)
r Q3(h, t) =Q3(b, ) exp —y, z+ i—h tr (46)

(45)

The steady-state solution Q(b, )=[1/(A+H)]A(h) of
(33) for Q3(h) is straightforward, but tedious. After
sotne algebra, one finds

Q3(&)=—1

2

i+%21(6 )[P12+(5H) ']
r

yL + y12

and

%21 (b, )= A, y2'A2
+

y1 yly2

5H =(Piz)'(e )/D'.
One is faced with the task of evaluating

where the zero-field population difference

(48)

(49)

Q3 (t) = —in —Xzi (0)x
2

X
y

where

(e')
1

yiz1+
Do y

exp( yF t),—

(52)

(53)yF y12+ +y ~

Y y12+~ y12/(2YL )+ [&e )& /(2DoyL )]

X [3y12+I +(yL /YL )y12]

+(2&~)y12/D0)(2Y12+ ~) ~ (54)

t 2 2 + y12 y12
D0 ( Y12) Y12+ g

(55)
2 yL yL

We now see that when X-O, Q3(t) is of order X and
there is no linear FID, in contrast to the findings of
Schenzle et al. In weak fields, the FID decay rate is

(ez) 2(e )yiz(2y, +I )
yF y12+

Z
+ y12+

( Y12) 1 12

(
~y12

(51)

In that case, the poles in Eq. (47) can be found using an
iterative procedure in which (1) the poles are first obtained
by neglecting all terms containing (e ), (2) the approxi-
mate values for the poles are inserted in the (e ) terms,
and finally, (3) the poles are recalculated including the
modified (e ) terms. In this manner, one finds that, to
order e0 and with the restriction (51), the FID signal is
given by

(56)

In intense fields, the decay constant is

1/2

& e')
Q3(t) =f dS Q3(h) exp —y»+ 1 6 t, (50)—

I

the FID signal in the limit (e )/I « l.
Substituting (47) into (50) and factoring the broad inho-

mogeneous distribution Xzi(h) outside the integral, al-
lows one to carry out contour integration in the upper-
half plane. The integration can be simplified somewhat
with the additional restriction

&e') z
yF y12+ + y12+ T~ +r yL y12

yL

2
p+(&) + +1 2i 2i y12 y12 y12

yL yL yL
t

t 2 2 & 2 y12
( Y12) y12+ T~

yL

(57)

It is interesting to examine two limits of the high-field result, Eq. (57). First consider the case of an "open system"
with equal decay rates (y, =yz ——yiz and yz ——0) so that yL ——yiz/2, (yiz/yL —yiz/yL ) =0, and

1/2 '

yF —y12+ + y12++ ~+r
+2+

y12 y12

( Y12) y12
(58)
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If, furthermore, 1 »yi2, then

yF ' y12+ I + y12++ 1+ I y12

1/2 '

=x(i+ (e')/ry„)'" . (59)

It i»nteresting to note that (59) is the prediction of the conventional Bloch equations in the limit (51). Qn the other
hand, for a "closed system" (y2=y2+yi —=2y; yi ——0), one has yz ——y, yi2 —y, and

x'
yF y+ + y + 1+I 2

t

6) y" +2+ y,
y

t

(yi2) —y + —,X, —1
t 2 2 & 2 y12

yL

In addition, when I »y and g » I,
' 1/2

(e') 2
X' (e') I

yF y+ + y + +
2 y

ting (e ) =0 and replacing all y's by the corresponding
y"s, Eqs. (3S) and (39), in these equations. In this way,
one finds P

(61)

1 y12 1yF~X +
2 yL 2

yL I +X 1 y12

yL

(62)

Thus, the high-intensity value for yF differs for the
open system [Eq. (59)) and the closed system [Eq. (61)].
In general, the value of yF for X» I and 1 »yi2 follows
from (57) as

' 1/2

Q3(t) = ——,i'm»(0) 1—1 y12 yet

yB

where

yF =y 12+ I- +yB

t

(y' )'=(y +I )'+ —,x'
yL

In weak fields,

yF-2(l i2+I ) =2Yi2 ~

(65)

(66)

(67)

and is seen to depend on the ratio y12/yL.
The contour integral of (50) was carried out in the limit

(e )/I yi2«1 [Eq. (51)]. This restriction can be re-
moved if need be. For example, if (e )/I"y, z» 1 and
(e )/I yL, » [(X +1 )/XI ], then the poles in 5 in (47)
in the upper-half plane occur at

' 1/4

(+I+i) ' x'" . (63)
2y I.

These poles would lead to an FID signal that decays with
rate

1
yF

1/4x"
2yL

(64)

and is modulated at a frequency equal to yz. ' If
(e )/I y,2»1, X» 1 and (e )/1 yL, «X /1, then

y~ -X(y i2/2yl )
' . For intermediate values of

(e )/1 yi2, there are still two poles in the lower-half
plane and these will lead to an FID signal that is charac-
terized by two decay constants. '

B. RBE: eo»~» year.

The FID signal follows directly from Eqs. (42) and (43).
In practice, the solution is obtained from (52)—(54) by set-

while in intense fields,
t . 1/2

y12
yF

yL
(69)

The formal structure of the solution is very similar to that
obtained in the ep « I limit if the correspondence
((e )/I )~I is made. Significant differences between
the models emerge when one observes the dependence of
y~ and y~ on I. Thus according to (66), for the case
ep&&I and weak fields, yz grows with I, whereas ac-
cording to (46) for the case ep« I', yF decreases with. I,
as in motional narrowing. '

Our result (65) for the strong-redistribution model in
the limit ep» I,X,yi2 differs from that found using a
Gaussian-Markovian model ' for frequency fluctuations.
One might expect that, in the gaussian-Markovian limit
with ep»1, the effects of frequency fluctuations would
be minimal since the frequency fluctuations are not strong
enough to remove the ionic frequency from the "hole"
created by the ion-field interaction (in contrast to the
strong-redistribution model). Hanamuru found that the
FID decay rate was, indeed, independent of the rate I",
however, he found an FID signal linear in X (for small X)
that decayed as exp( —(e~)t~). From some very general
considerations (see Sec. IVC), one can rule out a linear
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FID signal, so this result is somewhat surprising and may
have resulted from an error in integrating over
Javanainen found no evidence for a linear FID signal.
As noted earlier, the validity of a given model must be
determined by comparison with experiment.

1 e —l @iaaf pip(b, ,e)
Q3(h, t) = dco de2n. 1—G(co) p', ~ i(e+co) '

(74)

where

G(co)=I f deF(e)[pi2 i(e+—co)] (75)
C. MBE: General solution

We now present a formal solution to the MBE (14a)
which is valid for any ratio of I /eo. For t & 0, pi2(h, e, t)
satisfies the equation

c}p i2(k, e, t) = ( p—i2+i e)pip( b & e& t)

The quantity pi2(h, e} is obtained as the third com-
ponent [pi2 ——(p)3] of the solution of the steady-state
equation [see Eq. (14a)]

L(b„e)p(b„e) I'F(e)—f p(h, e')de'=A(b„e),

(76)

where

+ I"F(e) f pi2(h, e', t)de' .

From this equation, it follows that

Q3(b„t}=f pi2(b„e, t)de

satisfies the integral equation

Q3(b„t)= f dee " pi2(b, ,e)

(70)

(71)

L(b„e)=A+ I ieB—.

This equation may be solved to give

p(h, e)

=L '(b„e) 1 —I f L '(b, ,e')F(e')de'

Equations (74) and (78), together with

(77)

A(h, e) .

where

+ f G(t t')Q, (b„t')—dt', (72) I(t)= Im[Q3 (t)],
Q3(t)= f Q3(h, t)db.

(79)

G(~)=I f deF(e)e (73)

and p, 2(h, e) is the steady-state value of pi2. Equation
('72) is easily solved by Fourier-transform techniques ena-

bling one to arrive at

determine the FIB signal.
No numerical evaluation of Eqs. (74)—(80) is given in

this paper. Instead, some general features of the solution
are discussed. If the variable co in Eq. (74) is changed to
co'=co+ e+ b, +iy, 2, Eqs. (74), (75), and (80) are
transformed into

Q3(t)= f da f de f d~ .
1 —I e'I' e' I —i cu+e —e' ' F' —iso

(81)

%'hen the contour integration is carried out in the upper-
half plane, it is only the poles of co, 6, and e in the upper-
half plane which will contribute. Since F(e) is Gaussian,
the integral in the denominator of Eq. (81) can be related
to the complex error function. A simple analysis then re-
veals that there are exactly two poles of co in the upper-
half plane, leading to two FID decay rates. One of these
poles is always at co=iI and the other varies from
co=i(e )/I if eo« I to ieoIln[eo/(21 vir)]J'~ for
eo» I . In the limiting cases discussed above, one of the
terms is dominant; if eo « I, it is the pole at co=i(e ) /I
which provides the major contribution [see Eq. (46)],
while for eo» I, it is the pole at co=i I' [see Eq. (66)]
which is dominant. For eo-I the two terms may be
comparable. The integration over 6 can increase the
number of decay constants if there are several poles in the
upper-half plane. However, it is possible to use Eq. (78)
to show that, in the linear-field regime, there are no 5
poles in the upper-half plane —i.e., there is no linear FID.

The contribution from the e integration has not been
analyzed, in general.

D. Qualitative discussion of FID signal

The decay constants observed in the FID signal can be
understood in terms of the coherence time

(82)

associated with each of the relevant frequencies il (e.g.,
g=X,y, yi2, 1,6) in the problem. The trouble is that
there are so many relevant frequencies which must be con-
sidered for both the transient (t&0) and preparatory
(t &0) domains, that it is difficult to keep track of the
various coherence times r(g) without a score card.
Nevertheless, we note the following features. (i) The
large-scale inhomogeneous broadening giyes rise to a
linear FID signal that decays very rapidly with a rate 6*.
This component of the FID signal has been neg1ected in
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this work. (ii) Neglecting the contributions of the local
field Uariations, one finds that the decay rate of the non-
linear contribution to the FID signal is determined by the
two decay times ~(y i2) and 7(X*)where

(83)

The quantity X* is the effective rate at which the field
drives the optical coherence p~2, as may be seen by solving
(14a) for pii and pzz, substituting the solution in the pi2
and p2i equations, and noting the effective rate constant
X'. In weak fields, w(yi2} &r(X*}and the FID signal de-
cays with rate yiz. In intense fields, r(X')&~(yiq) and
the signal decays with rate X'. Note that if homogeneous
broadening had been present such that @~2'&yL, the de-
cay rate X =X(yiq/yL, )' would, in fact, be much
greater than the value 7* X obtained when y&2 and yl
are comparable. (iii) The local-field variations modify the
decay rate in a manner that depends critically on the
phase buildup

e tdt (84)

at a particular atomic site [~ is some relevant coherence
time and e(t) is shown in Fig. 1]. If y, «1, the local-
field variations do not modify the FID decay, while for
q&,) 1, they can be significant. In intense fields (X »eo
and v =X* '), the phase y, always is much less than uni-
ty and the effects of the local-field variations can be
neglected. This is the reason why the high-field FID de-
cay is relatively insensitive to the form of the local-field
variations [see (59), (61), and (69)]. In weak fields, the
value of y, depends on the coherence time w. If
eo«y, z & I, then r=y&z' or I ' and p, is always much
less than unity implying the local-field variations do not
contribute significantly to the FID signal decay. This re-
sult is seen in Eq. (56) where the FID signal decays with a
rate approximately equal to 2y, 2 if eo«y, 2« I . [Not
included in (56) is a rapidly decaying component associat-
ed with ~(I ) which decays at rate I .] If e'o&) i2 llowev-
er, ~=(yi2) ', and the dominant contribution to the FID
signal is associated with r(yi2) and decays with decay rate
2yiq [see Eq. (68)]. [There is also a rapidly decaying com-
ponent, associated with v(eo) that decays with a decay rate
of order eo that is not included in (68).] Finally, if
eo-I =y&z, then two components in the FID should be
seen, one which decays at rate 2y&2 and the other which
decays with a rate of order eo. Then results are in qualita-
tive agreement with the discussion following (80).

V. MODIFIED BLOCH EQUATIONS IN VAPORS

It is perhaps useful to relate the MBE derived in this
paper (14a) with the corresponding MBE appropriate to
an atomic or molecular vapor. Qf course, the MBE used
in this work actually represents a highly simplified model
of relaxation in solids. In vapors, collisions between the
"active" atoms of interest and a bath of perturber atoms is
the relaxation mechanism. As long as the impact approx-
imation is valid (inverse duration of a collision much
greater than all relevant frequency scales in the problem),
it is possible to obtain the macroscopic MBE starting with
a microscopic theory of the collisional processes occurring
in the vapor. In other words, the MBE in vapors result

from a detailed quantum-mechanical theory rather than
from an approximate model of the relaxation phenomena.

In neutral vapors, there is only one source of inhomo-
geneous broadening. The moving atoms see the radiation
field at a frequency that is Doppler shifted by an amount
k v from the field frequency 0 (k is the radiation field
propagation vector; v is the atomic velocity). The atoms
are characterized by an equihbrium distribution

Wo(v) =(n' u) e (85)

where u is the most probable speed of the active atoms.
This velocity distribution is the source of the inhomogene-
ous broadening. Thus, the factor k.v is analogous to the
frequency displacement e. "Velocity-changing collisions"
are analogous to the jumps in the frequency parameter e
in solids. Models for the collision kernels 8;.J(v'~v) and
rates I;J(U) (ij =1,2) appropriate to vapors are discussed
in the literature In. general, these kernels are not of the
same form as that adopted for W(e'~e) in this work [the
corresponding kernel W(v'~v) = Wo(v) is referred to as
the "strong-collision" kernel], so that the quantitative de-
tails of the solutions for the vapor and the solid will
differ. However, the overall qualitative structure of the
solutions may be similar.

Since there is only one inhomogeneous width for va-
pors, it is possible to remove the "bath" variable v in va-
pors only if the collision rates are much greater than the
Doppler width ku. (In the case of a solid, recall that one
never removes the variable b, from the equations. ) Thus,
formal reduction of the MBE to the RBE is possible only
in this limit. However, the equations for a vapor can be
greatly simplified in certain limits. Again there is a criti-
cal phase

gad ——k5U (r)v.

which enters. The quantity 5U(~) is the rms velocity
change resulting from collisions acquired in the effective
coherence time v of the problem. If yd « 1, the velocity-
changing aspects of collisions can be neglected and if
yd &1, the velocity-changing aspects of collisions can
modify the line shapes.

As in the case of solids, the coherence time can be re-
duced by applying a strong radiation field. As such, the
effects of velocity-changing collisions can be suppressed at
strong-field strengths if q&d «1. This effect has been re-
ported recently by Yodh and co-workers in a photon-echo
experiment in Yb. ' Thus, both solids and vapors can ex-
hibit similar "deviations" from the conventional Bloch
equations. Both solids and vapors can be described by
MBE, but the theoretical basis for the MBE in vapors is
much firmer than it is for solids.

VI. CGNCI USIGNS

In this paper we presented a rather simple model to
describe the way in which local-field variations shift the
transition frequency at atomic sites in a crystal. The fre-
quency shift e at any site undergoes jumps ai some aver-
age rate I . The value of e following any jump is indepen-
dent of its value before the jump and is determined statist-
ically by a Ciaussian distribution having average value
(e) =0 and an rms value (e ) '~ =@0/v 2, where eo is the
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thermal width associated with the fluctuations. Using
this strong-redistribution model, we derived a set of modi-
fied Bloch equations (MBE) that characterize atoms in a
solid interacting with an external optical field and per-
turbed by local-field fluctuations. The atoms are also sub-
ject to a second inhomogeneous broadening due to crystal-
line strains. All effects of homogeneous broadening were
neglected, but these could be included easily by a suitable
modification of decay rates associated with the coherence.

Under certain limiting conditions (eo« I, co~&I ) the
MBE can be averaged over the bath variable e, enabling
one to obtain reduced Bloch equations (RBE). When
ep« I, our MBE are similar to those obtained by other
authors. ' However, our more general approach en-
ables us to take the limit ep « I in a systematic manner,
allowing us to easily assess the accuracy of the RBE for
this limiting case. For the ep((I case, a contribution to
the decay rate of (e )/I is found for the free-induction
decay signal and is a signature of theories in which
ep« I, namely, the contribution to the decay rate de-
creases with increasing I . For the other limit,
ep&&I,X,y1z, an additional decay rate I aPPears in the
FID signal. This type of dependence is typical of
"strong" relaxation theories in which perturbations re-
move atoms from the frequency range in which they can
effectively interact with the radiation field and differs
from that predicted using Gaussian-Markovian ' models
of frequency fluctuations. Comparison with experiment
could help decide on the validity of a particular model.
We note that no attempt has been made to improve the
theoretical fit of Refs. 2 and 4 to the DeVoe-Brewer ex-
periments. Numerical methods would be required if in
fact I =e .

Although the modified Bloch equations were applied to
a calculation of the FID signal, they could equally well be
applied to a wide variety of steady-state and coherent
transient problems. Moreover, one has the freedom to use
"kernels" 8'(e'~e) [recall that W(i'~e) is the probabil-
ity density per unit time that the frequency displacement
changes from d to e] other than the one used in this
work. '

The relaxation mechanism in solids and vapors was
compared. It was shown that the frequency displacement
e' is analogous to the Doppler shift k.v in vapors. While
there are similarities between the equations characterizing
the vapor and the solid, certain differences were noted. In
particular, there is only one source of inhomogeneous
broadening in the vapor as compared to two in the solid.
In addition, the collision kernel 8 (v' —+v) appropriate to
vapors invariably depends on the initial velocity v'. A
more detailed discussion of saturation behavior in vapors
is planned for a future paper. Finally, we conclude from
the arguments presented here that the saturation effects
described constitute a general phenomenon, appropriate to
impurity-ion crystals and gases alike. It is not restricted
to impurity-ion crystals and will occur whenever frequen-
cy fluctuations appear.

Instead of using the vector p, one may use a vector M
having components

M& =Q =P1z+Pz1 ~

M2 U (P2i Pi2) ~

M3 ——W =P22 —P11 ~

~4 =~ =P11+Pzz .

(Ala)

(A lb)

(A 1c)

(A 1d)

The column vector Mii ——(Mi, M2, M2) is conventionally
referred to as the Bloch vector. In terms of M, Eq. (1) of
the text may be rewritten as

BM
Bt

= —3'M+A',

where

(A2)

0

2 (yl+y2+3 2) 2 ( Y2+y2 ) 1)

0 —,
'

(Y2—Y2 —Yi) —,
'
(Yi+y2 —y

(A3)

and

0
0A'= (A4)

A1+ Az

Note that, in general, Eq. (A2) cannot be reduced to an in-
dependent equation for the conventional Bloch vector
Mii ——(Mi, M2, M2) . This reduction is possible if either
(i) y2 —yi ——0 or (ii) Ai-0, y, -0, A2 ——0, y2

——y2, which
implies m =const—=mo. For case (i), the Bloch equations
are

1

Tz
0

0 X

Mg+
Az —A1

(A5)
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For case (ii) the Bloch equations are

(A6)
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with

1

T2

aM, 1

Gt Tp

0

0
0 (A7)

% here

=0=—(A '+H')Q'(5)+A'(b, ),

H) Hp 0 0
—H2 H3 0 0

0 0 0 0
0 0 0 0

(A17)

(A18)

1 1
Y12& Vp

T2 Tl

In terms of M, Eq. (14a) becomes

(A8)
H1 ——Re(H1)+H2,

H2 ———Im(H1),

H3 ——Re(H1) —H2,

(A19a)

(A19b)

(A19c)
BM(h, e, t) = —A'M(b„e, t)+eB'M(b„e, t) —I M(b„e,t)

with

+I F(e) f M(b, ,e', t}de'+A'(h, e) (A9)
A'(6) =A'(b„e) /F (e),

and Eq. (42d) becomes

] = —(A'+ I )5Q'(b„t)+5A'(6),

(A20)

(A21)
0
0

A'(h, e) =F(e)g (6)
2 1

A, 1+F2

0 —1 0 0
(A10)

where

5Q'(h, t)=T—'5Q(b„t); 5A'(6)=T '5A(h) . (A22)

APPENDIX 8

1 0 0
0 0 0
0 0 0

0
0

This is a comparison of Eq. (28) with Schenzle et al.
and Yamanoi and Eberly. Yamanoi and Eber1y derive
M8E of the form of Eq. (A12) for the case of a closed
system represented in Eqs. (A7) and (A8) with

and Eqs. (25) and (27)

aQ(~, t) = —[A'+R'(t —t, )]Q'(h, t)

+ [1—S'(t —to)]A'(h, e)

+i (e' )B'e + ' g""(h,to),

(A'+R'—)Q(h, t)+A'(6),

(A 1 1)

(A12)

r+I )) 5 1 )3

y+I 22
—0+I 23 Qs+

0 Q 2r

0

2r~eq .

1 1

T. =ZT =r

Explicit evaluation of Eq. (A14) for R' using Eq. (29}
then allows one to write the first three components
Q21 =(Q1,Q2Q3) =(Qg, Q„,Q~) «Eq. (A12) as

where

Q'(h, t)= f M(b„e, t)de, (A 13) where the following change of notation has been made:

(83a)
S'= T 'ST,

7 —1y(1)

R'= T 'RT, (A14)

(A15)
~11 ~22 R 1

(5co 'rq Q2
b,2+, (83b)(&')' 1+(&')'+

and

0 0 —1 1

0
T——

2
1

0 1 1

0 0
—i 0 0

Similarly, Eq. (33}becomes

0 0 1 1

0 0 —i i
—1 1 0 0

1 1 0 0

(A16)

(5a)) ~, (b,Q)~,I 12
———2 Re(R2) =

1+(Q')2&,

(5') ~,Q
I 22

——2Im(R2)=—
1+(0')2H

v, =l jI

(g2+y2)1/2 (g2+II2)1/2

(83c)

(83d)

(83e)

(83f)

(83g)
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Equation (82) agrees identically with the result of
Yamanoi and Eberly.

Schenzle et al. derive MBE of the form of Eq (.A12)
for an open system represented by Eqs. (A5) and (A6)
with

Q. = —~Q. —

4rrN
g pi+ o2

4@iV

p2 o2 p2+ o2

Az —Ai ——wc/Ti .

Making the change of variables

r x,
(e') 4~+'/o',

one finds that Eq. (A14) may be written

(84b)

(BSa)

(85b)

x'
Q„=~Q„+Xw- »+» Q. )—Q.

op tT p +tr

4nN2 Xo+ 2 2g p2+ o2
(86b)

Q = yQ„—(Q„—wo)/Ti (86c)
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R. G. DeVoe and R. G. Brewer, Phys. Rev. Lett. 50, 1269
(1983); 52, 1354 (1984).

A. Schenzle, M. Mitsunaga, R. G. DeVoe, and R. G. Brewer,
Phys. Rev. A 30, 325 (1984); see also R. G. Brewer and R. G.
DeVoe, Phys. Rev. Lett. 52, 1354 (1984).

A. G. Redfield, Phys. Rev. 98, 1787 (1955).
4M. Yamanoi and J. H. Eberly, Phys. Rev. Lett. 52, 1353 (1984};

J. Opt. Soc. Am. B 1, 751 (1984).
5E. Hanamura, J. Phys. Soc. Jpn. 52, 2258 (1983); 52, 3265

(1983); 52, 3678 (1983}.
J. Javanainen, Opt. Commun. 50, 26 (1984).

7K. Wodkiewicz and J. H. Eberly, Phys. Rev. A 31, 2314 (1985);
K. Wodkiewicz, B. %'. Shore, and J. H. Eberly, Phys. Rev. A
30, 2390 (1984}.

8P. A. Apanasevich, S. Ya. Kilin, A. P. Nizovtsev, and N. S.
Onishchenko, Opt. Commun. 52, 279 (1984).

9For a review of quantum-mechanical transport equations in va-
pors, see the following articles which contain extensive lists of
additional references: P. R. Herman, , Appl. Phys. 6, 283
(1975); Adv. At. Mol. Phys. 13, 57 (1977); Phys. Rep. 43C,
101 (1978); P. R. Herman, in Xeu Trends in Atomic Physics,
edited by G. Grynberg and R. Stora (North-Holland, Amster-
dam, 1984), pp. 453—514.

ioSee, for example, the recent article by B. W. Shore [B. W.
Shore, J. Opt. Soc. Am. B 1, 176 (1984)] which contains ex-
tensive references to previous work. In particular, Shore
refers to the transport equation for jurnp processes as the
Burshtein equation since it appears in an article by Burshtein
(A. I. Burshtein and Yu S. Oseledchik, Zh. Eksp. Teor. Fiz.
51, 1071 (1966) [Sov. Phys. —JETP 24, 716 {1967)])although
such transport-type equations had already been used to
describe relaxation in vapors (Ref. 9). The modeling of fre-
quency fluctuations by random jurnp processes is attributed to
Kubo and Anderson [P. W. Anderson, J. Phys. Soc. Jpn. 9,
316 (1954); R. Kubo, ibid. 9, 935 {1954)].
R. G. DeVoe, A. Wokaun, S. C. Rand, and R. G. Brewer,
Phys. Rev. 8 23, 3125 (1981).

2These two decay constants are in addition to the very rapid de-

cay associated with the large inhomogeneous width which
characterizes transitions in solids. For a discussion of the ra-
pid decay see R. G. DeVoe and R. G. Brewer, Phys. Rev. A
20, 2449 (1979).
The Bloch equations are also known to fail if the "impact lim-
it" is violated. See, for example, K. Burnett, J. Cooper, P. D.
Kleiber, and A. Ben Reuven, Phys. Rev. A 25, 1345 (1982};S.
Mukamel, Phys. Rep. 93, 1 (1982); G. Nieuhuis, J. Phys. B
15, 535 {1982);S. Reynaud and C. Cohen-Tannoudji, J. Phys.
(Paris) 43, 1021 (1982).

~4A. G. Yodh, J. Golub, N. %. Carlson, and T. %'. Mossberg,
Phys. Rev. Lett. 53, 659 {1984).

I5See, for example, R. Kubo, J. Math. Phys. 4, 174 (1963); A.
Brissaud and U. Frisch, ibid. 15, 524 (1974).

I6R. G. Brewer, in Frontiers in Laser Spectroscopy, in Proceed-
ings of the Les Houches Summer School Session XXVII, edit-
ed by R. Balian, S. Haroche, and S. Liberman (North-
Holland, Amsterdam, 1977), p. 341.

~7See, for example, A. Schenzle and R. G. Brewer, Phys. Rev. A
14, 1756 (1976}.

Actually, one can reformulate the closed-system calculation of
Yamanoi and Eberly (Ref. 4) in a manner such that A=O by
expanding their three-component Bloch vector into a four-
component vector [see Eq. (Al) and Ref. 7]. In this case the
SA term is absent, but the A matrix is also changed to a new
matrix A. The matrices A and A differ by a term of order

y2, so it is somewhat more transparent in this case that our
results and theirs differ by a term of order (y2/I )~.

This result is contained implicitly in the results of Hanamura
[E.Hanamura, J. Phys. Soc. Jpn. 52, 3678 (1983)].

irfhis solution is identical to Eq. (4.24) of Ref. 16.
2iAn independent calculation [P. R. Berman and R. G. Brewer,

in Proceedings of 7th International Laser Spectroscopy Confer-
ence, edited by T. W. Hansch and Y. R. Shen (Springer, Ber-
lin, in press)] using a Gaussian-Markovian model in the limit
eo&&I gives a nonexponential FID signal but no evidence for
a linear FID signal.


