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A systematic investigation of N-level inversion schemes, with use of “chirped frequency lasers,”
in and beyond the adiabatic limit is presented. (1) It is shown that, contrary to intuition, the favor-
able scheme for adiabatic inversion requires that, during the process, resonances occur in reversed
order, i.e., first the (N —1)-N transition and then backward along the atomic-level ladder down to
the transition 1-2. (2) A new multilevel inversion process at fast rates (far beyond the adiabatic lim-
it) is found. Surprisingly, the process occurs for pulse area equal to 7 in spite of large (time-
dependent) detunings. Full analytic explanation of this generalized 7 pulse inversion is presented.
General new properties of the multilevel adiabatic approximation are also derived and discussed.

I. INTRODUCTION

The problem of achieving multilevel excitation is of
theoretical and practical interest in optical resonance
physics. The dynamical evolution of the three-level sys-
tem particularly has been. central to investigations' of
two-photon coherence,? resonance Raman scattering, dou-
ble optical resonance,’ three-level superradiance,4 coherent
multistep photoionization and photodissociation,” and
photon echoes.® Recently, specific experimental’ and
theoretical®® attention was given also to N-level adiabatic
inversion. This process consists of achieving N-level in-
version by means of a continuous sweep of the field’s fre-
quencies and/or envelopes. The term adiabatic means
that the field’s variations are slow enough so that a quasi
steady state is maintained all along the process. Of
course, this rate must compete with the existing relaxation
rates. Frequency-sweeping schemes may be found partic-
ularly efficient, compared to resonant excitation, when the
level scheme contains splittings and all the sublevels need
to be excited as, for example, is the case in laser isotope
separation processes. For N > 2, the adiabatic criterion al-
lows for many possibilities of the ordering by which the
various field-atom resonances (including multiphoton res-
onances) occur during the process.” It turns out that dif-
ferent ordering schemes lead to totally different evolution
of the atomic variables and consequently to a different
sensitivity of the adiabatic criterion to the sweeping rates.
This may be decisive in the success of the inversion pro-
cess. In the present work we present a systematic compar-
ison between various inversion schemes for a three-level
system, in a continuous range covering both adiabatic and
nonadiabatic regimes. We establish a previous statement’
that the favorable scheme for adiabatic inversion does not
follow the “intuitive’ order of resonances, i.e., the sequen-
tial order (1-2)—(1-3)—(2-3), but the opposite, backward
order.

Next we show that for intermediate schemes in which
all the three resonances occur more or less at the same
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time, there exists a wide range of very rapid rates, far
away from the adiabatic limit (where the adiabatic inver-
sion schemes collapse), in which revival of the inversion
process occurs. Surprisingly, these fast inversions occur
at pulse area equal to 7, in spite of large time-dependent
detunings. Full analytic explanation of this generalized 7
pulse is presented. The program of the paper is as fol-
lows. In Sec. II and Appendix A, we present definitions
and basic equations. The various adiabatic inversion
schemes are introduced and discussed in Sec. III. In Sec.
IV a systematic numerical comparison between these
schemes is presented. The behavior of the nonadiabatic
inversions is analyzed in Sec. V, using a new appropriate
integral representation of the Bloch equations. For com-
pleteness and convenient reference we present a general
discussion of the adiabatic approximation including mis-
cellaneous new results in Appendixes C and D.

II. DEFINITIONS AND BASIC EQUATIONS
The density-matrix equation of motion
ifip=[H,p] (1)

for an N-level chainwise connected system in the
rotating-wave approximation (RWA) takes the form

ip;+Aypij=Fij(p), 1<i,j<N )
with

Fiy=Q; _1pi_1,;—Qpij 1+ Qipi+1,; —Qj_1Pij—1 »

(3)

where (); is the Rabi frequency of the ith transition

0;=2d;&;/%, (4)
d; is the dipole matrix element between the states of levels
;'.izlr:jd i+ 1, &; and @; are the amplitude and phase of the
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N—1
E= 3 & explig;)+c.c. (5)

i=1

coupled to the ith transition, and A;; is the cumulative de-
tuning between levels i and j, e.g.,

j—1
A= Ajitrs (6)
i=1
Aji1=0;—of, . (7)
where
w;(t)=—@(2) (8)

and of is the atomic transition frequency between levels i
and i + 1, and the overdot stands for time derivative.

For convenience, we will also make use of another rep-
resentation of Eq. (2), i.e., we define the three
[ N(N —1)/2]-dimensional vectors

wy
Uz V12 w,
U3 U3 :
. . wN—l
U=| w3 |, V=| vz |, W=| ) 9
Urg Uog 0
Uy _1,N Uy 1N 0
where
Uiy =pij +pPji »
vy =—i(py—pji) , (10a)
ey . 1/2 )
w;=[2/jG+D1"* 3wy,
I=1
and
Wil =Prk —PIUl - (10b)
It is easily seen that Eq. (2) can be written as
U=—AV,
V=AU+QW, (11)
W=—QV.

Equations (11) have the same structure as the well-known
two-level equations except that, for N>2, A and Q are
matrices (given explicitly in terms of A; and ;, in Ap-
pendix A). The matrix A is symmetric and nonsingular,
containing the detunings A;; along the diagonal and Rabi
frequencies or zeros elsewhere. The matrix  involves
only Rabi frequencies and zeros and is singular.

III. ADIABATIC INVERSION SWEEPING
SCHEMES IN A THREE-LEVEL SYSTEM

The adiabatic evolution of a general mixed state follows
the quasisteady-state equation (see Appendix C)
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[H (2),p(1)]=0 (12)

and is consequently determined completely by the eigen-
values of the Hamiltonian (Appendix D).

For adiabatic inversion this requirement must be satis-
fied in particular for the ground state (at ¢t=0), and for
level N [p33(T)=1] at the end of the process (¢t =T). For
N>2 Eq. (12) allows many possible paths for adiabatic
inversion. In this work we investigate possible inversion
schemes for a three-level system.

The conditions necessary for full adiabatic inversion at
t =T are’

Au( = -—A23(0) ’ (13a)
Ax(T)=—A5(0), (13b)
91(0) <<A12(0), Qz( T) <<A23( 7, (13¢)

i.e., Ay; is to be swept through the point of two-photon
resonance and if the Rabi frequencies (); are not small
enough they must be pulse shaped. In particular, we
choose linear sweepings for A;; and symmetrical pulses:

Ap(t)=a —At , (14a)

Apy(t)=b —At, (14b)

Q;()=Q(t)=Q,, sin’(wt /T) (14c)
with

T=(a+b)/A. (144)

For simplicity, we also assumed positive initial detunings
a,b and equal Rabi frequencies with zero initial slope.

Our analysis considers three typical schemes.

(1) “Forward sweeping,” a < b; the resonances occur in
the intuitively favorable order (1-2)—(1-3)—(2-3).

(2) “Backward sweeping,” a >b; the order of reso-
nances is reversed, i.e., (2-3)—(1-3)—(1-2).

(3) “Intermediate sweeping scheme,” a ~b; all the reso-
nances occur approximately at the same time.

MHMWN l”
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FIG. 1. Nonadiabatic evolution of populations of a three-
level system, for Q;(z2)=Q,(¢z)=1 and A;5,(0)=0 [Ax(¢t)=—At,
Ay(8)=10—At, t*=10/A13(0)].
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FIG. 2. Adiabatic inversion in a three-level system for the
field of Eqgs. (14) with Q,=6, a=0, b=10, and A=0.1 (oscilla-
tory lines) and with Q,=6, a=10, b=0, and A=0.5 (smooth
lines).

Condition (13c) must be interpreted in the sense that for
adiabatic inversion the relation Q;(¢) <<A5(¢) must hold
as long as the ground state is almost completely popu-
- lated. Clearly for a given value of A3(0)=a +b, this
condition is better fulfilled by the backward-sweeping
scheme (a >b). For the extreme case of forward sweep-
ing with a=0, the laser pulse must not “start” [Q(¢) ~0]
until  Aj,(#) acquires significant size. Otherwise,
[H(t~0),p(t ~0)]540 and the atomic state does not be-
long to the steady-state subspace of the Bloch equations.
The atom then evolves in a nonadiabatic oscillatory
manner as demonstrated by numerical solutions for
Q;(t)=1in Fig. 1. Our sine squared pulse (14c), however,
may have a very slow start and allows adiabatic inversion
also for A,(0)=0. But, as seen in Fig. 2, the inversion is
less stable and slower than in the backward-sweeping
scheme. The conclusion is that the forward-sweeping
scheme is indeed less favorable for adiabatic inversion.
This statement is supported further in Sec. IV.

IV. NUMERICAL COMPARISON BETWEEN
THE VARIOUS INVERSION SWEEPING SCHEMES
NEAR AND BEYOND THE ADIABATIC LIMIT

In this section we summarize the behavior of the vari-
ous inversion sweeping schemes (14) as a function of the
sweeping rate A, in and beyond the adiabatic limit. We
have solved numerically the Bloch equations for various
values of initial detunings a,b with @ +b=10 and Q, =6.
The results, though specific, demonstrate the general
features of each sweeping scheme. In Fig. 3, the final
population of level 3, p§3:p33(T), is drawn versus the
sweeping rate A for the various schemes.

For backward sweeping with a=10 (b=0) we see in
Fig. 3(a) that the inversion is complete for A <2 and de-
creases gradually with A for A>2. As we increase “b” in
favor of “a” [Figs. 3(b)—3(d)] we notice the development
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population 033(T)
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FIG. 3. Final population of level 3 vs sweeping rate A, for
various sweeping schemes (Egs. (14), A* =[A3(0)/10]%).

ment of a “dip” in the full inversion region. This “dip”
increases with “b” and the peak on its right-hand side
(rhs) moves towards larger-A regions. As shown later on,
the process then becomes less and less adiabatic. As “b”
approaches “a” we enter the intermediate region a~b
[Fig. 3(d)] characterized by a large “dip” followed by a
wide range of complete and almost-complete inversion.
This revival of the inversion process at very short pulses
(large A) has the characteristics of a 7 pulse in spite of the
existence of large detunings. This new inversion process
will be analyzed in Sec. V.

For b >a (forward sweeping) new “dips” appear in the
shrinking adiabatic region and the peak on its rhs de-
creases. When “a” approaches zero [ 5=10, Fig. 3(a)] the
adiabatic region becomes completely oscillatory with A.
The new unexpected result of the systematic investigation
is the possibility of fast inversion in a continuous wide
range of sweeping rates A in the intermediate scheme.
The nonadiabatic nature of this range is shown in Fig. 4,
for a =b=35 and Q,=6. Figure 4(a) presents the evolu-
tion of the v;; coherences which constitute the absorbtive
part of the atomic polarization. The adiabaticity condi-
tion (12) is characterized by vij=0.9 In contrast, here v;;
are not small relative to u;;, in fact in this case v;; > u;;.
The degree of adiabaticity is best measured by the adia-
batic invariants which have a clear geometrical represen-
tation using the vector model description of the Bloch
equation (see Appendix B). In Fig. 4(b) the directional
cosines cosa; and cosine of the “following angle” X be-

~ tween the S vector and the T plane are drawn in compar-

ison with the adiabatic cosines (the straight lines). This is
another manifestation of the nonadiabatic nature of the
fast inversion case (A~7). Further, while cosX=1 is a
general adiabatic invariant, the directional cosines cosa;
become adiabatic invariants only for a =b, and Q;=.Q,.
This peculiar property is a result of a more general feature
of the intermediate scheme with a=»b and Q;=Q,
(Cook-Shore condition!®), which enables further detailed
investigation of the fast inversion regions beyond the adia-
batic limit, presented in Sec. V.
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' U=—AoV
Viz Va3 .
V=AgU + QoW , (17)
W=—QV.

o
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FIG. 4. (a) Evolution of the v;; coherences in a nonadiabatic
pulse [Egs. (14) with @ =b=5, Q,=6, and A=6.7] [for the full
inversion point of Fig. 3(d)]. (b) Evolution of the directional
cosines cosa; and cosine of the “following angle” X, for adiabat-
ic pulse [Egs. (14) with a=b=5, Q,=6, and A=0.1 (the
straight lines)], and for nonadiabatic pulse (same pulse with
A=6.7).

V. INVERSION BEYOND THE ADIABATIC LIMIT

The conditions @ =b and Q;=Q, of the intermediate-
sweeping scheme are a special case (for N=3) of the
Cook-Shore conditions!® for N-level systems:

Ajiv1=A4,
(15)
Q;=[i (N —i)]2Q,,
fori=1,2,...,N—1.

It was shown!"!2 that under these conditions, the
dynamics of the N-level system breaks down to N modes
which evolve independently. It was also shown!'? that one
of these modes contains three components and behaves
like a two-level system. Specifically, for our three-level
system with Q] -—Qz—‘/iﬂo, and An—Az:;-——-Ao, the three
combinations

U=s(up+uz),
V=5@p+v3), (16)

W=wy,
obey the familiar two-level-like equations of motion:

The inversion w;; of our three-level system in the
intermediate-sweeping scheme can therefore be analyzed
within the framework of the two-level-like equations (17)
with

A0=a —At N

Qo=0,;/V2=Q, sin’[7At /(2a)] , (18)
Q,=Q,/V2, a=5.

We start the analysis of the nonadiabatic fast inversion
process by noticing that it occurs at rate A [A=6.7, Fig.
3(d)], for which the pulse area

T
N D= [ Qdt=aQ, /A (19)

is equal to 7. This is rather surprising, since in the ab-
sence of sweeping, full inversion occurs at 9(7)= only
for resonant excitation (Ag=0), whereas in our case Ay(¢)
is large (@ ~Q). In order to reconcile this rather peculiar
finding we mtroduce a new integral representation of the
Bloch equation (17). Specifically, we used the Green’s-
function technique in a similar manner to Appendix C,
only here the source term is not Fj; as in Eq. (C1), but
A;jpij- The result is the following exact integral equation:

U(z)
S= | V(1)
W(t)

where S, is the usual on-resonance 7-pulse solution (in the
absence of the source term)

0
sind(¢) |, (21)
cosd(t)

=SI+SZ > (20)

SI=

and S, is the correction due to nonvanishing Ao,
- f (Ag/Q)V dd’
f (Ao/Qo)U cos(¥ —3)d ¥ | . (22)
%
[ (80/Q0)U sin(d’' —9)d ¥’

Sz=

In Egs. (21) and (22)
d(n= [ Qolr)dr’ . 23)

The variables U,V, W,A;,Q, in Eq. (23) depend on 3.
general |S(z)| = |S(¢)| =1, so that both S and S, rotate
on the unit sphere with 28;-S,=—S3. From this repre-
sentation it is clear that if at the end of the pulse (¢ =T7),
I T)=m and S,(¢)=0, full inversion occurs inspite of
large detunings.

The consistency of these conditions is easily verified.
Since Ay/Q, is antisymmetric around ¢t =772, if W is
also antisymmetric then it follows from Eq. (17) that U
and V are both symmetric and therefore S,(T) vanishes
yielding full inversion at H(7T)=m.
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FIG. 5. Evolution of S,=S—S§8, at the fast inversion point of
Fig. 3(d) (a =b=35, Q,=6, A=6.7).

This is demonstrated in Fig. 5 in which the evolution of
the solution for S, is shown to fulfill the required symme-
try (obeyed always for S;). Figure 5 also exposes the
dominant role of S,(¢) during the process so that apart
from the end points S,(#)5£0 and the behavior of the
atomic variables is completely different from that of a 7
pulse.

It should be noticed that this new inversion process lies
in between the two limits Q, >>a (7-pulse regime) and
), <<a (the adiabatic regime). A comparison between the
various regimes is presented in Fig. 6 which further sup-
ports the above analysis. All the full inversion peak
points occur at A values A, =a{},(2n —1)7 for which the
pulse area is 3(T)=(2n —1)m. The upper dashed line
corresponds to the case 2, > a for which the usual 7-pulse
characteristics are predominant. The solid line corre-
sponds to moderate (), ~a where the new inversion
points, discussed in detail above, occur. The lower dashed
line refers to weak (), <a for which the pulse area is
smaller than 7 for all rates A beyond the adiabatic regime
and no A oscillations occur.

VI. SUMMARY AND REMARKS

Resonant excitation may not be efficient in realistic sit-
uations where the atomic-level system is characterized by

1.0 T I T
A Q=32 /‘_lfilg B
y " ‘ , // ~<
\ Wi 3 4 N
Vo I /
0.8 \ AN ! I
vl ’
c | \ !
T \\ \ Il \ !
3 WA /
S oA ‘ ! 1
2 \ p \ /
E A\ \\ /
ol \\ \ // _
g N /
Q71 \ \\ /
N /
f— \\ \\/ ——1
\\
0 : [ ——ro=ees A
L 5 6

Sweeping rate A/ ).*
FIG. 6. Final population of level 3 for the Cook-Shore sys-

tem [Egs. (14), with @ =b=5] vs sweeping rate A for various
field intensities Q.
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large splittings. For such systems inversion schemes in
which the laser’s frequency is swept through the various
possible resonances may be advantageous. With this main
motivation in mind we have presented in this work a sys-
tematic analysis of various inversion sweeping schemes in
and beyond the adiabatic limit, for a three-level system.
We have shown that for the adiabatic case the intuitive
sweeping scheme for which the order of resonances occurs
in succession along the atomic-levels ladder is very sensi-
tive to the sweeping rates and is therefore less favorable
for inversion. Further, we have found a set of conditions
under which unexpectedly nonadiabatic inversion takes
place in a large range of fast sweeping rates avoiding the
necessity to compete with relaxations. This process was
examined and explained both by numerical solution of the
Bloch equations and analytically by a new integral repre-
sentation of the Bloch equation. For completeness we
have presented in the Appendixes C and D general new
properties of multilevel adiabatic approximation, namely,
the following: (1) Perturbation expansion which allows
first-order corrections to the adiabatic limit, and the
derivation of closed expressions for the first nonzero con-
tributions to the v;; coherence which govern the propaga-
tion of the laser pulses; (2) the connection between the
constants of motion of the Bloch equation and the adia-
batic limit is discussed yielding closed expressions for the
adiabatic solution for a general mixed-state case.
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APPENDIX A: MATRIX REPRESENTATION
OF THE N-LEVEL BLOCH EQUATIONS

The N-level Bloch equations (2) may be written in ma-
trix notation as follows:

U=—-AV,
V=AU+QOW, (A1)
W=—QvVv.

The vectors U,V,W were defined in Eq. (9), and ele-
ments of the matrices A and Q are given by

Ajp i =88kp A + 85 (S i — 1 Qe 1+ 8 i + 1)
8810y 185 412;) (A2)

and

Qe joier =0k, j 418k, j +1( — 850 + 85 ; _1B;) (A3)

with
a;=[2(j +1)/j1'% B;=[2( —1)/j1'%,

and where §;; is the Kronecker delta function.

Since each component of the vectors U, V, and W of
Eq. (10) is specified by a pair of indices jk satisfying
1<j<k <N, ie., j,k=12;2,3;...;1,3;2,4;..., these
pairs serve also for indexing rows as well as columns of
the matrices A and Q.
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For N=3 we have
A 0 Q,
A= 10 Ay —O
Q —Q; Ap

(A4)

APPENDIX B: THE GEOMETRICAL PICTURE OF N-LEVEL ADIABATIC FOLLOWING (REF. 9)

Equation (10) defines the N?— 1 components of the SU(N) coherence vector S,

S=(u12,U235 -+ s U13,U24y + « - 5V1250235 - + -

The Hamiltonian is represented by the vector TI':

r=('——01,~—02, c ey —QN_I,0,0,0, .« o ,O,AI,Az, ..

The Bloch equation (1) takes the form of a generalized
cross-product equation:

[8];=[TxS];= > finTiSk » (B3)

where fj; are the completely antisymmetric structure
constants of the SU(N) group and the I'; and Sy are the
components of I and S, respectively. The steady-state
subspace I of Eq. (B3) contains N —1 orthonormal solu-
tions I'y, Ty, . . .,y _, of the equation

'xX=0. : (B4)

These basis vectors are explicit in terms of the field pa-
rameters A;; and ; with zero v; components. The
motion of the vector S is a generalized precession around
the whole steady-state subspace, i.e.,

SXT;=0 forallj . (BS)

The angle X between S and its projection on I is given in
terms of the directional cosines cosa; =S I"; /| S | by

Nl 172
S, (cosa;)?

i=1

cosX = (B6)

The adiabatic solution is characterized by the adiabatic in-
variant X(¢)=0.
The directional cosines cosa; which are not adiabatic
invariants determine the adiabatic solution:
N—1
S= 3 cosa;(1)[;(2) . (B7)

i=1

For the Cook-Shore system the directional cosines cosc;
become additional adiabatic constants.

APPENDIX C: PERTURBATION EXPANSION
OF THE N-LEVEL BLOCH EQUATIONS
NEAR THE ADIABATIC LIMIT -

The criterion [ H (2),p()]=0 valid in the adiabatic limit
was obtained from geometrical considerations intuitively.’
However, a rigorous expansion of the Bloch equation near
the adiabatic limit, yielding the quasisteady-state solution

yWi,Wpy o v s

and
20, 0 0
0 0 0
yWh_1) . (B1)
AN . (B2)

as a zeroth-order approximation, was given only for the
two-level system.!* This expansion allowed an extension
of the solution beyond the adiabatic limit by taking higher
orders in the expansion giving also the validity criterion
for the adiabatic approximation.

In this appendix we present a similar treatment for the
N-level Bloch equations. As in the two-level case the
form appropriate for expansion near the adiabatic limit is
obtained using the Green’s function of the operator on the
left-hand side of Eq. (2) which includes only the field de-
tunings. The Rabi frequencies are all included in the
“source” term Fj;. The result is

ip;(t)= fow exp{i[d;(t)—¢;;(t —7)1}Fy(t —7)d T,
(cny
where
$;(0)=0 and ¢;(1)=A,(1) . (€2)

Equation (C1) is similar to the integral form used by
Crisp!® for the two-level system. It should be noticed,
however, that our Aj;(¢) include the phase modulation
terms. We now expand ¢,;(t —7) and Fj(t —71) for i =j
around 7=0 (for convenience we occasionally omit the in-
dices ij), i.e., :

ip= [ expliAn)r][1—(i/2)A(1)7*]
X[F(t)—F(t)r+ -+ - ldr
=—i S a,(n/liAD] ! (C3)

n=0

The coefficient a,(¢) is explicit in terms of the few
derivatives of F and A which contribute to the term 7.
When phase modulation is excluded a,(f)=[(—1)"/
n!](d /dt)F. In general for i=%j we obtain

Pij =(I/A,J){F,j(t)+(d/dt)[F,l(t)/lAu(t)]+R} N (C4)

where R involves higher derivatives of Fj; and A;;.
Equation (C4) resembles Crisp’s result, except here we

deal with an N-level system and our first-order term in-

cludes phase modulation [A;;=A;;(z)]. It is seen from
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Eq. (C3) that the series converges rapidly for large A
(A;j >>Q;) or if higher derivatives of A;; and Fj; are also
smaller. Intuitively, the first-order approximation
(neglecting R) is valid if

|(d/di)(Fyj/Ay;) | << | Fy | - (C5)

Equation (C5) is the adiabatic condition leading to the N-
level adiabatic solution.
The equations for the two leading orders of Eq. (29) are
Ayp)) —FiP'=0, i£j (C6)
and
Ao +p ) =F + FP —i(d /a)(FL /M), (CD)

where Fi(jk) :F}j(p(k)). Derivatives of (F,-(j”/A,-j) belong to
higher orders and were omitted.

It should be noticed that F;; with i£j depends also on
populations py; which must be solved directly from E%
(2) in consistency with Eq. (C6). It is readily seen that pﬁj)
is the steady-state solution of the Bloch equations (2), i.e.,

[H(1),p'"]1=0. (C8)
Combining Egs. (C6) and (C7), we obtain also
i(d/d)p®=[H(1),p'"] . (C9)

Equations (C8) and (C9) of the two leading orders de-
fine the adiabatic following approximation. In addition,
these equations also determine the first nonzero contribu-
tion to the v; coherences which are vanishingly small in
an adiabatic process, but govern the propagation of the
laser fields. The explicit expressions for vy in terms of
the zeroth-order solution pﬁ-})’ are obtained easily using the
notation (11) of the Bloch equations. The equations for
the two leading orders [viz., (C8) and (C9)] in this nota-
tion are written in terms of the A and Q matrices as fol-
lows:

Voo, (C10)
AUQ L+ oW P =0 (C11)
and
U(O)=__AV(I) , (C12)
VO_AUY oW =0, (C13)
WO _gv® (C14)
From Egs. (C11)—(C13) we get
VID=(A24+ 0 8) AU+ QW)
=(A2+00)"(AAIQ+ATIQ W@ . (C15)

The matrix (A24+Q Q) is nonsingular since A2 involves
the detunings A;; in all its diagonal elements and Q Q
does not involve Ay; at all. Since the matrices A and Q
are explicit (Appendix B), the v}jl) coherences are deter-
mined by the zeroth-order adiabatic solution.

Finally, we now introduce two by-products valid in the
adiabatic limit [Egs. (C10)—(C15)], i.e., the population’s
rate equation
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WO = _ZwW© (C16)
where
Z=U+MM)MM (C17)
with
M=A—'0, (C18)
and the population’s constant of motion
(d/a[W(I+M M)W]=0 . (C19)

For a two-level system, M =Q/A is a scalar and Eq.
(C16) can be easily integrated analytically yielding the
well-known solution Wif”r:A/(_Az+Qz)l/2. For N>2,
however, the matrices M and M do not commute and
direct integration of Eq. (C19) is not possible.

APPENDIX D: CONSTANTS OF MOTION
AND MULTILEVEL ADIABATIC FOLLOWING

The propagator of the densiity matrix p(t) is given by
p(D=UpO)UN), (D1)

where U(t) is the propagator of the Schrodinger state vec-
tor. It should be noticed that this propagator is valid for
the general mixed-state case and also for p(z) in the
rotating-wave approximation.

For Hermitian Hamiltonians (no decays) Eq. (D1)-is a
similarity transformation which leaves the eigenvalues 7;
of p invariant even though the Hamiltonian is time depen-
dent and does not commute with p. It is easy to see that
the set of constants of motion r; is equivalent to the set of
constants Tr[p()]" presented recently,'*' since

N
Trp"l= 3 r/

i=1

(D2)

for all n=1,2,...,N. Equation (D1) may thus be writ-
ten as

AN (p()A(1)=4T(0)p(0)4(0)=R , (D3)

where R is a constant diagonal matrix with R;; =8;r;.

Equations (D1) and (D3) are just formal representations
of the Bloch equation since solving for U(t) or A(¢) is
equivalent to solving for p(z). However, for the adiabatic
process [ H (¢),p(2)]=0 and both H and p are diagonalized
by the same matrix (if H is nondegenerate). The matrix
A(t) of Eq. (D3) is therefore constructed simply by the
eigenvectors of the Hamiltonian. In this case
U()=A(1)410) and Eq. (D1) gives an explicit solution
for p(2) in terms of the components of the Hamiltonians
eigenvectors. For the pure state p;;(0)=1 this solution
coingides with the dressed states of the Schrédinger equa-
tion.

The quasienergy of the adiabatic system is given in
terms of the constants of motion 7; and the eigenvalues of
the Hamiltonian A; by

E(t)=(y|H | ¢)=Tr[pH]= i rOA(2) .

i=1

(D4)

This quasienergy plays an interesting role in the geome-
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trical interpretation of the Bloch equations. Specifically,
it is equal to twice the scalar product S-T" (Ref. 9) and the
adiabatic directional cosine cosa; is therefore related to
the Hamiltonian eigenvalues A; by

cosa,(t)=+ > rOA()/|S ] | . (D5)
i
For the three-level system the characteristic equation is
3 .
2 a,~7»'=0 N
i=0
ao=Q%A12/4 5
a1 =Aply;—(Q]+035)/4, (D6)
ay=—(A1p+24),
az= 1 ’

and the eigenvectors belonging to A,,, m=1,2,3 are

Alm —Ql(}"m—A23)
Ao | == | 22 (Am —As3) |, (D7)
A3m " ""QZ)\'m

where D,, is the normalization factor.
If p(0) is diagonal, 4(0) is the unit matrix and the adi-
abatic solution is given by

pu=013 (A —A%) 0y, ,
P22=42 A'3'1()\'m —A23)20m ’

P=0 3 Ao s
(D8)
pr2=p21=—2R21 Z An(A —833)0/ ,
m
p23=p32=——20227&3,,(7&,"—/323)0m ’
p13=p31=91922km(}\m'—A23)0m ’

where
Om =pmm(0)/D31 .

The explicit expressions for the roots A,, of Eq. (D6)
are

A =2V'q cos[O+2mm/3]—a,/3,

g=(a2—3a,)/9,
(D9)

r=(9a,a,—27ay—2a3)/54 ,
Y=cos~r/q) .
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