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Atomic excitation by a multimode symmetric laser
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The excitation of an atom by a near-resonant-symmetric mode-locked multimode laser is solved in
the two-state rotating-wave approximation. An analytic expression of an unusual new form of reso-
nance is found and a simple experiment which could be used to observe the effect is suggested.

I. INTRODUCTION

Most calculations of atomic processes in laser fields
start from an ideal laser whose amplitude is given in di-
pole approximation by

E( t) =Eocos(cot +8)

or its circularly polarized analog where Ep, co, and 0 are
constants in time. Most experiments are performed with
multimode lasers with an amplitude which can be approx-
imated by

atomic states first for the case in which the parameters of
(1.3) are constants and then for the case in which the laser
is adiabatically turned on and off. We find a new kind of
resonance in the excitation process either as a function of
co, or as a function of the amplitude of the central mode.
Finally, we suggest and analyze an experiment which
could be used to observe the effect. The results can be
generalized to a multimode symmetric mode-locked laser
of the form [generalizing (1.3)]

E= Eo+Eicos(gt)

E(t) =gE;(t)cos[co;t+ 8;(t)], (1.2) N

+ QEJcos(jr)t+8t) cos(cot+8)
J =2

where the sum runs over the modes, and both the ampli-
tudes and phases are functions of time. If their variation
is slow on a time scale set by the atomic process under
study then the result based upon (1.1) can be ensemble
averaged' to get the result relevant to (1.2). If the varia-
tion of the parameters in (1.2) is too fast for this pro-
cedure to be valid then a more general, and more com-
plex, procedure can be used to describe the atomic pro-
cess. This technique relies upon an average over the many
modes of the laser at the outset of the calculation and
may obscure some of the physics in the process. The
treatment of the chaotic laser or the phase diffusion laser
in this way requires an average over the random phases in
(1.2) which suppresses the possible effects of mode beating
which occur with a mode-locked laser.

We shall investigate some of these effects analytically
by the consideration of a very special, but realistic, sym-
metric three-mode laser,

E= [Eo+E&cos(gt)]cos(cot+8) (1.3)

(g&&w) which is slightly detuned from a transition be-
tween two atomic states up, u~ with energies 8'p, 8'~.
The detuning is given by

bco=co (W~ —Wo)— (1.4)

which is assumed to be small compared to g. The cou-
plings between the two states induced by (1.3) are

A; =dp). E;, i =0, 1

where dp] is the dipole moment connecting the states.
In Sec. II the generalization of the two-state rotating-

wave approximation is performed to obtain the recoupled

II. TWO-STATE ROTATING-WAVE APPROXIMATION

The laser is almost resonant with the two atomic states
and weak enough so that the dynamic Stark shifts may be
neglected. Then a good approximation for the atomic
states in the laser field (1.3) is (A'= 1)

—i ( 8'o —d co/2) t —i ( Wl +he@/2)tg=uoe ' ct+u )e ' P, (2.1)

with all the 8J =0. This is described briefly for X =2 and
is easily generalized to higher X. Finally, the results are
discussed in Sec. III.

There is a long history of consideration of the effect of
multimode lasers on atoms: An-atom moving in a single-
mode standing-wave laser field will Doppler shift the two
equivalent traveling-wave fields differently so that in the
atom's rest frame the laser will appear to be bimodal.
Another example is the absorption of the beats of two dif-
ferent lasers by the nonlinearities of the atomic interac-
tion. " The response of an atom to a modulated laser field
has been considered in the context of phase-shift measure-
ments of lifetimes. Fluorescence in weakly modulated
laser fields has also been considered. The work closest to
this one, of which I am aware, by Agarwal and Nayak,
concerns the calculation of the nonlinear susceptibility of
a two-level atom in a bimodal field. The two modes were
described by a phase-diffusion model so an average over
the phases was performed. Nevertheless the numerical re-
sults showed that resonances in the absorption spectrum
as a function of (the analog of) g still survive. The work
presented here appears to be the first analytic description
of the resonances in the response of a two-level atom to a
multimode laser.
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where the parameters satisfy

i a = , A—p+,' b cp—a,

iP= —,A*a ——,
'

b,co P,
where

A =dp1 (Ep+ EIcosrit)e'

(2.2)

(2.3)

i = —,J„(AI/I)) t cos[(A/b, cp)r]cr,
. dB

+sin[(A/hco)r]cry I 8
t(Q/2 t)ro)oo„t—(Q/2 pro)oo„= —,J A)/I) e o.,e

(2.12)

The phases of the states uo and u~ may be adjusted to
make A real so that this can be written

It is easily shown that the solution to (2.12) is

(i/2)Qttr„(i' /—2)(t)to J a +Qtr„)t8 t=e "e (2.13)
A( t) =Ap+A(cos(rit) =A*(t) .

If we define a column matrix

(2.4)

which results in

(2.5)
(1/2)[Qt P(t)]cr„—

/I t=e

then (2.2) can be written

i/I = —,
'

I [Ap+A(cos(I)t)]cr +Act) cr, I/I, (2.6)

&&e
" ' " /I (0)[1+0(ba)/I))] .

(2.14)

where the cr; are the usual 2)&2 Pauli matrices. This
equation can be rewritten as a single second-order linear
differential equation with periodic coefficients. The
machinery of Hill's determinant is then appropriate for
the explicit solution. This leads to numerical calculations
which are more general but not as illuminating as the ana-
lytic results obtained below. Therefore, the substitutions

e=[(bcp) J,(A(/I))+0 ]'/ (2.15)

and substitute back into (2.1) with the result

One can carry through the algebra implied by the ex-
ponential operators with the aid of the definition

—(i /2)go.A=e

/=Apt+A(/risin(hatt), r=bcpt,

yield

1 = T( iCTCO(tS)+yCsrl pn)B
. dB

d7-

(2.7)

(2.8)

It)=a(0)gp+p(0)QI,

where

—i ( 8'O —hco/2)t
Itrp ——x((t)u()e

—i( W&+he@/2)t—x2(t)e 0)

(2.16)

(2.17)

where we can write
It) 1

—X2 ( t )u p e
—i ( O'O —b co/2) t

, cosp= g c so[( Ap+n )Ilrb/c]p, (2.9a)

—i ( 8'& + Ace /2) t+x I (t)e u(

and where

sing = g sin[(Ap+ n11 )1-/i((cp] . (2.9b)

For general n the terms in the sum in (2.9) are rapidly
varying functions of r and will contribute terms of order
Act)/(Ap+nI)) to 8 which is small. However, there is a
particular integer n =v where this may be significant.
We define

2X2—
Aco J

(cosg+ —cosg )
E

i ( 1 —II—/e) sing+ i ( 1+II /e—)sing

2x1 ——(1—II/e)cosg++ ( 1+0/e)cosg
Ado J~+i (sing+ —sing ),

(2.18)

v= —[Ap/ri] (2.10)
with

which is the integer closest to —Ao/g. That term may
contribute significantly if g (t)= —,

' [P(t)—(II+e)t] . (2.19)

(2.11)

is much smaller than 11 and if J (AI/I)) is not small. We
retain only this term in (2.8). Then

The states gp and Itr) are each normalized to unity and are
orthogonal to each other. For t =0, chirp= up alld l/i)= 111. '

We may ask for P„ the probability of finding u1 in I)/p

at some later time:
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P, (t) =
i
xz(t)

i

'

1 — 1+—cos(2( )
1

2 2E E

+ 1 ——cos(2$+ )
Q Q
2E E

2(bco) J,
cos(g++ g ) (2.20)

This can be rewritten by using a relation similar to (2.9)
with the result

Aco J~
P&(t) =— 1 — gJ„(A&/g)cos[(n —v)z)t]

2

Q 01+—QJ„(A&/z) )cos[(n v)ri—t+ et]
2E E

0 0
1 ——QJ, (Ai/z) )cos[(n v)rit e—t]—

2E E

(2.21)

The time average of this is

(2.22)

which exhibits a resonance behavior at Aco=O with a reso-
nance width given by

I Q
(2.23)

The sign of the contribution to the structure in I'& de-
pends upon the sign of J . There is also a resonancelike
structure as a function of Ep (via Ap in 0). It is not a re-
sult of the dynamic Stark effect which can also induce
resonances as a function of Ep.

This is a rather unusual form for a resonance structure
but we can provide some qualitative understanding as fol-
lows. Suppose A& is very small, then we return to the usu-

I

al problem of an ideal laser and a two-state rotating-wave
approximation. The result is a pair of "dressed" states
separated in quasienergy by essentially

~
Api. A weak

probe laser (A&) can resonantly connect these states and
there will be a rapid variation of the probability of this
connection with the probe laser frequency (z)) near
z) = i Ap

~

. Equation (2.22) may be thought of as the non-
linear generalization of this process.

We now turn to the generalization of these results to
the case of the adiabatic switching on and off of the laser
amplitude. Then Ap and A& become slowly varying func-
tions of time which vanish for t~+ oo. This can be in-
corporated in the results above by the replacement
A; +A;(t) a—nd A;t~ f dt'A;(t') iq all the above re-
sults. This implies tfat et~ f dt'[e(t') e(—oo )]
+e(oo)t. The errors incurred are of orBer T ' where T
is the time scale of adiabatic variation of A;(t). There is
an additional time dependence entering through v which
depends upon Ap, (2.10), in a discontinuous fashion. This
will introduce corrections to the adiabatic solution which
are proportional to v which is not small at the points of
discontinuity of v. The difficulty can be avoided by stipu-
lating that v is a constant. This can be achieved by limit-
ing v( z or by making q-Ap(t) so that v is a constant.
This adiabatic variation of q [see (1.3)] is then handled by
the replacement rit~ f dt'ri(t') in all the equations
above. (This mathematical device may in fact make the
analogous experiment too difficult to perform. ) Then, in
summary, the results described above may be carried over
to the adiabatic switching case with these replacements
(with errors of order T '), the only change being that for
t= —oo, gp ——up and gi ——ui.

An experiment which can be used to investigate these
phenomena can be performed by using a second weak
probe laser [E'cos(co't)] to excite the transition from u

&
to

another state u2. Then the radiative decay of u2 can be
monitored as a function of the parameters of the system.
The transition u] —+u2 can be treated by first-order per-
turbation theory (Fermi's golden rule) as a transition from
the state dressed by the first laser, Pp, to uz. The main
contribution to the result comes from the u] component
of Pp which after some manipulation, yields a matrix ele-
ment

(uze ', d E'e '"'gp) = —dzi. E' —g 5( ~zi —co' —,
' bco+ —,

'
z)(n —v) ——z 6)

2 ~

b,co J„(A,/z) ) —1+—J„(Ai/2z) )

b,co J (Ai/z)) —1 ——Jz, „(Ai/2z) )
E'

+ 5( Wzi —co' ——,b,co ——,ri(n —v)+ —,
' e)

hco J,(b, i/z) ) + 1 ——J„(Ai/2z) )

Aco J (Ai/z))
+ 1+—Jz „(Ai/2z)) (2.24)
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Barring accidental degeneracies (which lie outside the
scope of this calculation) each of the energy delta func-
tions yields a contribution which adds incoherently with
all the others. For example, the weak laser can be tuned
so that it selects only the n =v terms. Then the transition
rate to u2 is proportional to

2

~

d2].E'
~

J„(A]/2g)[ 5( W2t c—o' —,' Aco——,' e—)

. dB
l

d7.
n2

2„,(At/g) J„,(A2/2g)e

—i(Q/2 h~) g~„X O.ze

which is a simple generalization of (2.12) with

J„(At/g) gJ 2„,(At/g)J„(A~/2g) .

(2.31)

(2.32)

+5( W2t —~' ——,&~+ —,e)]

(2.25)

Other values of n yield somewhat more complex forms
but they all have the e dependence which yields reso-
nance at Ace =0 with width

Then the subsequent equations of this section can be car-
ried over with this simple modification. The solution for
higher values of N in (1.6) can be obtained in a similar
way. Equation (2.32) is an indication of the complexity of
the nonlinear combination of the various modes in (1.6) to
form the resonance in the excitation.

I /2=
i
Q/J„(At/ri)

i
(2.26)

III. DISCUSSION

A) A2
P =Aot + sin( gt) + sin(2gt +82),

2n

and (2.9) becomes

cosP= g J„(A&/g)J„(Az/2g)
n), n2

Xcos[(Ao+n )+t72n g)2t+n 0 2],2

(2.27)

(2.288)

as in (2.22). This may indeed be a measurable result.
Incoherent effects such as collisions and fluorescence

can be inserted phenomenologically but this is unneces-
sary if the transitions are saturated by the laser and if the
experiment is performed with a short-pulsed laser. The
deductive investigation of fluorescence is a nontrivial
problem.

We now turn to the generalization to more modes with
a laser of the form (1.6) with K =2. Then the new P in
(2.8) is

There are some interesting implications of the results
obtained above. For example, with a single-mode laser
the probability of finding the excited state when we start
from the ground state is

1 (b co)

(b.co) +A
(3.1)

The excitation is effective over a frequency band given
roughly by Ace-+A and A is interpreted as the "power
broadening" of the states. For a broadband laser it is not
at all clear as to what the power broadening should be.
How much can (the central frequency of) the broadband
laser be detuned and still give significant excitation?
Equation (2.22) yields a result

~

0/J„(At/g)
~

for the
power broadening defined in this way. (Note that the con-
straint

~

b,co/g
~

&& 1 is built into the theory of the outset. )
For a weak laser we obtain v=O, A~/g && 1 and

sing= g J„(A,/rt)J„(A2I2g)
nl, n2

1—r=
2

0
J ~ JAo/

X sin[(Ao+n tg+2n2g)t+n202], (2.28b)

The argument leading to (2.11) is unchanged so we must
now select the slowly varying terms arising from (2.28)
given by

so the single-mode laser result is recovered. [Note that
At/g«1 is precluded for all but v=O by the require-
ment given below (2.10).]

The theory of Sec. II is only valid when Q &&q, other-
wise the terms dropped in solving (2.8) are the same order

n ) +2ll2 =V

so that the generalization of (2.12) becomes

(2.29) TABLE I. Width
~

1"/2Ao
~

(2.26) for various values ofI=
~
Ao/q

~

and Ao/Ai.

+(i/2)( A~/hco+ n 282) cr
Xe Oz

—(i/2)(Qv /ha)+n282)Xe (2.30)

The n2 dependence in the exponentials in this equation
precludes a simple solution for B. However, if the five-
mode laser is specialized to 02 ——0, then (2.30) becomes

2.2
2.1

1.9
1.8
1.2
1.1
0.9
0.8
0.2
0.1

—2
—1
—1
—1
—1

0
0

Ap/A& ——2

0.67
0.38
0.50
1.17
0.58
0.34
0.51
1.28
1.00
1.00

Ap/A2 ——1

0.23
0.13
0.16
0.36
0.33
0.19
0.27
0.68
1.01
1.00

Ap/A) ——0.5

0.36
0.15
0.13
0.25
0.32
0.16
0.19
0.44
1.04
1.01
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of magnitude as those retained. Within this constraint we
may investigate the width, (2.26), in units of Ao for vari-
ous values of Ao/A~. This is shown in Table I for various
values of X=

~
AQ/7/

~

and v [Eq. (2.10)]. Integer values
of X are omitted since I =0 and the result (2.25) is also
zero for that case.

We see that I /2Ao is essentially unity for a very broad-
band laser (X=Ao/g«1) which is the usual single-
mode-laser result. As X is increased, and the side modes
couple more strongly, the width tends to decrease.

These results have been derived on the basis of a mode-

locked symmetric laser [(1.6) with OJ =0]. It is not at all
clear how they would change when the symmetric and
mode-locked restrictions are removed. We hope to inves-
tigate this in the future.
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