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The spectrum for absorption and emission of radiation by colliding atoms or a diatomic molecule
is calculated for spectral regions dominated by an avoided level crossing. Example processes are ab-
sorption during an atom-atom collision with separation to either crossing atomic state, total absorp-
tion to both crossing states, and spontaneous emission during a collision with either state initially
populated. Absorption and emission by bound diatomic moIecules (including photodissociation) is
described by the theory, and as an example it is applied to the Cs2 3-Xband. Spectra due to single-
velocity and impact-parameter collisions, as well as thermal and impact-parameter averages, are
given. The shapes of the resulting spectra are parametrized by the interaction strength (or excitation
transfer probability) between the crossing levels and the slopes of the ground- and excited-state po-
tentials (assumed constant) in the region of the level crossing. The theory is applied to two observa-
tions of such regions that have been reported. We conclude that measurements of spectra in the re-
gion of level crossing is a very powerful diagnostic of the potentials and transfer probability in the
level-crossing region, which is responsible for most inelastic atom-atom energy-transfer processes.

I. INTRODUCTION

Theories are available that describe the pressure
broadening of atomic lines (also called "radiative col-
lisions") under essentially all conditions, but these reduce
to simple, widely applicable forms in only two limits: The
impact theory describes the line core and the quasistatic
theory the far wings of the line. ' The shape of the line
core is primarily related to the long-range collisional in-
teractions and normally is described in terms of perturbed
atoms. The far wings are related to the close-range adia-
batic molecular potentials and can also be described as
continuum molecular spectra or spectroscopy of the col-
lision complex.

The quasistatic theory for the far-wing intensity is
closely related to the classical Franck-Condon principle
and is apphcable only to adiabatic molecular states which
are not significantly coupled to other states by the nuclear
motion. Inelastic (electronic-state-changing) atom-atom
collisions deal with a situation where there are nonadia-
batic couplings between these adiabatic states. When
these nonadiabatic couplings occur across a relatively nar-
row range of internuclear separation R, they are generally
described in terms of level crossings or avoided leveI
crossings. This model is based on the Landau-Zener
theory in which the diabatic states cross at R„but due to
the coupling between them the adiabatic states undergo an
avoided crossing in this region. The Born-Oppenheimer
violating terms, due to the non-negligible nuclear velocity,
cause a breakdown of the adiabatic approximation and
thus transitions between adiabatic states in the regions of
avoided level crossings. These terms also invalidate the
quasistatic theory in the spectra1 regions associated with

these level crossings. The Landau-Zener description of
the transition probability in this crossing region is one of
the most widely used theories in atom-atom collision pro-
cesses. We use this simple model for the potentials and
interactions here as the basis of a calculation of the spec-
trum associated with this level-crossing region.

Since these avoided level crossings are responsible for
energy transfer in most inelastic atom-atom collisions,
and for predissociation and other processes in diatomic
molecules, this is a very interesting region to diagnose
spectroscopically. It is the purpose of this paper to pro-
vide a general theory for the spectrum absorbed or emit-
ted in the wavelength regions corresponding to these
avoided level crossings. This theory is intended to provide
a general basis for analyzing spectra in such regions and
to note the exceptional diagnostic power contained in such
a spectrum.

We are limiting the present calculation to linearly
changing potentials and a constant interaction in the re-
gion of the level crossing, in the same manner that the
Landau-Zener approximation handles such crossings. The
Landau-Zener theory also considers the nuclear motion as
a constant-velocity straight-line path, just as in the origi-
nal "classical path" approximation to line-shape theory,
and we also use this approximation here. It is our belief
that these are a rather good approximation if they are
handled in the following manner. The quasistatic spec-
trum I(co)~ of the radiatively coupled diabatic state,
which would have applied in the absence of the perturbing
(crossing) state, is multiplied by a factor L(co) calculated
here, which contains the effect of the crossing. Since the
crossing is highly localized in R and frequency co, the ef-
fect of the crossing can thus be accurately represented.
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The quasistatic spectrum itself accurately reflects the ef-
fects of the actual motion and potential shapes outside the
crossing region and of the diabatic states everywhere ex-
cept in the region of a classical satellite. ' In this sense the
theory here presented is a very general theory, which can
be applied to many situations without the need for de-
tailed computer calculations.

With the above I. (co) approach the approximation of
straight-line, constant-velocity motion in the crossing re-
gion is valid if the nuclear kinetic energy is large com-
pared to the changes in potential in the crossing region
(i.e., kT » V~z, where V, z is the interaction between the
crossing levels). The quasistatic spectrum itself contains
the exponential distribution factor representing curvilinear
paths and the effect of the changes in potential upon the
nuclear motion outside the crossing region. Thus, this
calculation has applicability to bound-free, free-free, and
bound-bound diatomic spectra as long as most of the
states of nuclear motion do not have turning points in the
neighborhood of R, . This includes atom-atom collisions,
molecular photodissociation, and molecular band shapes.

Some spectrum calculations that include nonadiabatic
effects have been carried out for specific diatomic cases,
but these involve a full solution of the coupled-state
Schrodinger equation for the nuclear wave functions,
Franck-Condon integrations of these computer solutions,
and sums over angular momentum. Thus general insights
are not easily obtained from these, nor are they generally
concerned with isolated level crossings. It is our 'intent
here to show the general features for isolated crossings for
many cases of interaction strength ( V~2) and potential
slopes, so that the entire class of such experiments can be
analyzed from these calculations.

As examples of the use of the theory presented here we
will apply it to two measurements of spectra which show
evidence of an avoided crossing. ' We will not apply it to
a Xe2 case that has been reported recently, due to uncer-
tainty regarding the associated potentials and transition
moments. Other examples doubtless exist, and it is our
belief that many other cases could and should be observed,
as this is a very powerful method for diagnosing the
crossing region.

In Fig. 1 we give an example of an avoided level cross-
ing and two bands which it influences. These hypotheti-
cal ¹Krpotentials are modeled after those calculated by
Pascale and Vandeplanque, but with slight changes to
better illustrate the issues of interest here. The 5PX and
6SX adiabatic potentials in Fig. 1 undergo an avoided
crossing at R„and we have indicated by dashed lines the
diabatic-state potentials in this region. Also shown in the
figure are the radiative transitions corresponding to strong
dipole moments from the 6SX diabatic state and the 5PX
diabatic state, the former being in the visible and the
latter being in the uv region. The quasistatic spectrum,
due to each of these transitions between a pair of diabatic
states, has a single-valued relation co(R) = [V;(R)
—VJ.(R)]R ' between the optical frequency (co) and the
internuclear separation (R), where V;(R) refers to the
upper, and Vz(R) to the lower, molecular diabatic state.
The absorption or emission spectrum in the wings is given
by the well-known quasistatic-theory result, for emission
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FIG. 1. Hypothetical Na-Kr adiabatic potentials represented
by solid lines, diabatic potentials by dashed lines, and strongly
allowed radiative transitions by vertical lines.
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Here nz~;) is the density of atoms A in state i that con-
nects to the diabatic state i, and n~ is the density of
species B. I (R} is the spontaneous emission rate between
the diabatic states i and j, and g; is the statistical weight.
(This expression also applies to stable diatomic molecules
with appropriate relations between nzz~;) and n~~;)n~. )

Equations (1}are applicable when the relative population
of nuclear motion states is characterized by a temperature.
The avoided crossing at R, changes this diabatic quasi-
static spectra in the frequency region near co(R, ).

1n this Na-Kr example, one could excite in or detect
emission from any of the bands that connect to the 6SX
or 5PX states. For example, following uv absorption
(during a collision) from the XX ground state to the cou-
pled 6SX and 5PX states in the crossing region one could
observe fluorescence from the SP (or 6S) atomic state.
Conversely, if the 5P (or 6S) atomic state were optically
excited one would observe this same uv spectrum in emis-
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yield the spectrum for spontaneous emission during a col-
lision, after either of these atomic states is initially popu-
lated. Within these possibilities one obtains a different
crossing-region spectrum if one absorbs further in the
wing than the crossing frequency and observes emission at
the crossing frequency. This corresponds to absorption at
R &R, followed by a single traversal of the crossing re-
gion. Photodissociation of a bound molecule is also
described by this "single-crossing" spectrum. On the oth-
er hand, absorption at to near co(R, ) with separation to an
atomic state involves two transversals of R, . We add the
spectra from these two crossings incoherently in the
current theory due to the phase cancellations that normal-
ly occur in impact parameter ( b) and velocity ( vz )

averaging.

II. THEORY

It is well known' '" that if the nuclear motion is taken
to be a constant-velocity, straight-line (classical) path dur-
ing a collision the Franck-Condon integral for the spec-
trum, taken over WKB nuclear states, reduces to

f
dt's'(t)pP~(t)e'"'

for a transition of frequency co be-
tween well-isolated electronic states a and a'. The far-
wing emission intensity is determined by a single collision
during thy time of interest and can then be expressed as an
average over the spectrum due to complete, isolated col-
lisions that occur at t =0:

2coI(tp)=, f dt(P (t)
~ p ~P (t))e'"'

31TC
(2)

av

where the average is over impact parameter and velocity,
weighted by the probability of occurrence per unit time.
Here

P (t)=X (R,r„r2, . . . , r„)

&exp —i R ' U t' t'

sion, modified slightly by the different ( klkp) factors and
different V(R) in the exponential factor of Eqs. (1).

In Fig. 2 we qualitatively show an expanded view of the
relevant Na-Kr difference potentials from Fig. 1, and the
associated spectra. The spectra represented by dashed
lines are the quasistatic spectra corresponding to the
strongly allowed 5PX-3SX and 6SX-3PX diabatic-state
transitions. As described previously, we represent the ac-
tual spectrum as being the product I(tv)~ L(co), where
L(tv) contains the effects due to the avoided crossing.
Qualitative shapes expected for spectra have been drawn
as solid lines on the left side of Fig. 2, where four spectra,
labeled i-j, are shown. In an emission experiment, the
first state (6S or 5P) is the initially populated atomic
state (at large R), and the second state (3P or 3S) is the
final state after emission of a photon Th. e wavelength re-
gion of the observed emission band determines this final
state. In an absorption experiment, 3S or 3P is the initial-
ly populated atomic level and 6S or 5P is populated after
absorption of the wavelength shown in the figure. In this
case the final state (6S or 5P) is detected by its fluores-
cence of an atomic line.

The essential features of these spectra are the appear-
ance of satellites due to the adiabatic potential extrema
and a step in intensity due to a small probability for "hop-
ping" from one adiabatic state to another (corresponding
to a small probability for remaining in a given diabatic
state). For the spectra shown in Fig. 2 this intensity step
is about a factor of 10, corresponding to a 10%%uo hopping
probability. The spectrum for total absorption from the
3S state is just the sum of the 6S-3S and 5P 3S spectra-
and similarly for total absorption from the 3PX state.

The results of this paper are thus presented as spectra
that describe absorption from a lower adiabatic state fol-
lowed by separation to either or both of the crossing
states. As already noted, the same L (co) multipliers also
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FIG. 2. Na-Kr difference potentials (right side) and the re-
sulting spectra (left side). The dashed line on the left is the
diabatic-state spectrum and the solid lines qualitatively indicate
the spectra for absorption or emission between the states indi-
cated.

is the diatomic electronic wave function with the nu-
clear coordinate given by R =(b +u&t )'~, with im-
pact parameter b and internuclear velocity u~,
X~(R, r&, r2, . . . , r„) is the electronic-state wave function
for fixed R; and the av subscript refers to an average over
collisions. This only applies to isolated states, which we
identify as the diabatic states in the present case. The
quasistatic spectrum [Eqs. (1)] for isolated states is ob-
tained by evaluating Eq. (2) with the stationary phase ap-
proximation, then velocity and impact-parameter averag-
ing, although the exponential distribution factor is lost by
taking straight-line collision paths. ' ' Or alternatively,
Eqs. (1) with the exponential factor can be obtained
directly from the Franck-Condon integrals with WKB
wave functions, as done originally by Jablonski. "

This time-domain picture of the classical path is shown
diagrammatically in the top half of Fig. 3 for the Na-Kr
collision example. We will now label the molecular states

as Pp and Pp for lower states of the radiative transi-
tions and P~ and P2 for the diabatic crossing states. $2 has
a transition dipole moment p20 and p2O to states 0 and 0'
and P~ has transition dipole moments p&p and p&p.
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during the course of a straight-line, classical-path Na-Kr atomic
collision, as indicated at the top of the figure.

When the nonadiabatic coupling of states 1 and 2 is
considered, the emission spectrum to state 0 associated
with the crossing region is given by

2

, I di(0o(r) I~ IWr))""'
3&C av

(3)

where

P(t)= B (it) X(iR„r ir ,2. . . , r„)

+B~(r»z«. ri rz (4)

With these matrix elements, substituting Eq. (4) and the
form of p(t) given below Eq. (2) into Eq. (3) yields for the
transition to state 0

is now the superposition of X,(t) and X2(t) that results
from a collision of initially separated atoms that approach
in one of these diabatic states. (The radiating atom 2 is
initially in the atomic state 2 or I and a portion

g,i/g, «m, , of the collisions follows the particular diabat-
ic state of interest. ) We assume the lower states are isolat-
ed at R =R„so that Po(t) and Po (t) adequately describes
them. In Eq. (4) we have approximated the spatial part of
the diabatic wave functions by their values at R =R„' this
is equivalent to choosing @20, pro, p~o, and p~o, as well as
the interactio~ strength V~2, to be constants. The transi-
tion dipole moments are defined by

(X;(R„rir2, . . . , r. )
~ p ~ X,(R.,ri r~~

The subscripts on I(co) indicate that this is the spectrum
due to a transition from initially populated state i to state
0, and Bi(t) and B2(t) must be evaluated for this initial
condition.

The probability amplitudes for the adiabatic states are
indicated diagrammatically as

~
ai (

and
( az

~

in Fig.
3. As noted previously, the full emission spectrum for
collision with state 2 initially populated comes from both
of the R, -region crossings, shown in Fig. 3, and we add
the spectra incoherently. Thus, for the example of state 2
initially populated, as shown in Fig. 3, we calculate the
spectrum due to a single R, -region transversal with a pop-
ulation

~
a2

~

=1 initially in state 2 at R &&R, . We then
add a single-crossing spectrum due to

~
ai

~

=P initially
at R «R, and then add the single-crossing spectrum due
to

~
a2

~

=1 I' initially —at R &&R, . By time reversal,
this same composite spectrum describes absorption from
state 0 with separation to state 2. Qf course, an
equivalent calculation applies for separation to state 1.
Since a great deal of insight is gained from single-crossing
solutions, and they also apply directly to photodissocia-
tion of stable molecules or absorption at R &R, followed
by emission at R -R„we will show many single-crossing
spectra as well as these full "two-crossing" spectra.

An expanded view of states 1 and 2 in the crossing re-
gion is indicated in Fig. 4. Here we choose notation
U~(R) to indicate the diabatic-state potentials, V;(R) for
the adiabatic-state potentials, and Vi2 for the interaction
between diabatic states 1 and 2 (X i and X2);
F; =d U~(R, )/dR, are the slopes of the diabatic potentials
in the crossing region. The Hamiltonian matrix elements
in this approximation are given by

(Xo
~

H
~
Xo) = Uo Eo+Fo(R —R——, ),

(X, iH iXi)=U, =E,+F, (R —R, ),
(X, ~H ~X,)=U, =Z, +F,(R —R, ),

We will now calculate the spectrum due to a single
crossing of R =R, at i =ti in Fig. 4. In the limit of a
weak radiation field, being considered here, the following
state-1-and-2 coupled equations then result from time-
dependent perturbation theory in the crossing region:

iiri8$ ——[Fiu (t ti )+Eg]Bi+Vi/B—/,

ifiB2 ——[F2u(r —ri )+E,]By+ Vi2Bi .

In Eqs. (8) we have made the substitution R =R,
+u(t ti) where u =u—~(1 b /R, )' (see Fig. —3). Note
that this corresponds to passing through R, from small R
to large R as in the second crossing of Fig. 3. We can re-
move the E, terms corresponding to the center of the
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Integration of Eqs. (10) from t = —ap to ap yields the
well-known Landau-Zener expression for the probability
P of hopping to a different adiabatic state in traversing
the crossing:
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FIG. 4. Expanded view of the potentials in a crossing region.

8;0(t)=8;(t) exp iso, t+ih ' f Up(t')dt'

crossing region from Eqs. (8) by including this in new

8;p(t) coefficients. We can also simplify Eq. (6) by in-
cluding the time dependence of $0(t) in these 8;p(t). Thus
we define

P =exp( —2my), y= Vi2(&U
I F2o —Fio I

) (12)

To obtain the single-crossing spectrum we cou1d evalu-
ate Eqs. (10) for the 8;0(t) that result from one state (2 or
1) initially populated at t = —ap. These 8;p(t) would
then be used in Eq. (11), which Fourier analyzes them to
obtain I(tp). These I(co) then have to be averaged over
impact parameters and collision velocities to obtain a
thermally averaged spectrum. The amplitudes 8;(t) are
rapidly oscillating functions, as is the exp[i (to —co, )t] fac-
tor in Eq. (11). Thus Eqs. (10) and (11)must be evaluated
with considerable care to obtain accurate solutions. A far
easier procedure can be followed, which saves a factor of
& 10 in computer time, by recognizing that the integral
in Eq. (11) represents the Fourier transform of the time-
dependent amplitudes 8;0(t). Thus it is much more direct
to transform Eqs. (10) into coupled differential equations
for the Fourier-transform coefficients c;0(cp) of the 8;p(t),
and then the spectrum is given by the squared value of
these coefficients. In particular, we define

c'Q(co) = f 8;0(t)e ' dt (13)

Then Eq. (11) becomes

2a4r(~)=,
I v20C20(~)+I i~»(~) I'. . (14)

37TC

Multiplying the coupled equations (10) by exp[i (to to, )t]—
and integrating over time then yields coupled equations
for the c;0(co):

. ~cio
I F2o —Fio I

l
~ ) F ( PC10+C20) ~

10

(15)

where co, =(E,—Ep )/it. We then obtain from Eqs. (8)

i~io=FioU(t —ti»io+ Vi282o

11%820=F20U (t —ti )82p+ Vi28ip

. l)C20 IF2o —Fio I

F (cip Pc20)
20

(10) where

P=fi(co to, )/Vi2 . —
where Fl0 Fl Fp. With ——these—substitutions, Eq. (6) be-
comes

I (to) =
4 ~ 2

3
t p2 20 t +pl 10

3&C RV

where the time limits + oo correspond to the R we11 out-
side the crossing region. The solutions 8&p(t) from Eqs.
(10) in Eq. (11) yield the spectrum. By this substitution
we liave shown that only the slope differences F20 and

Fio influence the spectrum, as expected since this is just
as in the ordinary theory for isolated states where only po-
tential differences are relevant. ' Consequently, we will
classify the various spectra in terms of these slope differ-
ences, and for easy conceptualization we will use diagrams

In obtaining Eqs. (15) an integration by parts is taken and
the product function at the integral limits t ++op is-
dropped, since it oscillates rapidly about zero. For p in
the region of interest the c;0(p) solutions of Eqs. (15) do
not oscillate rapidly and Eq. (14) requires simply adding
them and taking their absolute value. Thus, reliable solu-
tions were obtained easily with a Runge-Kutta algorithm
and a laboratory minicomputer.

The slope differences appearing in Eqs. (15) may be
written in terms of an average slope (Fp) a slope differ-
ence ~0, and a ratio s0. Allowing for the j=0 or 0'
lower 1evel, we define

sj. = (FJ ) /~FJ, (F, ) =(F,+F J )/2,
(16)

b,Fl = (F2 —Fi )/2 .
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. ~c20 2yi = (Cip PC20)
c) $0+ 1

(17)

There are now two classes of solutions. In the first case
F2p & 0 & Ftp or

~
sp

~
& 1, and the adiabatic-state differ-

ence potentials have an extremum in the level-crossing re-
gion [Fig. 5(a)]. In this case, one expects and calculates a
satellite in the spectrum. In the second case,

~
so

~
&1,

which is equivalent to F20 & Fio & 0 or Fio & F20 &0 [Figs.
5(b} and 5(c)]. In this case the adiabatic difference poten-
tials do not have an extremum in the crossing region, and
we do not expect or obtain a satellite in the spectrum.

We are describing experiments in which an atom initial-
ly in state i undergoes a radiative transition to state j dur-
ing a collision, and we will specialize to the case @20

——1,
p~o ——0 and @20

——0, p&0 ——1 as illustrated in Fig. 3. As
noted in Eqs. (11}and (14), the emission spectra for these
transitions are labeled Ij(co). For the conditions
described below Eqs. (1) the absorption spectrum k;j(co) is
related to IJ(co) by the Einstein 2/8 relation, as in Eqs.
(1), so we will only describe Ij(co) below. This IJ(co)
spectrum also describes the intensity distribution in
molecular bound-bound and bound-free bands when i and
j are identified with the molecular states at R & R, .

When state 1 is initially populated, the spectrum associ-
ated with a transition to state 0 is given by Eq. (14) with
p, io ——1, p20 ——0 fi.e., Iio(co) ~

I cio(co)
I a ]. Here 0 io(co) is

obtained by solving Eqs. (17) for an initial condition cor-
responding to unit population in state 1 and none in state
2 at the appropriate asymptotic co corresponding to large
R. This corresponds to 810(t;)=1 and 8 0(2t )=01il Eqs.
(10},where the initial time t; is a large negative number.
On evaluating Eq. (13) in this asymptotic region using the
stationary phase approximation and the asymptotic solu-
tion B;0(t)=exp[ —iFipv(r t, )'/M] fr—om Eqs. (10), the
initial conditions for Eqs. (17) become

c20(P~ —ao )=0,
C„(p +~)=(b 'dvip/-dt)

=[It 'Fipuiv(1 —b /R )' 2]

4 p

P 0—

-2—

(c)

FIG. 5. Qualitative shapes of difference potentials for dif-
ferent slope ratios: (a)

~

s
~

& I, (b) s & 1, and (c) s & l. Solid
lines are adiabatic curves, dashed lines are diabatic curves.

Without loss of generality, we will label the states such
that F2p is always greater than Fio. Equations (15) then
become

. BC10
1 = ( —PC10+C20) ~

c) so —1

Icj (co)=Lcj(co)I)z (co)

for emission and

(18a}

kj(co) =L j(co)k2J (co) (18b)

for absorption, where we have indicated by L(co) the im-
pact parameter and velocity averaging

f dbb
I1R, 0

L~j(co) =

X J dujcf (VN)uiv I caj(~ tv b i)
I

(19)
Here we have explicitly noted the dependence of the
c~j(co) on the initially populated state (i) and on b and u,
and the constant in front of the integral normalizes

g, L,j (co) to 1 far from the crossing.

As shown in a comparison below, we have found that
there is little difference between Lcj(co) obtained from the
full b and uiv average in Eq. (19) and that obtained from
only the V1v averaging for a fixed, appropriately chosen b
As it was much easier to carry out only the v& average,
we generally Present such V1v-averaged Lcj(co) below.
These are also narmalized by g,.L j(co)=1 far from the
crossing. In the discussions below, we also frequently
present the integrand of Eq. (19) without b or uiv averag-
ing, in order to compare these single b, v solutions to the
averaged spectrum. These single b, u solutions wi11 be la-
beled L;J(co); they are normalized to correspond to unit
population in the initial state. In one instance the result
of b and U& averaging is compared to these.

The averaging, as in Eq. (19) or velocity averaged only
with b =0, results in a spectrum that depends on tem-

[Note that this
~
c,p(p~+00)

~

is the
~

dco/dt I

' fac-
tor of the normal quasistatic line-shape theory. 9] In the
other asymptotic limit (post crossing) we should obtain

I
cio(p~ —~) I'=e '~ Icio(p~+ ~) I' cio(cos)

also contains a phase factor, but this has no effect on the
spectrum, and for convenience we set it equal to 1. For
this same initial condition the spectrum associated with a
transition to state 0' is given by Eq. (14) with 0 replaced
by 0' and p, ,o =0, @20 =1 [i.e., Iio (co)~

~
c20(co) I ].

Here c21r(co) is obtained by solving Eqs. (17) modified by
0~0', subject to the appropriate boundary conditions.
Similarly, I20(co) and I20 (co) are found by solving Eqs.
(17) for the case of state 2 being initially populated at
large R and inserting these c;~(co) inta Eq. (14).

If we had used the actual diabatic potentials U;(R),
rather than the linear approximations, and actual collision
orbits rather than the straight-linc constant-velocity ap-
proximation, the spectrum I(co)cJ calculated with Eq. (6)
or (14) would yield Q,.Ij(co)=I)~(co} at co far from co,
(large

~ p ~

). Here cc refers to the diabatic state that is ra-
. diatively connected to the lower-state j. With our simpli-
fying approximations we instead obtain the T = 00 value
of Iaj (co, ) at large ~P ~

[see Eqs. (1)]. The difference,
due to the variation in R exp[ —V(R)/kT], is a slowly
varying, smooth function of co, so we correct our solution
to the actual quasistatic spectrum by taking
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perature T, reduced mass p, and the potentials only
through s and P~ ——e, where

rs=V12/(~1 F20 Flo IU)
1/2

p
A'

i F2O —Fio i
kT

(20) {b)

Here v is the most probable collision speed at temperature
T. This I'z is the probability of making a transition from
one adiabatic state to the other for a b =0 collision at the
most probable collision speed for a single crossing of R, .
This Ps will be used to label the U-averaged and (U, b)-
averaged spectra, as well as two-R, -crossing spectra, al-
though the averaged transition probability is different
from Ps. Thus all combinations of p, T and potentials
that produce the same I'~ are represented by the spectra
given below. The relation between I'q and the averaged
transition probability will be given with these spectra.

The approximation of splitting the spectrum into L and
quasistatic parts [Eqs. (18) and (19)] is done so that these
L,z(co) solutions can be used with all possible forms of
U;(R) potentials and all Viz values. As co~co, (P~O),
the primary region of interest, the accuracy of this ap-
proximation improves, and at large

~
P

~

it is also as good
as the quasistatic theory, which is generally quite accu-
rate. However, it is not formally correct, as we are replac-
ing the average of a product with the product of two aver-
ages.

The f(U~) in Eq. (19) is the Maxwellian distribution of
collision speeds at the gas temperature. That this is ap-
propriate at R„where the potential difference
&U;=U~(R) U;(00) may —exceed kT, follows from the
canonical distributions of nuclear motion in a potential
U;(R) that is necessary for the validity of Eqs. (1), i.e.,

d Pd R exp[ E(P,R)/kT—]
=d R exp[ —V(R)/kT]d Pexp( P /2p, kT) . —

The condition for validity of this distribution will now be
discussed.

The Maxwellian distribution of velocities in the cross-
ing region is, of course, accurate for all

~
U;(R, )

—U; ( oo )
~

&&kT, where U; is the diabatic-state potential
of the initially populated state [Fig. 6(a)]. It is also valid
for collisions that enter or exit along a repulsive U;(R)
potential, even if U;(R) —U;(00) »kT [Figs. 6(b) and
6(c)], as discussed in the preceding paragraph using the
canonical distribution of internuclear motion in U;(R). It
is valid for strongly (more than kT) attractive initial-state
interactions only if the bound states are thermally popu-
lated relative to free-collision states and if the vibrational
spacings at R, are less than kT. These criteria for attrac-
tive excited states are often not satisfied in fluorescence
experiments, since the bound excited states are often less
than thermally populated. This underpopulation of bound
excited states is particularly severe if, as is likely, the
crossing under study here causes rapid predissociation of
these bound states. In this case fluorescence in the cross-
ing region is almost entirely due to free-collision states
that approach from R = oo with an -kT wide range of
energies and arrive at R, with a similar spread of energies

kT

(c)

FIG. 6. Illustration of various cases for absorption and emis-
sion between attractive and repulsive states.

and a mean energy of —U;( oo ) —U;(R, )+kT. Absorp-
tion and separation to this attractive state i similarly in-
volves only the free-collision states. This case is shown
diagrammatically in Fig. 6(d).

We will assume that trajectories for b &R, make a
negligible contribution to the spectrum in the frequency
range of interest, so we need only integrate over b from 0
to R, in Eq. (19). We have carried out these averages first
over U&, which removes all of the oscillations in I(co).
The impact-parameter average is then relatively easy.

The linearization of R (t) to R —R, =Uzt (1 b /—
R, )' becomes a very poor approximation for the b~R,
(grazing-incidence) case, as does the assumption that the
two crossings add incoherently. As b —+R, the Landau
parameter y becomes very small, the collision becomes
nearly adiabatic, and a relatively narrow satellite in the in-
itial adiabatic state V(R) occurs (for

~

s
~

& 1). However,
after velocity averaging, the peak height of this narrow sa-
tellite in Ltj(co) grows as (1—b /R, ), where a& —,'.
Thus, when the Jdbb of Eq. (19) is taken at fixed to,

a finite spectrum is obtained at all frequencies. In prac-
tice, convergence at all frequencies was easily obtained, as
described in Sec. III.

III. RESULTS

In the present paper we have evaluated the spectra only
for the most common situation, where the diabatic cross-
ing states have strong transition moments to different
lower levels. This means that in Eq. (14) for I(co) only
one of the p;J is nonzero. As discussed previously, we
therefore consider two lower states, labeled 0 and 0', such
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that jcqp
——0, IMip

——1 and jc2p'=1 pip'=0 (see Fig. 1 as an
example where 6SX=2, SPX= 1, 3PX or 3PII =0',
3SX=0). As described previously, we will present our re-
sults as a line-shape function L; (co) such that the com-
plete spectrum is given by Iz(co)=L;j(co)I~&(co), where
I~&. (co) is the a~j quasistatic spectrum of the dipole-
allowed diabatic state a. This Iz(co) is the spectrum
which corresponds to a system initially in diabatic state i
( =1 or 2) making a radiative transition to state j ( =0 or
0'). The absorption coefficient for the inverse j~i transi-
tion is given by kj(co) =Tcj(co)IJ(co), where Tcj(co)
=(Bj /A j) exp[ fi(co —cop)/—kT] is a thermodynamic
factor relating absorption and emission of a thermal va-
por, and A~z and B~z are Einstein A and 8 coefficients.
This same factor relates absorption and emission coeffi-
cients in the quasistatic theory. The total absorption by
an atom initially in state j is given by

kj(co) =kij(co)+kij(co) =[Lij(co)+LE(co)]kgb~( c)o

= Aj(co)k2j (co),

where we have defined the total absorption multiplier as

1.00

0
2.00

CQ.

~ 1.00,
M

0 )

-10.0 —7.5 —5.0 —2.5 0 2.5 5.0 7.5 I Q.Q

Oo

LIO

L IO'

Aj(co) =g Lcj(co) . (21) 1.00

As noted below Eq. (19), the various L,z(co) will be la-
beled by their values for sz and Ps [see Eqs. (16) and (20)]
and plotted as L j(P), where P is related to co by Eqs. (15).
Spectra for single-velocity and impact-parameter col-
lisions, thermal averages, and thermal —plus —impact-
parameter averages for both single and double crossings
are presented for a variety of sz and Ps values. The
single-crossing spectra will be for passing through R,
from small to large R. As discussed previously, the tem-
perature corresponding to a value of Ps depends on the
slopes and Viz, as given by Eq. (20). Since the associated
temperature depends on the particular atom-atom system
to be considered, the thermally averaged L;z(co) will be la-
beled only by Ps In genera. l, only Lzp(co) aiid L2p(co)
will be presented, since, as will be discussed, L lp(co) and
L ip'(co) may be easily obtained from them. Given a set of
adiabatic potentials and a temperature, it is easy to calcu-
late the values for sJ and Ps, for which a corresponding
L;z(co) may be found in our results. Conversely, given an
experimental spectrum (either emission or absorption), in-
formation about the adiabatic potentials may be inferred
by comparison with the L;~(co) presented here. Examples
will be given in Sec. IV, where we apply our theory to
some published measurements.

Figure 7 shows all of the L,z (P) for the sp =0,
sp ——0.75, Ps ——0. 1 single-crossing case (without any b or
uiv averaging). These spectra would not be observed in a
normal atom-atom collision experiment, since they corre-
spond to a fixed b and uiv and to absorption at R &R,
followed by emission at R-R, . In addition, the quasi-
static spectrum results from averaging over b and u a sin-
gle b, uiv spectrum for the diabatic-state oscillator. Some-
thing very similar to the single b, v~ spectrum might be
observed in molecular photodissociation, but it is shown
here primarily to offer insight into the types of spectra
obtained before averaging. Also, in Fig. 7 we have shown

20

0
2.00

1.00

0
-10.0

I

—7.5 —5.0 —2.5 0 2.5 5.0 7.5 10.0

Ij(P)=L,J(P)Iqj(13) with the IP~(P) having the qualita-
tive features to be expected for the Na-Kr example shown
in Fig. 1. Note that P=iIi'(co —co, )/ V, 2 with
fico, =E,—Up(R, ) for the L; p spectra and
fico =E —Up (R ) for the L; p spectra, where
E,= Ui(R, ) = U2(R, ). Thus these 0 and 0' spectra are in
different wavelength regions. The fluorescent spectra
which would result from starting in diabatic state 2 corre-
spond to the Lqj(P) and those for starting in state 1 are
the L Iz(p). Figure 7 also demonstrates that for

~ sz ~
& 1,

f Lij(p) L2j( —&) I
=P. F—or cases where

I sj I & I
L ij(P)+L2j(P) = 1.

In Fig. 8 the b-and-v~-averaged spectrum, the v~-
averaged spectrum for b =0, and the single b, ujc spec-

FIG. 7. Illustration of the line-shape multiplier L;J(P) for a
single b and u~ and the spectrum IJ(P) L;&&(P)I ~(P), where
the dashed lines are I 1 (P). The upper two figures relate to the
i~0 band, with so ——0, as indicated in the potential diagram to
the right. The lower figures are the i —+0' band, with
sp = —0.75, as indicated.
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FIG. 8. Illustration of the effects of velocity and impact-
parameter averaging on the line-shape multiplier L2p(P) for
s =0. Single b, u~ ( ), Pz ——0.05; u~ averaged (———),
Ps ——0.05; b and u~ averaged ( —~ —~ —.), Ps ——0. 1.

FIR. 9. Variation of L2o(P) with s, for the vz-averaged
P~ ——0. 1 case.

trum are intercompared for the sj ——0, single-crossing
case. Here, in order to obtain the same averaged hopping
probability, we have chosen P~ ——0. 1 for the b-and-U~-
averaged case and Ps ——0.05 for the latter two cases, i.e.,
the b averaging lowers the average hopping probability
from 0.1 at b =0 to 0.05. As expected, all of the oscilla-
tions in the single b, u~ spectrum smooth out after averag-
ing, except for a very weak undulation to the left of the
satellite. This undulation also occurs for traditional satel-
lites between isolated states, which are due to an ex-
tremum in the difference potential. ' '" It is due to resi-
dual interference between contributions to I(cp) that come
from R &R, and R & R, for the same co The l.arge oscil-
lations in the single b, U~ spectrum are due to the same
cause.

It is noteworthy that a major satellite occurs in Fig. 8
near p= —1, the position where the initially populated
adiabatic-state potential difference Vz(R) —Vp(R) has ex-
tremum, while no satellite or bump occurs near p=+1,
although Vi (R) —Vp(R) has an extremum at this frequen-
cy. This can be understood by recognizing that the ampli-
tude transferred to this "final" adiabatic state comes from
the "initial" state during the transversal of the crossing.
Thus, the final-state amplitude does not oscillate at the in-
stantaneous frequency Vi(R)/A', and as a result it does
not produce a satellite at p=+1. As will be seen below,
this absence of a second satellite in a single crossing
occurs for all P and sz values.

In Fig. 9 we show the variation of a uN-averaged b =0,
single-crossing L2p (p) with sj for Ps ——0. 1. The resulting
changes include a stretching or shrinking along the p axis
as well as the change in shape as sj passes through +1.
For

i sj i & 1 we have the satellite feature as noted previ-
ously (Fig. 5 discussion) and none when

i sj i & l. Anoth-
er property is that for

i sj i
&1 the solutions (with or

without u~ and b averaging) are related by
L;J(P,sj)=L;J(P, —sj) and for

i sj i
&1 by

Lij.(p,sJ)=L,J( —p, —sj). Within each of the three re-
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FIG. 10. Variation of the thermally averaged L2o (P) with Ps
for s =0.

gions sj & —1, —1 &sl & 1, sj & 1 the solutions for dif-
ferent sJ are related by LJ(p', s')=L; (p, s ) where
p'=0[

i
1 —(sJ') i/) 1 —sj i

]' . As sj varies from 0 to-
wards +1 the energy at which either of the adiabatic po-
tentials is parallel to the lower level moves towards
Ui(R, ) (refer to Figs. 4 and 5) and thus the satellite moves
towards p=0.

In Fig. 10 the variation of L2p (P) with Ps is shown for
b =0 and sz ——0. Note that as the collision becomes pro-
gressively more adiabatic (Ps —+0) the satellite becomes
more pronounced and moves towards P= —1. Before u~
averaging the asymptotic values of L2p (p) are equal to
the relative probabilities of being in state 2 before and
after the crossing, i.e., the ratio equals Ps. However, as
will be discussed shortly, this is not the case after
averaging.

In Fig. 11 we show an array of single-crossing L2 (p)
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FIG. 11. Single b, vN (rapidly oscillating) and vN-averaged (smooth) L,J(p) fpr a range of Ps values. s = —2 for the top row and
s =0 for the bottom row.

and Lzj(P) for Ps 0.9, 0.5—,—0.1, and 0.01 and sj ———2
and 0. Again, only single b, u~ and u~-averaged spectra
are shown. The averaged and unaveraged L1j(P), for
sp =Sp may be obtained from these L2j(P) by
L 10(p) L20'( P) L 10' L20( P) «r—
L 10(P) L20'(P) L 10'(P) L20(P) «»
note that for the single b, uN spectra L20 (p) —L20(p)=P

I sj I
&1 and L20'(P)+L20(P)=1 «r

I sj I
) 1. As

shown diagrammatically in Fig. 5, these sj ———2 spectra
in the top row of Fig. 11 correspond to potential slopes
F10 and Fzp such that the adiabatic potentials V(R) have
no extrema. Thus, as discussed previously, the corre-
sponding L21(P) show no satellites. The sJ =0 case of
equal and opposite slopes (F10 F20), show——n —in the bot-
tom row of Fig. 11, is characteristic of all cases in which
F10 and F2p have opposite signs, and the V(R) therefore
have extremas. For this range of slope ratios (

I sj I
& 1) a

satellite always occurs. In fact, all sj cases with
I sj I

& 1

can be generated from these s =0 spectra, as discussed
previously and demonstrated in the Appendix, by simply
changing the horizontal (p) axis, i.e., as

I sj I
~0, the

satellite becomes more. sharply peaked near p= —1. Simi-
larly, all sj & —1 cases can be obtained from the sj ———2
case shown in Fig. 11 by altering the horizontal scale,
again as described in the Appendix. The sj & 1 cases are
obtained simply by replacing P by —P in the sj & —1

cases. Thus all single-crossing slope ratios (sj) and many
transition probability cases (Ps ——0.01,0.1,0.5,0.9) can be
obtained from the spectra shown in Fig. 11.

The asymptotic intensities of the single uN, b =0,
I sj I & 1 spectra in Fig. 11 are in the ratio

L20 (oo)/L20( —oo)=PS, SinCe theSe L2p (p) are prOpar-
tional to the population in diabatic state 2 and I'z is the
hopping probability. This simple relationship no longer
holds for the uN-averaged or b-and-uN-averaged spectra
L2p(p). This occurs because in the asymptotic limits the
intensity

I c2p(p) I
is proportional to the population

I B20(p) I
in state 2 times a factor (dR/dt) ', which is

proportional to uN '(1 b / R—, )
~ . Thus the averaged

single-crossing hopping probability P is given by

P= (P(vN, b) ),„
R oo

2 f dbb f duNuNf(uN)P(uN, b),
U~R,

(22)

L20( ) h P(uN, b)

L„(— ) .lF2o l Un(1 b'/R. )' ')— (23)

which weights small U& and increasing b. The quantity in
large angle brackets is the p~oo limit of

I
c j I

in
Eq. (19), and we have made use of the fact that

0,8
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I
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I
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0.8
I

1.0

J

FICr. 12. Averaged hopping probability P for both v~ averag-
ing only (solid line) and b and v~ averaging (dashed line) plotted
as functions of Pq.

where u& is the average collision velocity and
P(uN b) exp I 21r V12/[~ I F2p F10 I

uN( 1 —b'/R. ')'"]
I

from Eqs. (12) with u=dR/dt=uN(1 b /R, )'—~ In.
contrast, the ratio of averaged intensities for the crossing
is given by
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L zo ( —ae )= 1 due to normalization. Because of the
weighting, the asymptotic values of the single u~ and u~-
averaged spectra in Figs. 10 and 11 are not exactly the
same; this can be seen most clearly in the I'z ——0. 1 exam-
ple in the bottom row of Fig. 11.

The result of numerically evaluating Eq. (22) for P,
with b and u)y averaging and with only u& averaging for
b =0, is compared to Ps in Fig. 12. (Recall that Ps is the
hopping probability for a single b =u, u& ——u)y collision. )
The ratio of the asymptotic emission intensity after a sin-
gle crossing to that prior to the crossing,
Lzo (ao)/Lzo ( —oo), will be denoted by the symbol W.
The value of W, for b and u~ averaging and u~ averag-
ing only with b =0, has been computed from Eq. (19) us-
ing asymptotic expressions -for the

~ c~j ~

. The results
are given in Fig. 13, where the averaged values are com-
pared to the b =0, v =u& ratio.

In both the fluorescence and absorption experiments the
two-crossing spectra should actually be used in the case of
free atofnic collisions to include the effect of absorbing (or
emitting) at both R, crossings. So far the L,J that have
been presented have been for increasing-R crossings only.
The L;J for decreasing-R crossings are obtained from the
increasing-R by interchanging state labels 1+ 2 and 0= =0'

in the i,j subscripts. Since ultimately we are interested in
b-and-u)y-averaged spectra we add the spectra from the
two crossings incoherently; this is justified due to the can-
cellations of all rapid oscillations that occur with b and
U~ averaging.

Referring to Fig. 3 it is apparent that the two-crossing,
single b, U~ spectrum may now be written as
Lzo (P)=[LIo(P)+PLzo (P)+(1 P)L o(P)]/2 w—ith cor-
responding expressions for the other L,J" Here th. e factor
of —, is included for normalization. As in Eq. (19) the
averaged spectrum can now be written as
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I
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FIG. 13. W for both v~ averaging only (solid line) and b and
U~ averaging Idashed line) plotted as functions of I'z.

dbb I duff(u~)ux
hRc o 0

Xf IPlo I IcIo I'

+P fPzo I lczo I

+(I—P) IPIo I I
cIo

I

'3/»

(24)

where appropriate initial conditions and slopes are used in
evaluating the

~

c 1 ~

. Again there are corresponding
expressions for the other L,J". In order to make use of the
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single-crossing spectra we will use the following approxi-
mation to Eq. (24) for the two-crossing spectrum:

L p(y(P) = [L)p(P)+ &Lpp (P)+(1—&)L )p (P)]/2,

2.00

l.60—
s =0 0.5 0.9

L 2p(P) = [L )p (P)+~Lpp(P)+ (1—~)L )p(P)]/2 ~

Equation (25) is used for b =0, U& averaging, and for b
and v~ averaging, as long as all the Ltj(P) and W are
averaged in the same way. The ratio W, rather than P, is
used in Eq. (25) so that the emission intensity from dia-
batic state $2 after passing through the first crossing is
equal to the emission intensity just before entering the
second crossing, i.e., the population of the state is unal-
tered between crossings. The principle source of error in
making the approximation of Eq. (24) is in treating the
velocity distribution at the second crossing as being
thermal, when in fact it is somewhat different due to the
velocity selectivity of the hopping probability.

From the relations among the I.;~ described above we
can obtain the L tj» as L io(P) =L2p'( —P) L &o'(P)
=L2p( —P) for

l sJ l
& 1 and L Pp(P) =Lg (P), L ~q (P)

=L2p(P) for
l sj l

& 1 for unaveraged or averaged
L;z (P). Of course, these relations between the spectra
only hold for sp =so . The previous comments regarding
sj. 'variations also apply to these two-crossing spectra; all
cases are contained in the spectra shown in Fig. 14, with
appropriate changes in the P scale as described in the Ap-
pendix. Note that these thermally averaged two-crossing
spectra do exhibit a weak maximum near P= —1, which
was absent in the single-crossing case. This is due to ap-
proaching the second crossing with some population in
the initially unpopulated state.

In Figs. 15 and 16 we show thermally averaged total-
absorption multiplier AJ(P) =L &~(P)+L z~(P) (for total
absorption to states 1 and 2) since that is observed in some
experiments. Examples of such experiments are the fol-
lowing. (1) Measurement of light attenuation (a two-
crossing case). (2) Observation of total fluorescence from
both states 1 and 2, or a state 3 to which these both radi-
ate (a two-crossing case). (3) If state 2 is bound by many
kT, absorption to 2 generally predissociates to state I be-
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FIG. 15. Thertnally averaged total-absorption spectra Ao(P)
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FIG. 16. Thermally averaged total-absorption spectra for
Ps ——0.01 and s =0.0, s =0.5, s =0.9.

fore radiation, so that fluorescence from state 1 represents
essentially all of the absorption (a two-crossing case). (4)
Photoabsorption from a bound molecule leads to dissocia-
tion, by absorbing directly to a repulsive state 1 or in-
directly to bound states in state 2 that predissociate to
state 1 (a single-crossing case). It is worth noting that in a
molecular photodissociation experiment, spectra similar to
the single b, vN cases may be obtained by absorbing from a
(optical-pumping-labeled, Ref. 15) single u", J" state.

For
l sj l

&1 the two-crossing absorption spectrum is
flat, i.e., AJ(P)=1. This is due to symmetry properties of
the L,z(P), which are given in the Appendix.

IV. COMPARISON TO EXPERIMENTS

We will discuss two published measurements of the
spectra in the region of level crossings. ' There are prob-
ably other observations that could be fitted into this pic-
ture, but these two are sufficient to demonstrate how to
apply the present theory and as examples of its applicabil-
ity.

(1) The green-wavelength absorption of Cs in the pres-
ence of a He buffer is dominated by absorption from the
(primarily repulsive) 6SX ground state to the 5DX and
7SX states of CsHe. The difference potentials, obtained
by slightly modifying those calculated by Pascale' as sug-
gested by the experimental spectrum, are shown on the
right side of Fig. 17, and the "absorption" spectrum mea-
sured by Ferray et al. is shown on the left side. In this
experiment the 852-nm fluorescence from the 6P state
was actually detected while a laser was tuned in the
(500—700)-nm region. This 852-nm fluorescence should
be proportional to the total absorption to bound and free
states of the 7SX and 5DX states, since the absorption to
7SX yields primarily bound states. These should predis-
sociate to SD before radiation, and the 852-nm (6P-6S)
fluorescence then follows the 5D —+6P decay.

The 5DX state has a relatively strong transition mo-
ment to the 6SX (ground) state, so we label these states 1
and 0, respectively, and take a= 1 in Eqs. (18). That the
7SX-6SX transition moment is small can be seen from
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FIG. 17. Cs-He difference potentials (right side) and the
measured (Ref. 5} total-absorption spectrum (left side). The adi-

abatic potential differences V;- VJ are solid lines and the diabatic
potential differences U&- UJ are dashed lines.

the rapid decrease of intensity on the red wing of the 7S-
6S (537-nm transition) in the data of Ref. 5, and this is
verified by theory. ' The quasistatic absorption spectrum
k(co)$& of the diabatic-state 1-to-0 transition, obtained
from the difference potential Ui(R) —Up(R) drawn in
Fig. 17 as a dashed line, is shown as a solid line in ihe top
figure of Fig. 18. When the Sando-and-Wormhoudt'
satellite shape is used for the diabatic-state satellite at
5560 A the dotted line in Fig. 18, which we label k(co)g,
is obtained. The value of sp ( —0.28) is obtained from the
slopes Eip and F2p of the diabatic states in the crossing
region, as shown in Fig. 17. For a temperature of 630 K
with Viz and the adiabatic and diabatic potentials shown
in Fig. 17, we calculate Pz =-0.23. From Fig. 13 it is seen
that Ps ——0.23 corresponds to M=0. 1 (after both b and

QST

QST + SANDO SATELLITE

THEORY

EX PT.

0 CL

UJ

I l 0
5400 5500 5600 5 700 5800 5900 6000 6 IOO

x(A)

FIG. 18. Illustration of steps followed to calculate the Cs-He
total-absorption spectrum (upper figure), and comparison of the
calculated spectrum (dashed line) to the measured spectrum
(solid line) in the lower figure.

u& averaging). For a fixed value of W (but different Ps)
Fig. 8 illustrates that the principle difference in the shapes
of the spectra for u~ averaging versus b and u~ averaging
is that the peak moves —10% closer to P=O in the latter
case. We therefore use the u&-averaged Ps ——0. 1

(W =0.1) curve of Fig. 15 to construct the total-
absorption line-shape multiplier Ap, but we expand the P
scale by 10% in order to make it correspond to the totally
averaged Ps ——0.23 case. Since the I.;~(P) of Fig. 15 are
for sp ——0, the P scale must also be multiplied by the fac-
tor [1—(0.28) ]'~ to make them correspond to
$0 = —0.28. The resulting A 0 multiplier is shown as a
dashed line on the top of Fig. 18, where we have used

@pi ~e)/V12 and ~e V2p(Rc ) Vip(R, ). The
lower half of Fig. 18 shows the experimental spectrum as
a solid line and k ip (ct))Ap(pi) as a dashed line, arbitrarily
normalized to the experimental spectrum since we are not
concerned here with the actual value of pip. As can be
seen, the heights and positions of the satellites on either
side of the minimum and the depth of the minimum are
well represented by the calculated spectrum. This exam-
ple clearly demonstrates how the transfer probabihty pa-
rameter Ps is accurately discernable from such data, since
it determines the depth of the minimum and the shape of
the satellites. The role of the slope ratio sj. is less clear
without detailed fitting, which we have not done here.

The 5560-A wavelength of the diabatic-state satellite is
very close to the 5600-A peak of Ap(co) in Fig. 18. As a
result, the adiabatic difference potential reaches the same
value at three different R, and the resulting three
stationary-phase contributions to the intensity are
coherently superimposed. Thus we do not expect our cal-
culation to be accurate in this wavelength region. Howev-
er, the size of the kPp (co) and thus the predicted spec-
trum in the 5600-A region is largely controlled by the
steepness of V6„ through the exp[ —Vp(R)/kT] factor in
Eqs. (1) times exp[ —h (v vp)/kT], a—s applies to absorp-
tion. The fact that the calculated spectrum is somewhat
too small in the 5600-A region is an indication that V6,
should probably be less steep in this R =-(6—7)-A region.

The V&2 we used to obtain this good agreement between
measured and calculated spectra is about a factor of 4.6
larger than the value calculated by Pascale, ' and, in addi-
tion, we have shifted the difference potentials of Ref. 16
by —350 cm '. We believe this is excellent accuracy for
the calculation of potentials and mixing between highly
excited states, and we would also like to draw attention to
the great value of these calculated potentials in providing
guidance for these interpretations.

(2) The 3 'X„state of the alkali dimers mixes with the
II„state due to spin-orbit interaction, and these two

states undergo an avoided crossing, as shown in Fig. 19.
The A-X band of these alkali dimers should thus include
the effect of this avoided crossing. Although this 3-X
band is a bound-bound spectrum the averaged intensity
distribution (except in this crossing region) is very well'
represented by the quasistatic spectrum I(co)'P ~. As al-
ready noted, the present calculations also apply without
significant modification to this avoided crossing because
the vibration spacing at R, is much less than kT. The ef-
fect of this avoided crossing on the Cs2 2-X band has
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comes from such spectra. When a repulsive state is of in-
terest, as is often the case in atom-atom energy-transfer
collisions, free-free and bound-free continuum spectra are
generally the most definitive method of obtaining the po;
tentials. This approach is particularly accurate for transi-
tions from a bound state that is already known (e.g., pho-
todissociation), but it can also yield a unique and reason-
ably accurate set of potentials without this prior
knowledge. Velocity-selected differential scattering is
another accurate, but difficult, method for studying repul-
sive states.

Here we have shown that, in addition to directly yield-
ing the potentials of isolated states, molecular continuum
spectra can also yield potentials in the region of level
crossings. One can thus obtain the level-crossing parame-
ters for inelastic atom-atom collisions (or molecular spec-
tra) that result from isolated level crossings. We have
shown the patterns of spectral behavior to be expected for
a variety of level-crossing parameters and types of experi-
ments. Based on these spectra in Sec. III the inversion
procedure from data to Vii and potential slopes appears
fairly straightforward and possibly unique.

The R, value cannot be directly inferred from the
crossing-region spectrum, but the entire quasistatic spec-
trum. combined with ground-state potentials or molecular
size can yield a fairly good estimate for this, as well as the
dipole moments p~o and @20.

In Sec. IV we have shown two examples of comparisons
to spectra The .present theory fits these quite well, but we
have not attempted here a detailed inversion to get accu-
rate Viz and the potential slopes from the data. These ex-
amples clearly indicate the power and feasibility of this
approach to the study of level crossings.
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V. CONCLUSIONS

Bound-bound molecular spectra are the most exact and
powerful tool known for determining atom-atom interac-
tions, which are normally referred to as diatomic molecu-
lar potentials. Almost all current knowledge of diatomics
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APPENDIX: RELATIONSHIPS BETWEEN THE I.;i(P)

The initial conditions for the c,j(P), in the frequency-
space differential equations [Eqs. (17)], are determined by
the initial conditions in the time domain For exa. mple, if
the initial condition at t = —m is 8& ——0, B2——1 in Eqs.
(8) [the case shown diagrammatically in Fig. 5(a)], then
for

~
so

~
~ 1 we must have cia(p~ ao )=0 since state 1 is

unoccupied at large positive p [see Fig. 5(a)]. As dis-
cussed in the text, we set c io(p) =0,
czo(p) =e r[F20h 'u&(1 b /R, )' ] ' a—t some large
positive p and integrate the equations (17) from positive
to negative values of p. From similar arguments, the ini-
tial conditions on the c;J(c0) may be found for

~
so

~

&1
and either state initially (in time) occupied.

In order to demonstrate the properties of the
~
c;0(to)

~

it is useful to rewrite Eqs. (17) directly in terms of these
amplitudes with the dcoldt factors, mentioned in conjunc-
tion with Eq. (13), having been factored out. The ap-
propriate substitutions for

~
so

~
& 1 are
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&10=
1/2

LU'p u~(1 b—/R, )'/ (so —1)

h62o

~o uiv(1 b —/R, )' (sp+ 1)

1/2

e'&, (Al)

where Gip, Gzp, 8, and P are real functions of P and
Gip, G2p&0. ado is defined in Eqs. (16). When these
substitutions are used, Eqs. (17) become

1/2
~Gio GioG2o=4y 2 sing,

dI3 1 —s2o

' 1/2
610620

2
1 —sp

4yP 2y cosg
1 —so (1—so)

2+ 2 1/2

~6'20

BP
—4y sing,

1/2 ' ' 1/2
10

620 610

(A2)

In order to have Gip, G2p be positive for
I

sp
I

&1, ap-
propriate sign changes must be made in Eqs. (Al) which
lead to equations different from (A2). Only equations
corresponding to

I
sp I & 1 will be presented here though

results for
I

sp I & 1 will be stated. The normalized
unaveraged line-shape functions discussed in the text are
related by

found that 6ip+G2o ——const. Using initial conditions as
described in the text for the c,z(ro) imposes the conditions

I Gip —Gzo I
=& and Gip+Gzp= 1 where P is the hop-

ping probability defined by Eqs. (12). When sp ——sp, these
relations together with Eqs. (A3) yield

I L2o —L2o'
I

I' f«
I

&o
I
&»nd Lio+Lio'=1

L2p+L2p ——1 for
I so

I
& 1 as is evident from Fig. 11 for

the Lq~. When averaging over U~ is considered I' is re-
placed by W.

If the substitutions 6ip~ Gyp, Gyp ~6ip P~ —P,
gag+a. are made in Eqs. (A2), these equations are left
unchanged. This fact, taken together with the initial con-
ditions, means that L2p(P) =L ip'( —f3) and L2p (P)
=Lip( —P) for the case sp ——so, I sp

I
& 1. These rela-

tions show how the Lil(13) are obtained from the L21(13)
of Fig. 11. For

I
sp

I
& 1, it is found that L2o(P)

=L io (P) and L2o (P) =L ip(P).
Another important property is the behavior of Eqs.

(A2) under the change sp~ —sp. If
I
so

I
&1, then no

change occurs so that L;1(s&,P) =L;1( —sJ,P), but if
I

sp
I

& 1, we find L;~(sJ,P)=L;1(—sj, —P). This relation
makes it possible to generate the s =2 solutions from
those shown for s = —2 in Fig. 11.

If the substitution P'=P/(1 —sp)' is made in Eqs.
(A2), the following is obtained:

~Gio 1/2=4y(GipG2p) sing,

~620 1/2

ap
4y(GloG20)

Lip(r0) =Gip(cp), L io'(co) =G2o'(ro), (A3a)

where the G;J(co) result from Eqs. (A2) for state 1 initially
populated, and

, = —4y13'+2y cosg

' 1/2
10

62O

62O+
' 1/2

Lgo'(ro) G20'(ro) L20( )roGlp(rp) (A3b)

where the G;~(co) result from Eqs. (A2) for state 2 initially
populated.

The first two of Eqs. (A2) require Gip —Gzp ——const
since their derivatives are identical. For

I
so

I
&1, it is

Note that so does not appear in these equations. This
means that within a given regime of so & 1,

I sp
I

& 1, or
so & —1 a solution for some value of so may be obtained
from that for some other value of so by appropriately re-
scaling the P axis, L;J(so,P)=L,J(sp, P') where
P( 1

2
)
—i/2 Pi(1 .~ 2

)
—i/2
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