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Quantum-mechanical interference in two-photon absorption:
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When an atom is irradiated by two light beams whose sum frequency corresponds to an allowed
two-photon transition between two S states, no radiation is absorbed if the electric vectors of the
two beams are perpendicular to each other. Application of a magnetic field in a direction perpendic-
ular to the plane defined by the two electric vectors permits two-photon absorption to take place.
According to quantum theory the effect is interpreted as an interference phenomenon. That is, if no
field is applied, the intermediate states are degenerate and the interference is destructive; when a
magnetic field is applied, two different paths through intermediate states are possible, permitting
population of the upper state. The effect is related to the Hanle effect and likewise provides the
basis for an experimental method of determining Lande factors.

I. INTRODUCTION

Although two-photon transitions have been studied
theoretically since the 1930s, it has only been with the in-
troduction of the laser, with its characteristic high intensi-
ty and narrow bandwidth, that systematic experimental
investigation of such nonlinear phenomena has been possi-
ble. According to quantum theory, the simultaneous ab-
sorption of two photons from two classical stable waves
whose electric field amplitudes are small compared with
the atomic Coulomb field is described by application of
second-order perturbation theory. The salient features of
two-photon absorption are a unique set of selection rules,
a transition probability proportional to the product of the
intensities of each wave (or to the square of the intensity
of a single wave), and an enhancement in the absorption
rate when the frequency of one of the waves is nearly
coincident with an allowed single-photon transition.

This paper discusses an interference phenomenon that
takes place in two-photon absorption. The effect is
perhaps most clearly illustrated in an atomic 'S-'S transi-
tion in which the frequency of one of the light beams is
adjusted so as to be close to the frequency of a 'P~'S
transition. In the expression for the transition probability
to the upper 'S state the summation over intermediate or
"virtual" states reduces to a sum over only the three mag-
netic sublevels of the 'P state. For two linearly polarized
light beams that intersect with perpendicular electric vec-
tors (see Fig. 1) destructive interference between the two
beams takes place and the upper 'S state is not populated.
The destructive interference is caused by the degeneracy
of the m =+ 1 and —1 magnetic sublevels of the 'P inter-
mediate state: because of the opposite phases of the two
contributions to the transition probability there is an exact
cancellation in the sum over the intermediate states giving
a null overall excitation rate. If a magnetic field is ap-
plied in a direction perpendicular to the plane formed by
the electric vectors of the two incident beams then the de-
generacy of the magnetic sublevels of the 'P state is lifted
giving two distinct paths for population of the excited
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FIG. 1. Experimental arrangement for inducing two-photon
transition free of the Doppler effect. Radiation with a wave
vector ki and frequency Q& is directed along the F axis. A
second beam with wave vector k2 and frequency Q2 is directed

along the I axis. In the classical calculation the unit vectors 7
and g that describe the polarization of the electric vectors are
directed along the F and X axes, respectively. In the quantum-

mechanical calculation 7 and g are more general and are not re-
stricted to the XFplane. An atomic beam is directed along the
Z axis parallel to the magnetic field thus eliminating the first-
order Doppler effect.

state. In this case the interference is only partially de-
structive and excitation to the upper state takes place at a
rate proportional to the square of the magnetic field
strength.

In Sec. II a classical theory of the effect is developed
based on a nonlinear oscillator model of the atom. Sec-
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tion III gives a quantum-mechanical calculation of the in-
terference using second-order perturbation theory. The
results of the classical and quantum theories are found to
be identical in the limit of large angular momentum. The
interference effect is shown to provide an experimental
method for determining Lande factors that depends only
on measurement of a magnetic field strength and the de-
tuning of a laser frequency from an atomic line.

II. CLASSICAL THEORY

d'x dx, +. dy «1
+2y +coox + +2M

dt m dt m
cos(Q, t),

(la)

d y dy 2 +y dx+2y +pipy + —2M = cos(Q2t),
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, +2y +~oz+
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where x, y, and z are the displacements of the electron
from equilibrium, m is the mass of the electron, M is de-
fined according to

eH
2plzc

(2)

y is a damping constant, and t is the time. F„,F~, and F,
are nonlinear forces which can be obtained for small am-
plitudes of vibration by a Taylor-series expansion of the
potential about ro. When motion in the z direction is not
excited, the terms E„Im and F~ Im reduce to

The classical model used to explain the Zeeman effect
considers an atom to be comprised of a positive central
charge with a harmonically attached electron subjected to
a Lorentz force. The Lorentz force given by ( e Ic)v &H,
where v is the velocity of the electron, e is its charge, H is
the magnetic field, and c is the speed of light, acts to ro-
tate the direction of oscillation of the electron and at the
same time alters the resonance frequency of the atom giv-
ing a "normal" Zeeman pattern. For the experimental ar-
rangement shown in Fig. 1, the atom is irradiated by a
light beam that is linearly polarized along the X axis, and
whose angular frequency Q, is approximately but not ex-
actly equal to the resonance frequency of the atomic oscil-
lator coo. At the same time a second beam whose electric
field polarization lies along the Y axis and whose angular
frequency Q2 is far greater than cop irradiates the atom.

It is clear that a model based on the harmonic oscillator
is incapable of nonlinear effects such as two-photon ab-
sorption; thus the electron is assumed to move under the
influence of both a harmonic potential and a potential of
the forin ( r rp), w—here r is the distance of the electron
from the nucleus and rp is the rest distance of the electron
from the nucleus. (The addition of a nonlinear force was
originally used by Helmholtz to explain beat frequencies
heard when musical tones of a slightly different pitch are
played. ) If Ei and E2 are the respective field amplitudes
of the waves of frequencies Qi and Q2, then the equations
of motion for the classical oscillator are

where

eE1 (62+y )'/2cos(Q, t —p„)
[(g2 y2 M2)2+ 4y2g2]1/2

2eE2 Q2M sin(Q2t)
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It is easy to see that the field Ei induces a dipole moment
varying with time along the X direction which is swept
into the Y direction by the magnetic field. The same pro-
cess is caused by application of the field E2, but as its fre-
quency is far from resonance the magnitude of the in-
duced polarization is much smaller. When the magnetic
field is zero, a large displacement of the electron in the X
direction but only a small displacement in the F direction
is produced. The motions of the electron along the X and
Y directions in zero field are independent only in the
first-order approximation since the nonlinear force causes
coupling between the x and y equations.

Two-photon absorption arises from mixing of the first-
order sinusoidal solutions by the nonlinear force terms in
Eqs. (1). If the leading terms in the forcing function at a
frequency Qi+Q2 are collected, the correction to the
first-order solution, according to the Appendix, is the
solution to the equations

e(x +2xy +y ), where e is a constant of proportionality.
An exact solution to such coupled nonlinear differential

equations is not apparent; however, if the nonlinear term
is small then perturbative methods of solution can be ap-
plied. As outlined in the Appendix, the method of rever-
sion used for solution of nonlinear differential equations
in one variable can be extended to coupled nonlinear equa-
tions. The procedure consists of first solving the coupled
equations ignoring the nonlinear terms. Then, this ap-
proximate solution is substituted into the nonlinear terms
which are then considered as forcing functions. For the
purposes of this calculation an approximate solution that
is a superposition of the linear solution and the lowest-
order correction due to the nonlinear terms is used.

Solution to the coupled linear equations can be obtained
by linear superposition of the motions resulting from each
electric field considered separately. Provided Q2 is far
enough from resonance so that

~
cop —Q2

~
))2y and

~
cop —Q2~ &&2M, and given the assuinption that Qi is

close to resonance so mo —Q~ =-2cooh, where2 2=

6=e)o—Qi,
then the solution of Eqs. (la) and (lb) to lowest order is
given by
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The solution to these equations gives the electronic
coordinates, from which the velocity can be found. The
power absorbed at the sum frequency Qi+Q2 by the os-
cillating electron Pci +ti is given by the time average of1+ 2

the product of the damping force and the velocity,

dy2 dx 2
Po +& ——2my +2my

which becomes

M
[(6+M)'+ '][(6—M)'+ ']

where Ii and I2 are the intensities of the two beams, pro-
portional to the squares of Ei and E2, respectively.
[Unimportant factors independent of M have been deleted
from Eq. (7).]

The nonlinear force term of the form exy is responsible
for two-photon absorption in Eq. (7) proportional to
5 +y . The remaining term in Po, +~, proportional to
M arises from rotation of the induced dipole created by
E~ into the Y direction which permits interaction between
the two fields (via the ey force term) to produce two-
photon absorption. Equation (7) predicts, as expected, an
absorption proportional to the product of the intensities of
the two beams. In addition, P~ +~ is symmetrical with

respect to a reflection of H in the XY plane (i.e.,
M~ —M). This follows froin the classical inodel of the
Zeeman effect where the presence of a magnetic field
gives solutions to the equations of motion that describe
both clockwise and counterclockwise rotation of the elec-
tron about the field direction —reversal of the direction of
0 gives the same clockwise and counterclockwise motions
of the electron.

III. QUANTUM THEORY

A number of reviews treating several aspects of multi-
photon absorption exist. ' To some extent the results
presented here are implicit in the formulas previously ob-
tained by other authors. " However, for the conditions of
an experiment envisioned here an important simplification
of the usual transition rate expression obtains; in addition,
particular focus must be given to polarization effects and
the influence of a static external field. For these reasons,
a brief perturbation calculation' of the two-photon tran-
sition rate is given.

According to perturbation theory, the state of an atom
is described by a wave function 4 that can be expanded in
terms of the energy eigenstates 4; as

% =gb„(t)V„e (8)

where
~
b;(t)

~

is the probability that the atom is in the
state i and E; is the energy of the state i F.or a time-
dependent perturbation V(t) the probability amplitudes
b;(t) vary in time as described by the Schrodinger equa-
tion which can be written

db (t)
iiri =g V „(t)b„(t)e

dt

i [co —(0&+Q&) ]t
e

X [(co„Q)) —i I'/2]—[co„~—(Qi+Qi)]
(10)

where I' is a damping constant describing spontaneous
emission, where the frequencies co& and co&~ are defined as

co& (E& E)/A——' and co& (E—z E)/A', a——nd wh—ere the

electric dipole matrix elements 0& and Hgz& are given
by

Hf. =eE, &'P,I ~V.rI'S, m&,

H'„„=eE,('P,p[g r['S,g) .
The rate of population of the state rt, denoted R, is the

probability per unit time of finding the atom in the state
il, so that R =

~
b„(t) j /t The exp.ression for R is sim-

plified using the relation

i [co —(Q&+Q2)]t

lim co„(Qi+Q2)—t5(co„—(Q. i+Q2) ),

where V „(t)= (m
~

V(t)
~

n ), and co „ is the difference
in the energies of the states m and n divided by A'

(Planck's constant divided by 2ir).
Consider a light beam with an electric field polarization

7 at a frequency Q, that is adjusted to be nearly coin-
cident with the energy-level splitting between a 'P and a
'S state (i.e., in the notation of Fig. 2, Rcoi-E„E).— —
Also, let the atom be irradiated by a second beam with po-
larization g, at a frequency Q2 that differs greatly from
the 'P ground-state splitting, but that is adjusted to be of
such frequency that together with the first beam two pho-
tons can be absorbed to excite an upper 'S state, that is,
A'(Qi+Q2) =E„E.Accordin—g to Eq. (9) the equations
of motion for the probability amplitude b„(t) include con-
tributions from perturbations by both radiation beams;
however, provided Q~ is nearly resonant with the states p,
and Q2 is far from resonance, the contribution of the first
beain is dominant and the probability amplitude bz(t) for
the excited 'S state g can be shown to be

ag*af
b„(t)= gp p, m

g2
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where 5(o~ —(Q„~—( i+Q2)) is the Dirac delta function.
The rate of population of the upper 'S state can then be
written

l So

R y PP PP

„„,[(oi&—Qi) —iI /2][(co& —Qi)+iI /2]

X5(oi„—(Qi+ Q2) ), (12)

FREQUENCY M p
POLARIZATION g
INTENSITY fp

where the matrices E and G are defined b

f f
pp' =HpmHmp and G ~ =H~~8'g ~'9P

This describes the essential features of the two-photon
interference for any perturbation that alters the spacing of
t e intermediate levels. To be more explicit both the ma-
trix elements and the field dependence of the intermediate
states must be specified.

The matrix elements in Eq. (18) are found by first writ-

ing P.r in tensor form,

tp

IS

FREQUENCY W
1

POLARIZATION f
INTENSITY fl

m=f
rn, = O
m =-Il

f r=g( —1)qfqr q,
q

(13)

components rq are defined similarly). The Wigner-Eckart
theorem' can then be used to give

and

~+io= eEi &
—1

I lrl IO&f+if

H~pp eEi & lllrliO)fo——,

where the factors multiplying the unit vectors are the usu-
a reduced IDatrix elements. From this result the matrix I'
can be constructed giving

I

MAGNETfC FIELD STRENGTH

FIG. 2. Eneergy-level diagram for an atom in which a 'S~'S
transition is induced by absorption of two photons. In the clas-
sica model the splitting between the ground state and the 'P

ponds to coo, the resonance frequency of the oscilla-state corres onds
tor. pplication of a magnetic field causes a splitting of the en-

ergy eve s of the 'P state into three levds, ~0 and coo+M. In the
quantum-mechanical calculation, the magnetic field removes the
degeneracy of the three magnetic sublevels mI ——0, +1 (denoted

y p); the energy splittings are identical with those calculated b
ica eory. he radiation beam with a frequency Q& and

polarization 7 is adjusted so that 0 ' },bi is near y, ut not exactly
equal to the 'P ground-state energy splitting. The radiation with
polarization g has a frequency 0& that is far from the 'P
ground-state energy splitting.

—f-if+i
f ifo

f I——

—fof+i
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It is easy to show, for the problem at hand, that the G
matrix is the same as the E matrix but with bwi g &

su stitut-
or +i and go substituted for fo. The reduced matrix

element must also be changed to correspond to the 'S~'P
transition andn, and, of course, E2 must be substituted for E

describe
Note that the polarization vect 7 dors an g can be

escrt ed in terms of three angles as shown in Fig. 3. The
components of 7 in a spherical basis are given by'

+1f+, = ~ (cos8~cosa~+i sinu~)e

The components of g in a spherical basis are defined simi-
larly with subscripts g instead off.
accordin

It is convement to group the various contributiu ions to
ding to values of biM which range from 0 to 2. If the

summation in Eq. (12) is carried out over the appropriate
values of iM and p' and the matrix elements of Ii and G are
substituted into the resulting expression, then R can be
written as a sum of three terms,

R =R(hiM=O)+R(biu=l)+R(hp=2) .

fo = —sin8ycoslxy ~ The term R (biu =2), for instance, is given by
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FIG. 3. Description of the angles 8/, P/, and ay that deter-
mine the direction of the incident linearly polarized radiation.
The angles 0/ and P/ are the ordinary azimuthal and polar an-
gles used in spherical coordinates; ay is measured from the unit

vector 8 and describes rotation of the polarization vector f
about the propagation vector k~. An identical system is used to
describe the orientation of g in terms af 8z, P~, and ar.

co+i —Qi 6+gPHIA, —— (18)

where the detuning of Qi from resonance b, is defined as
in Eq. (3), where the Bohr magneton p is given by
P=A'/2mc, and where g is the Lande factor for the inter-
mediate state. (In the absence of perturbations, g equals 1

for a 'P state. ) With these substitutions Eq. (17) reduces to
a sum of terms over hp =0 and 2 giving an excitation rate

IiI2(gpH/fi)

[(a+gPH/m)'+r'/4][(a gPH/X)—'+r'/4] '

(19)

where unimportant numerical constants have been fac-
tored out of the final result.

In the limit of large angular momentum, the quantum-
mechanical two-photon absorption rate is expected to ap-

R(b,@=2)=
[(co i

—Qi) —il /2][(co+i —Qi)+iI /2]
2 2f ig+i-+ [(~,—Q, )—ir/2][(~, —Q, )+ir/2] '

other terms are found similarly by substitution of the ele-
ments of F and G into Eq. (12).

The description of the incident beam geometry thus far
has been general; at this point the beam directions and po-
larizations can be specified and the excitation rate calcu-
lated. If the configuration in Fig. 1 is used where the two
beams intersect at right angles with 7 and g in the XY
plane, then Eqs. (16) reduce to f+i ——+I/v 2, fp=. O,

g+i ——+i/V2, and gc=O. Furthermore, the resonance
frequency of the atom in the laboratory reference frame
remains unchanged since there is no first-order Doppler
effect; thus, the following substitutions can be made in
evaluating Eq. (17):

proach the classical result obtained in Sec. II. To calcu-
late the former, the expression for R in Eq. (12) must be
generalized to include a sum over magnetic sublevels of
the ground state. It is easy to see for a transition of the
form '(L+2)~'(L+I)+ 'L—, that for a given magnetic
sublevel of the ground state m, there are four pathways
for excitation of the '(L +2) level when the polarization
specified in Fig. 1 is used. Two of the pathways are tran-
sitions between sublevels with the same magnetic quan-
tum numbers (i.e., g=m); these two pathways interfere
giving a contribution R ~ to the overall rate that is pro-
portional to the right-hand side of Eq. (19). The two oth-
er pathways correspond to transitions to the states
ri =m +2 and q=m —2, the rates for which are denoted
R +2 and R 2, respectively. The overall rate of
population of the upper state R is an incoherent sum of
the interfering and noninterfering rates over all the
magnetic sublevels of the ground state, or
R =g (R +R +2 +R z ). Now, if the nonin-
terfering terms are grouped in pairs with opposite signs
for m, then each pair gives a contribution to R propor-
tional to the right-hand side of Eq. (19), but with
( gPH /fi) in the numerator replaced by
4 + (gpH/iri) ~ I /4. It is not difficult to show that for
p&0, when @=m+1 the numerical factor in the ratio
Rm+2/Rm, m is

(L +@+2)(L+p+4)/(L @+2)(L——@+3),
a quantity that is greater than 1. As p approaches J +1,
this ratio becomes 2L, , which becomes arbitrarily large
for large L. Thus, the noninterfering pathways for popu-
lation of the upper state become dominant and the
quantum-mechanical absorption rate approaches the clas-
sical expression given by Eq. (7) insofar as the field depen-
dence is concerned. Note that the Lande factor for any
singlet state is always 1, and that 2y in the classical pic-
ture corresponds to I in the quantum theory as can be
seen by equating power dissipation rates.

Since the majority of multiphoton excitation experi-
ments are carried out with either a single beam, or with
beams having parallel polarizations, it is of some interest
to determine the sensitivity of the excitation rate to the
presence of magnetic fields. This is conveniently done by
considering the same geometry as in Fig. 1, but with the
two beams collinear and with the polarization vectors in
the XY plane. The result of a calculation for a 'S-'S tran-
sition shows R to be identical with the expression ob-
tained in Eq. (19) but with the numerator replaced by
IiI2(b, +I' /4). Thus, only in the event that one of the
beams is tuned close to an atomic resonance frequency
will a magnetic field be of importance.

IV. DETERMINATION OF LANDE FACTORS

The dependence of the two-photon excitation rate on
the detuning and magnetic field given in Eq. (19) suggests
that experimental measurements of the excitation rate as a
function of magnetic field might provide a method for
determining Lande factors. The direct dependence of R
on g and H in the numerator at first sight appears to pro-
vide a straightforward method of determining the g fac-
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tor; in fact, an absolute measurement of R is required in
order to determine g. This clearly is impractical.

For experimental determination of Lande factors con-
sider the following geometrical arrangement of incident
radiation polarization vectors as shown in Fig. 4. Let
both k& and k2 be directed along the Z axis (so they are
either parallel or antiparallel —the result depends on the
orientation of the polarization vectors, not on the propa-

gation vectors). Place the polarization vector of E~ (i.e.,
f) along the X axis and let E2 (i.e., g) be rotated by a po-
larization rotation device such as a half-wave Fresnel
rhomb. The molecular beam is directed along the X axis
and the magnetic field is again placed along the Z axis.
This arrangement again provides Doppler-free excitation
as the radiation beams propagate perpendicularly to the
atomic beam. Equation (17) can be evaluated to give

R =I)I2
cos2$ + sinzgs(62+ I' /4) +cosPgsinPg

g H z g Hr

[(b,+gPH/A') +I /4][(b, —gPM/A') +I /4]
(20)

When Ps =0, the electric vectors of the two beams are
perpendicular and the numerator of Eq. (20) becomes
I~I2(gPH/fi) . As Pg is rotated to n /2 the numerator be-
comes I&I2(b. + I /4). Two important experimental ad-
vantages for measurement of g factors are obtained using
this approach. First, the measurement of R is now refer-
enced to 6 instead of being an absolute measurement.
Second, the Lande factor is determined directly from a
knowledge of 5, H, and the measured excitation rate. (It
has been assumed that 5 is adjusted in any experiment to
make I /2

~

b,
) && 1.)

Consider an experiment with an atomic beam of Ca. In
general, if b &&k& v where v is the beam velocity, then
any residual Doppler effect can be ignored. The 'P~'S
transition in Ca is excited by 422.7-nm radiation while the
4p 'S+—'I' transition is excited by 586.8-nm radiation.
For the 'P state, I is 2.18&(10 s '. If b, /2m is adjusted
to be 2.8 GHz then (I /26) is 3.8 X 10 so that the error
from neglecting I can be ignored. (That is, the precision
in the measurement of H or the signal-to-noise ratio in

STATIC MAGNETIC
FIE1 D

ATOMIC
BEAM

FIG. 4. Doppler-free geometry for carrying out experimental
measurements of Lande factors.

the data will, in all certainty, be greater than this. ) For a
g factor of unity (and with P/A'=1. 3997 MHz/G) the
magnetic-field-induced excitation rate at a field of 1 kG
will be 25% of the rate with the two electric fields in the
parallel configuration. Thus the two excitation rates
should be comparable giving not too disparate signal-to-
noise ratios in the detected signals.

A limitation to the accuracy of Lande-factor deter-
minations by the above method comes from energy-level
shifts due to the ac Stark effect. According to Jaynes and
Cummings, ' or Stroud' (see also Refs. 7 and 17 for re-
views), the ac Stark effect shifts energy levels of the 'P
levels in the low-intensity limit by an amount'

e E iH„pm

2X
(21)

Here, it is assumed that since the detuning of 0& from res-
onance is so much smaller than the corresponding detun-
ing of Q2 from the 'P ground-state energy-level splitting
that the former dominates the Stark shift. (If E2 is inor-
dinately large for some reason then its effect must also be
included despite its assumed large detuning. ) The energy
shift corresponding to the Block-Siegert shift in the ex-
pression for &R& has also been deleted since it is small at
optical frequencies. The same calculation shows that the
shift in the energy level of the ground state is of the same
order of magnitude but of the opposite sign; that is, with
b, positive the levels p are shifted to higher energy while
the ground state is shifted to lower energy.

Experimental measurements of the ac Stark effect have
been made by Liao and Bjorkholm' and by Bonch-
Bruevich, Kostin, Khodovoi, and Khomov. Liao and
Bjorkholm find a linear increase in the energy shift with
radiation intensity (i.e'., as E ~) at a rate of 300
MHz/(kW/cm ) with a detuning of 4 GHz for a strongly
allowed transition in atomic Na. The authors note that it
is possible to eliminate the ac Stark effect altogether by
appropriate attenuation of the radiation beam while still
maintaining enough power density to observe fluorescence
from the excited state. It is evident that if high intensity
is required to observe the two-photon population rate (by
whatever mechanism it is monitored) then from the per-
spective of reducing the Stark effect it is prudent to in-
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crease I2, which is far from resonance, rather than I,
since the population rate depends on the product of both
Ii and I2 whereas the ac Stark effect is dominated only
by the beam with intensity I~.

Determination of Lande factors by this method is seen
to depend upon a measurement of the detuning, the mag-
netic field, and the rate of population of the excited state.
Using devices, such as an optical wavemeter, the detuning
can be determined precisely; magnetic fields can also be
measured with high accuracy using nuclear magnetic reso-
nance techniques. The overall accuracy of such a Lande-
factor measurement depends on such factors as the
signal-to-noise ratio in the recorded signal, which is in-
creased, as discussed above, at the expense of possible ac
Stark shifts. It would appear then that determination of
the overall accuracy of a Lande-factor measurement
would be more appropriately addressed by reference to ac-
tual experimental data than to further calculations.

V. DISCUSSION

Comparison of the two-photon interference effect
described here with the Hanle effects' shows both
similarities and differences that serve to delineate several
features of these effects. Both phenomena are quantum-
mechanical interference effects that depend on the ex-
istence of two paths for population of the final state. For
the two-photon absorption discussed here the linearly po-
larized light with polarization along with F axis can be
resolved into right- and left-hand circularly polarized
components (o and o+ radiation) that create a polariza-
tion varying with time at a frequency Q& in the mI ——+1
and —1 sublevels of the 'P state. The second beam at a
frequency Q2 also can be resolved into cr and o.+ com-
ponents that interact with the polarization produced by
the first beam to populate the excited state. There are two
routes to excitation of the upper state: absorption of a o+
photon at a frequency Qi followed by absorption of a
second a photon at a frequency Qz, or alternately, ab-
sorption of a o photon from the first beam followed by
absorption of a o+ photon from the second beam. In a
Hanle effect experiment on a 'P-'S transition where
fluorescence is detected at right angles to an exciting
beam the same paths exist, but the absorption of the
second photon is replaced by emission of a fluorescence
photon. In both cases the interference phenomenon is
contingent on the existence of two paths to the final state.
Not to be overlooked is the fact that the vector 7 must be
placed so that the polarization of the intermediate state,
or in the case of Hanle effect, the populations of the
m~ ——+1 states, is prepared in a coherent superposition.
Not only must there be two paths leading to the final state
but also a definite phase relation between the paths must
exist. In fact, this is guaranteed in both the Hanle effect
and the two-photon effect described here by placement of
the electric vector of the incident beam (Ei in this paper)
perpendicular to the quantization axis defined by the
magnetic field. (If, for instance, 7 and g are placed along
the z axis no interference takes place. )

An important contrast between the two-photon interfer-
ence and the Hanle interference is that only the latter is a
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APPENDIX

Equations (la) and (lb) are of the form

x ' (x+y)' 1 O A(&)

(x +y)' o 1 A(r) (A 1)

where Pi and $2 are driving functions, the matrix a is a
linear operator given by

D2+2yD+~o
+2MD

+2MB
D +2+D +coo

(A2)

Doppler-free effect. As is well known, the exciting radia-
tion in a Hanle-effect experiment should be of a suffi-
ciently wide bandwidth to excite the magnetic sublevels of
the excited state independently of their field splittings. As
the radiation bandwidth is broad there is no effect caused
by the motional broadening from the Doppler effect. This
can be seen in the Hanle-effect formulas for the scattered
radiation intensity where ~0 does not appear explicitly.
For the two-photon interference, Eq. (19) shows that R
depends on coo and Qi through 5 and hence any shift in b.
from the Doppler effect acts to change the magnitude of
R. However, since atomic beams are produced perhaps
with greater ease than are static entrapments of atoms in
buffer gases, the restriction on the observation of this ef-
fect to Doppler-free geometrical arrangements does not
appear to be excessiv'ely severe.

An enlightening contrast between the Hanle and two-
photon interference effects can be found in their classical
derivations. The Hanle effect, which can be described as
a rotation of the dipole radiation pattern by the Lorentz
force on the oscillating electron, is derived from the tran-
sient solution to the homogeneous equations of motion for
the electron given by Eqs. (1) (with e=O). The two-
photon absorption, on the other hand, relies wholly on the
steady-state, inhomogeneous solution to the electronic
equations of motion. The nonlinearity essential to the
equations of motion for two-photon interference is of
course another important distinction between the mecha-
nisms for the two effect.

Although the interference effect is discussed here with
emphasis on a two-photon excitation of a 'S state from a
'5 ground state through a 'P intermediate state, it is not
difficult to derive a result similar to Eq. (19) in more com-
plicated cases involving states with higher angular
momentum or hyperfine coupling following the same pro-
cedure given in Sec. III. Moreover, since the two-photon
interference described here is of the nature of a zero-field
level-crossing effect, the extension of the interference to
high-field crossings appears to be straightforward.
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where D =d Idt, and tc is a constant. A perturbation solu-
tion to Eq. (Al) can be developed in analogy with the
method of reversion given by Pipes by considering a
power-series expansion of the solution of the form

and

x) P)(t)

yt $2(t) (A4)

X( X2
K+ K+

3'2

X3
~ ~ ~ (A3) Ix, x i+2x tyi+yi2 2

= —E
+2X ]y& + (AS)

If this expansion is substituted into Eq. (Al) and coeffi-
cients with equal powers of tt are equated then a series of
linear differential equations results, the two lowest-order
differential equations in which are given by

The procedure requires a solution to the linear equations
(A4) giving x& and y&,

' the solution to (A4) is substituted
into Eq. (AS) to give a second linear differential equation
whose solution is a correction to ( x &,y &

).
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