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A derivation and geometrical interpretation of multichannel quantum-defect theory (MQDT) is
presented. An alternative set of MQDT parameters is suggested which separates into two indepen-
dent groups, one representing the quantum defect of a Rydberg series in the absence of channel cou-
pling and the other representing the channel coupling itself. An equivalent X-level system is
developed so that the MQDT boundary conditions are replaced by a simple energy restriction on the
X-level system, resulting in easier solutions of the equations. The equations are solved and spectra
are presented for the simple two-channel case and for the three-channel case, where channel interac-
tions lead to interferences in the spectra.

I. INTRODUCTION

Over the past decade, multichannel quantum-defect
theory (MQDT) has been successfully used to characterize
the complex bound-state spectra of many two-electron-
like atoms. Originally formulated in 1966 by Seaton, '

MQDT was not used extensively to characterize
multielectron spectra until Fano and Lu developed a
graphical analysis technique in 1970. Since then, laser
spectroscopy has dramatically increased the amount and
accuracy of spectral data on two-electron Rydberg states,
and the use of MQDT for its analysis has become much
more common.

In Fano's original work, he discussed the problem of
the photoabsorption spectrum of H2, a case where the two
initial electronic wave functions are in distinguishable
molecular orbits. His formalism quite naturally made
maximal use of the molecular (or close-coupled) symmetry
of the initial state. However, for studies of the properties
of Rydberg states —including their behavior in fields and
their photoabsorption spectra —much can be gained by ex-
ploiting the difference between the Rydberg electron wave
function and the other core electrons' wave functions. In
this manuscript we will reformulate the MQDT equations
to do this. In so doing, we will arrive at a formulation
much closer to Seaton's original work, ' although the
development is closer in spirit to Fano's.

The Fano formalism basically satisfies the boundary
conditions for a small radius r where one can take advan-
tage of the close-coupled symmetry and integrates to large
r where the other boundary conditions are applied. Here
we will reverse the procedure by integrating from large r,
where the Rydberg wave-function characteristics are sim-
ple, into small-r values and then applying the final boun-
dary conditions. Initially, however, we will formulate the
MQDT equations in a symmetric fashion which illustrates
how either route may be pursued.

As a result of the reversal of the roles of large r and
small r in developing MQDT, we will use a set of parame-
ters that is related to, but different from, those that Fano
defined. In particular, we will define a constant quantum
defect to characterize a Rydberg series, even though no

bound states of that series may have that value. In fact,
the difference between a particular Rydberg state's quan-
tum defect and the series value will simply determine the
relative amount of configuration mixing in that state.
Configuration mixing, or channel mixing in MQDT par-
lance, will be parametrized by two-electron interaction
matrix elements calculated using single-configuration
Rydberg states.

Our motivation for an MQDT analysis parametrized in
such a fashion has originated from photoionization stud-
ies of Rydberg states using the isolated core excitation
(ICE) technique to excite autoionizing states. With this
technique, autoionizing states are produced by exciting
the inner electron of a bound, singly excited Rydberg
state, as in the strontium transition Ssnl~spnl. For this
type of transition, the Rydberg electron's wave function
does not change much in the large-r region, where it is
"isolated" from the core electron. Thus, it is useful to
have MQDT wave functions that emphasize the large-r
sytnmetries for analyzing ICE spectra. Although autoion-
izing states, by their very nature, exhibit strong configura-
tion mixing insofar as they are coupled to continuum con-
figurations, the ICE studies have most often produced
spectra showing doubly excited sequences with constant
quantum defects and simply varying autoionization
linewidths, even when many bound and continuum con-
figurations (channels) could be involved. ' A significant
portion of this manuscript will be devoted to the analysis
of ICE spectra for two reasons: (1) to show that the sim-
ple ICE results are consistent with an MQDT treatment,
and that the positions and linewidths are those simple
MQDT parameters referred to above; and (2) the ICE
spectral analysis primarily involves an examination of the
Rydberg electron's wave function, and thus is a prototype
for any study of the properties of a two-electron Rydberg
state.

Much of the mathematical treatment presented here is
essentially similar to the MQDT works of Seaton ' the
use of quantum defects and channel couplings is also very
similar to the molecular work of Jungen and Dill" and of
Giusti. ' However, this work develops a geometrical in-
terpretation of the MQDT equations and a vectorial
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analysis which leads to the equivalent N-level formalism.
We believe that these two aspects make approximations
and conceptual solutions far easier. As an example, if one
wishes to expand an analysis from N channels to N+ 1

channels (because a new perturbing configuration is iden-
tified), the formalism presented here allows an almost
trivial extension which incorporates all the previous pa-
rameters, essentially unchanged. Such is often not the
case when using the Fano formalism. Furthermore, this
formulation easily allows multiphoton excitation exten-
sions, which we have used to calculate four-wave-mixing
line shapes' and two-photon shakeup dynamics. '

ln the next section we will derive MQDT equations for
a simple, model system —a spin- —, particle in a box. This
illustrates the derivation technique and its accompanying
mathematics in the simplest possible case. Section III ex-
tends the derivation to multielectron atoms, presents the
geometrical picture of MQDT, and introduces the
equivalent N-level system which serves as an intuitive
guide for solving the MQDT equations. Section IV
presents classes of solutions and approximate solutions,
with a particular emphasis on the type of spectra resulting
from photoabsorption from Rydberg states.

incident from the right-hand side of the well. Since prob-
ability must be conserved, all that can occur is a phase
shift, so that the reflected wave is m 1 exp[+i (kx +2h)].
By combining ingoing and outgoing plane waves, we can
form standing waves of the form

m I sin(kx +hi )=m I sin(kx) coshi+ m I cos(kx) sinh I,
(1)

m2 sin(kx +h2)=m2 sin(kx) cosh2+m2 cos(kx) sinh2,

where the m; are the spin functions and the h; depend on
the magnetic field in the region 0&x &a. Any wave
function which satisfies the boundary condition at x =a
must be expressible as a linear combination of wave func-
tions of the form of Eq. (1).

If the magnetic field B is not parallel to the z axis, then
we must first pick the appropriate combination of spinors
which are either parallel or antiparallel to the magnetic
field

M~= g Ug~mg .

For example, if the magnetic field were along the x axis,
the appropriate unitary transformation matrix is

II. SPIN-2 PARTICLE IN A BOX
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FIG. 1. Potential for a one-dimensional spin-T particle in a
box. The interaction between spin-up and spin-down states
occurs in the region 0~x &a, and is caused by the magnetic
field B.

To illustrate the origin and form of the MQDT equa-
tions, we will begin by considering an MQDT formulation
of the simple spin- —, particle in a square well with a mag-
netic spin coupling at one end. We will show how a dou-
bly infinite series of states can be treated simply when
viewed from a scattering formalism point of view. The
MQDT solution will also illustrate how channel interac-
tions affect the bound-state spectrum.

Consider the square well illustrated in Fig. 1. In the re-
gion 0& x &a, there is a small magnetic field which can
serve to mix spin states. If the magnetic field is in the z
direction, then the spin up (called m I here) and spin down
(m2) are not mixed by the field and the problem is separ-
able into two independent cases. To obtain the functional
form of the wave function in the region a &x &L, consid-
er the scattering of a spin-up plane wave mi exp( ikx), —

—1 1

With the new spinors M, we can form a basis set of
wave functions analogous to those of Eq. (1) which match
the boundary conditions at x =a:

g =M sin(kx+h )= g U~ m; sin(kx) cosh

+ g UI~m; cos(kx) sinha .

(4)

The boundary conditions at x =I. can be matched by
inspection, and so we may also write down a basis set of
wave functions which match the right-hand boundary
condition

P; =m; sin[k(x —L)]=m; sin(kx) cos(kL)

—m,. cos(kx) sin(kL) .

Now any valid wave function 'p must match the left and
right boundary conditions. Thus it must be expressible as
a linear combination of the basis sets of Eqs. (4) and (5),

e= g A, y, = g a.y. .

If we now equate the coefficients of the spin-up (-down)
times sin(kx) [cos(kx)], we obtain four simultaneous
equations:

A, cos(kL) = U»BI cosh, + UI2B2 cosh2,
—A I sin(kL) =UIIBI sinhi+ UI2B2 sinh2,

A2 cos(kL )= U2181 cosh i + U2282 cosh2,
—A2»n(kL) = U21+1 sinhl+ U22+2»nh2 ~

These may be combined using complex exponentials to il-
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lustrate better the symmetry of the equations:

Aie ' = g Ui~~e (8a)

B = 0 BNO

B.e"=g U,.A, e-'" . (Sb) N 77
L

Since the wave functions of Eqs. (4) and (5) are real, we
can require A; and B to be real, so that after multiplying
Eq. (8a) by exp(ikL), we obtain

A; = g U; cos(b, +kL)B (9a)

0= g Ui~ sin(b, ~+kL}B~ . (9b)

B~= g U; cos(b, +kL)A;, (10a)

In a similar fashion we can obtain an equivalent set of
equations, FIG. 2 High-N spectra for a one-dimensional spin- 2 particle

in the potential of Fig. 1.

0= g U; sin(A +kL)A; . (10b)

0= sin(b i+kL) sin(b, 2+kL), (12)

which gives us the conditions on k for which valid solu-
tions will exist.

If B=O so that hi ——b,2
——0, we have the standard parti-

cle in a box and Eq. (12) is solved by

ko Nn IL, ——
Eo Nn /2L——

(13a)

(13b)

where atomic units (fi=m =e =1) have been used. If a
small, nonzero field is then applied, we would expect that
6& ———h2 ——6, and each eigenstate splits into two accord-
ing to

k —ko ——+6/L,
E Eo +No ~/L— ——

(14a)

(14b)

For this example, the phase shifts 6; will theinselves de-
pend on k or E when E is not large; however, we will ig-
nore this complication. For the multielectron atom, the
corresponding phase shifts will have only a weak depen-
dence on energy. So, with the assumption that the 4; are
energy independent, the spectra of this system is illustrat-
ed in Fig. 2. If the pair splitting is divided by the energy
spacing between pairs, then we find that for large N, this
ratio only depends on A. In the next section, we will see a
similar effect for Rydberg states, where shifts from unper-
turbed values, divided by the spacing between unperturbed
states, determine the fundamental physical interactions.

In this simple case, no information about U; can be
/

In order for either Eq. (9b) or (10b} to have a nontrivial
solution, the coefficient matrix must have a zero eigen-
value, so that

det
~

U;~si (nb. +kL)
~

=0,
In this simple case, since the right-hand boundary condi-
tion does not depend on m;, we find that Eq. (11) reduces
to

obtained from the energy levels, since U; depends on the
direction of B, not its magnitude. To obtain the U~, we

must know something about the wave functions for some
of the eigenstates. This is also a general property of the

MQDT analyses of atomic spectra. It is only possible to
determine MQDT parameters completely when some in-

formation is known about wave functions nergy-level

locations alone are not sufficient.

III. MUI.TIEI.ECTRON RYDBERG STATES

A highly excited state of a multielectron atom can usu-
ally be well approximated as a sum of a small number of
product wave-function configurations. For each configu-
ration a Rydberg electron is selected out, leaving the other
electrons in a frozen ionic core. For different energy Ryd-
berg states, the primary changes will be in the relative ad-
mixtures of different type configurations and in the Ryd-
berg electron wave function itself. The different core con-
figurations will be relatively insensitive to energy. MQDT
is designed to address only those major changes, so for ex-
ample, it accounts rather well for the changing mixtui'e of
4dns, 'D2 and Ssnd, 'Dz type configurations in strontium
Rydberg states and for the changing Rydberg wave func-
tion. But changes in the 5s or 4d core wave functions are
assumed to be negligible.

Under this approximation, the Schrodinger equation for
the Rydberg electron at large r (where the potential is just
Coulombic) is separable, and the solutions are products of
spherical harmonics and Coulomb radial wave functions.
In this case, the problem has effectively reduced to the
one-dimensional problem of the previous section. The
"wall" at, x =L, has become the Coulomb potential
—Zlr, which continues as r~co. The spinor must be
generalized to include not only the Rydberg electron's
spin, but also its spherical harmonic and the appropriate
core configuration. The magnetic field B is generalized to
include all interactions between the Rydberg electron and
the core—with the net effect that it still just causes mix-
ings of the generalized spinors. We will next illustrate
this correspondence in some detail, by way of developing
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the MQQT equations for a multielectron atom.
A set of basis wave functions which matches the boun-

dary conditions as r~ oa can be written

P; =[s(W;,r) cos(n.v;)+c(W;, r) sin(n. v;)jX; . (15)

The s and c functions are Seaton's' regular and irregular
solutions of the Coulomb radial equation for an electron
of energy W; [similar to sin(kx) and cos(kx) in Sec. II,
and equivalent to the f and g functions of Fano ]. The
parameter v; describes the relative admixture of regular
and irregular solutions, and X; is a product of the angular
part of the Rydberg electron's wave function, the core
electrons' wave function, and the spinors for all electrons.

The wave functions P; are called collision channels,
since they are a natural choice as r~on. Examples of
collision channels in strontium would be 5snd, 'D2,
5snd, D2 , 4d5~'2ns; 4d3/2ns D.ifferent collision channels
may be distinguished by their core state, their spin state,
or the l of the Rydberg electron.

The energy of a collision channel is composed of two
parts: 8', the Rydberg electron's energy and I;, the
core-configuration energy (i.e., the ionization limit of the
P; collision channel, Rydberg sequence). For W; &0, the
s and c functions have exponentially growing and decay-
ing parts as r~oo. The collision channel of Eq. (15) will
only have exponentially decaying parts if v; is chosen so
that-

In this case v; is commonly called the effective quantum
number relative to the ith ionization limit, and the ith
collision channel is called a closed channel. If two dif-
ferent collision channels, i and j, have the satne ionization
limit, then v; =vz for all states of energy less than the ith
ionization limit.

In some MQDT treatments, such as those of Lee and
Lu' and Esherick, ' the condition that v;=vj (for two
closed channels converging to the same limit) was intro-
duced at the beginning to reduce the number of MQDT
equations. In Esherick's work, for example, the two chan-
nels 5snd, 'D2 and Ssnd, D2 were assigned the same pa™
rameter v; when both channels were closed. We will not
apply this restriction at the outset since that would force a
different behavior on closed channels than on open ones.
Rather, we will only apply any energy conditions to the
closed channels' v; after the equations are solved. In this
way we will obtain the entire range of Iv;I sets which
match the boundary conditions near r=0, regardless of
whether the collision channels are closed or not.

For bound states, this may seem an unnecessary corn-
plication. It allows the possibility of the 5snd, Dz and
5snd, Dq channels having different values of v;—which is
impossible for bound states. However, for channels that
are not closed, the v; parameters will generally not be
equal. Thus, by not applying this condition early, we will
show the general structure of aO solutions.

If W; &0, then the s and c functions both oscillate as
r~oo, with the s function 90' out of phase with the c
function. Equation (15) then satisfies the boundary condi-

tion for any choice of v; as r~ao, since it is always fin-
ite. In this case —mv; is simply the phase shift relative to
pure hydrogenic solutions. Channels for which W| &0
are called open channels, and the determination of v;
arises entirely from matching the boundary conditions as
r ~0. As we will show below, a proper choice of channel
composition and phase shifts ( —m.v;) will produce all
zeros in the reaction matrix for the open channels.

To match the boundary conditions as r~O, we must,
just as in the last section, construct a basis set valid in the
region where r is small but the potential is simply —Z/r
(so that s and c functions are valid solutions). If the po-
tential is just a Coulomb potential for all r & r„ then a
basis set which matches the boundary conditions at r =r,
can be formed:

g U~ X;s(W;,r) cos(n.p )

g U~ X;c(W;,r) sin(m.p ) . (17)

If the coefficients of X;s(W;, r) and X;c(W;,r) are
equated, we again obtain

A;e '= g Ui~B~e
a

(19a)

(19b)
2

The requirement that A; and B~ be real, again reduces
Eq. (19) to

This basis set is essentially the same as that defined in
Eq. (4) with the m; spinor replaced by our generalized spi-
nor X;, 6 is replaced by —mp, sin(kx) is replaced by s,
and cos(kx) is replaced by c. So again we can make the
correlation that the linear combination of channels
represented by Ui~ is a normal mode of the scattering-
one which has the same composition before and after a
scattering event. Similarly, —mp is the scattering phase
shift for the ath normal mode. The sum over i in Eq.
(17) includes different spin states, Rydberg electron I
states, and ion-core states. Consequently, the s and e
functions cannot be factored out of the sum, as would be
possible in Eq. (4), since they depend on the l of the Ryd-
berg electron and on its energy $V;. For example, the
Rydberg electron in a Ssnd, 'D2 channel will have nearly 2
eV more energy than the Rydberg electron in a 4d3/2ns
channel, since the ion core has absorbed the additional en-
ergy. Only the total energy, I;+8', is necessarily the
same in the sum in Eq. (17). When W; &0 for all chan-
nels, the basis set of Eq. (17), called the close-coupled
channels, are the natural, decoupled solutions of the
multichannel problem.

In general, or at least where the spectrum shows reso-
nances, W, &0 for some channels. Then the boundary
conditions as r~ 00 do play some role. The role of both
boundary conditions can be taken into account, as in Sec.
II, by requiring a valid solution 4, to be expressible as a
linear combination of the basis channels of Eqs. (15) and
(17) simultaneously,

(18)
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A;= g U; cos[ir(v;+p )]B (20a) cos(harp ) g [U; tan(mv;)

or

0= g U, sin[m. (v;+p )]8

B = g U~ cos[m.(v;+p )]A;,

(20b)

(21a)

+tan(~p )U; ]cos(mv;)A; =0 (23)

0= g U;~ ian[a( v+p~)]A; . (21b)

Equations (20) are those commonly used in the Fano
MQDT formalism. Equations (21) are an equivalent set.
Either Eq. (20b} or (21b) requires for a nontrivial solution:

I tan(imp)QT+ QTtan(mv) ]a=0 (24)

where tan(mp} and tan(~v) are diagonal matrices and
a; =cos(nv;}A;. Multiplying Eq. (24) by U and since
U '=U~, we obtain

det
I U,.sin[~(v, +p.)] I

=o ~ (22) [R+tan(mv)]a =0, (25)

Equation (22) is a restriction on the possible sets of values
of v; which will match the boundary conditions as r —+r, .
As such, it describes an (N —1)-dimensional surface in
the N-dimensional (v;) ~ i space.

The MQDT equations [(20) or (21)] can be used in
either of two ways. If the parameters U;~ and p~ are
known (for example, if they are calculated ab initio), then
Eq. (22) and the energy equation (16) can be used to deter-
mine all the bound states of a spectrum. Below, we will
also show how the state composition, i.e., the A; values,
are also determined. On the other hand, if a spectrum is
known, then some information can be obtained about the
U, and p, parameters by using the energy equation (16}
to determine what sets of v; are allowed. Since these sets
must satisfy Eq. (22), restrictions can be put on Ut and
Pa.

R=Utan(mp)UT . (26)

B. The geometrical interpretation

To evaluate Eq. (22), it is useful to define a cofactor
matrix C;~, the elements of which are cofactors of the
coefficient matrix of Eqs. (20b) or (21b)

Equation (26) is essentially the form that Seaton used to
determine the bound-state spectra in his formalism of
MQDT. ' The matrix R has the desired simplification
that it is real and symmetric, thus having only
N(N+ 1)/2 elements as required. Furthermore, it has an
apparent similarity to a conventional effective Hamiltoni-
an matrix.

A. An alternate formulation Ct~=cofactorI U~ sin[ir(v;+p )]I . (27)

For an N-channel problem, Fano defines N elements
of the U, matrix and N p phase shifts. However, since
the U;a matrix is an orthogonal matrix, it involves only
N(N —1)/2 independent parameters to describe its N2
elements. The redundancy involved in describing
N(N+ 1)/2 total parameters with twice that number of
elements introduces difficulties into fitting a spectrum, or
into characterizing the significance of individual elements.
These difficulties are illustrated by the standard way an
orthogonal matrix is constructed from a product of
N(N —1)/2 rotation matrices. The effects are cumula-
tive, so that if the first rotation mixes channels 1 and 2,
then the second rotation will mix the rotated channel 2
and channel 3. Stated another way, if a different ordering
of rotation matrices were used, the same U; would re-
quire a different set of rotation angles. Thus, the rotation
angles alone (without knowing their ordering) are not a
unique representation of U; .

All of these difficulties can be avoided by constructing
a symmetrical matrix with only N(N+ 1)/2 total ele-
ments from the U, matrix and the p phase shifts. Ac-
cordingly, we can reWrite the MQDT equation (21b) in a
fashion that eliminates the Ut~ and p~ elements in favor
of a symmetric matrix which has eigenvalues equal to
tan(~p~) and eigenvectors given by the columns of Ui~.
Rewriting (21b), we. find

The determinant of Eq. (22) may now be evaluated by
expanding along a row or column,

O=det
I U, sin[m(v;+p )] I

= g U, sin[~(v;+p )]C,

= g U; sin[~(v;+p )]C; (28)

By comparing Eq. (28) with Eqs. (20b) and (21b), we can
identify that 8 must be proportional to any row of C;
and A; must be proportional to any column. Thus,

Cia= GAIBa (29)

8
detI U; sin[m. (v;+p )] I

VJ

8
UJ sin[~(vJ+p ))

8vj
L

=ALGA~ . (30)

where 6 is some proportionality constant.
We can now complete the geometrical interpretation of

the MQDT formulation by evaluating the gradient of the
surface defined by Eq. (22),
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In Eq. (30) we expanded the determinant along the 1th
row. CJ~ does not depend on vj by construction, so the
differentiation is simple. The sum over a was then done
by substituting for C~~ from Eq. (29) and using Eq. (20a)
to eliminate the sum over a. Equation (30) demonstrates
that the normal to the (N —1)-dimensional surface of Eq.
(28) has projections along the v; axes which are propor-
tional to A;.

This geometrical interpretation can best be illustrated
by using a three-channel example. Figure 3 is a surface
which solves Eq. (22) for some choice of U~~ and p~. A
particular eigenstate 4 from Eq. (18) is represented by a
point on that surface. The normal to the surface at that
point has components proportional to A&, A2, and A3,
respectively. If, for example, the point lies anywhere in
the large flat region near v&

——0, the state has mostly P&
character. Similarly, if it lies on the flat region near
v2 ——0, it has mostly P2 character. The regions where the
wave functions are composed of nearly equal amounts of
two or more channels are those with a sizable amount of
curvature.

The shape of the surface in Fig. 3 is in fact quite typi-
cal insofar as the existence of the large flat regions. That
these large flat regions occur near v; =0 is a quirk of the
particular choice of MQDT parameters for Fig. 3. But in
most of the spectra which have been analyzed by MQDT
so far, the flat regions exist. It is not always possible to
identify these regions in the bound-state spectra, since the
energy restriction on v; of Eq. (16) may preclude bound
states from lying on a particular flat region. These re-
gions are made more obvious as the energy restrictions are

&r'
——&r +&;,

a =A; cos(mv,') .

(31)

(32)

reduced in the autoionizing region. In general, the
bound-state spectra will not show many aspects of the
multidimensional surface, since each energy level will only
place a point on the surface and these points will only
sparsely cover the available area. However, once the first
ionization threshold is crossed, the solutions form a line
on the surface A. nd for each subsequent threshold that is
crossed, an additional line of solutions is added. Conse-
quently, the autoionizing region can provide much greater
coverage of the surface of Eq. (22) than the bound spectra
can.

This suggests that a natural subdivision of MQDT pa-
rameters into two distinct sets should be possible. One set
would be composed of 5; values, such that if 5;+ v; is an
integer, the wave function would have primarily P; char-
acter. The 5; values can easily be obtained from an
MQDT surface since —5; corresponds to the intercept
where a plane tangent to the flat region cuts across the v;
axis. These 5; values are, of course, the single-channel
quantum defects. The other set of MQDT parameters,
which will be independent from the single-channel quan-
tum defects 5; would represent only interactions between
channels, i.e., channel mixings. These parameters would
only affect the curvature of the surface of Eq. (22) and
would be small (so long as flat regions exist, the curvature
cannot be too large).

To separate out the single-channel quantum defects 5;,
we can translate the v; parameters by defining

Then, Eq. (25) can be rewritten as

I R'+tan(m v')
J
a'=0,

where R' is the symmetric matrix:

(33)

R'= [cos(n 5)+R sin(~5)] '[R cos(m5) —sin(m5) ]
= cos(m5)/sin(m 5) —[sin(m5)R sin(~5)

+sin(m5) cos(m5] (34)

FIG. 3. Surface representing the allowable choices of
[vI,vz, v3I to solve a typical MQDT equation. The state com-
position at any given point is determined by the projection of the
normal to the surface along the v; axes. So points in the large
flat region near vI ——0 correspond to states with mostly P& char-
acter, points near v2 ——0 correspond to states with mostly $2
character, and points on the curved regions correspond to states
with highly mixed character.

with cos(m5) and sin(m5) representing diagonal matrices.
Seaton' has also described this transformation of R.

The transformations of Eqs. (32) and (34) represent
changing the radial wave-function basis set of s and c
functions to new linear combinations as done by Eissner
et al. ' These new functions, instead of being regular or
irregular near the origin, represent solutions with phase
shifts of m5; and m.(5;+—,') relative to hydrogen. This
new basis set is more natural since the 5; parameters can
allow for nonhydrogenic, spherical perturbations to the
Rydberg electron. Thus, the 5; can account for the typi-
cally large quantum defects that exist for low l states,
even in the absence of multiconfigurational effects (e.g.,
5, = 1.35 in sodium).

The only effect to remain in R', if the large spherical
effects are absorbed in the 5;, is just the channel mixings.
Unless these mixings are so severe that the approximation
of an average spherical Rydberg potential is invalid, the
elements of R' should be smaller than the typical differ-
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ences in 5; between channels. A severe channel mixing is
not to be confused with the existence of a severely per-
turbed state. Even small perturbations can cause a drastic
change in state composition, if the perturbing state is
close by in energy. For example, the Ss7s, '$0 state of
strontium is nearly equally mixed with the 5p, 'So state.
A large value of an element of R', on the other hand,
would mean that aII 5sns states would be heavily per-
turbed. An example of this behavior can be provided by
the 5snd, ' Dz states of strontium. If one chose the jj-
coupled 5snd3/2 and 5snd5/2 channels as the basis set,
then one would find that the channel mixing between
them would be large and its result would be to recouple all
states back into singlet and triplet states. If the channel
composition and the single-channel quantum defects 5;
are appropriately chosen, however, the elements of R'
should be small.

We have found it convenient to require the diagonal ele-
ments of R' to be zero, when fitting spectra. The N 5;
and N(N —1)/2 off-diagonal elements of R' are then
varied independently to obtain a fit. On the other hand,
ab initio calculations can sometimes be more easily done
by allowing small, nonzero diagonal elements of R'. For
example, the exchange interaction can mix the 4d3/271$
and 4ds~zns channels of strontium, but it will also pro-
duce different 5; for the two channels. It might be easier
in this case to use one value of 5 for both channels while
allowing diagonal R' elements, since the diagonal and
off-diagonal elements are simply related. In any case, Eq.
(34) allows for an easy transformation so that the 5; or di-
agonal R' elements may be chosen in whatever fashion is
convenient for the problem.

R'+ tan(~v'),

and a total pseudoenergy E:

[R+tan(n v')]a'=Ea', (35)

where a' is a vector describing the composition of an
eigenstate constructed from the original N basis states.
The matrix tan(m. v') then describes an unperturbed, diago-
nal Hamiltonian, and R' is the perturbation which causes
mixing of the N states into eigenstates a'. The eigenstates
a' will also describe an MQDT solution whenever its
pseudoenergy E is zero. Thus, the equivalent N-level sys-
tem allows us to express quantum defects and channel
mixings as effective Hamiltonians and reduces the boun-
dary conditions to an equivalent energy restriction.

Consider the use of the equivalent N-level system as il-
lustrated for two channels in Fig. 4. Here we have chosen
5i ——5z ——0 for simplicity, so that R=R' and has only the
one element R ~z, and v;=v;'. If R &2

——0, then there are
two unperturbed Rydberg series (i.e., series with constant
quantum defects, zero in this case), converging to two dif-
ferent ionization limits I& &Iz. For a small, nonzero R ~z,
the state having vi ——22, is shifted up by an amount

C. The N-level system

It is somewhat easier to understand the form of the
solutions to Eq. (33) by defining an equivalent N-level sys-
tem with an effective Hamiltonian

v', —22 tan(m. vi )
Et/ 3 ~ 3

V) 7TV)
(36)

since vi —22 is sufficiently small that tan(mvi ) can be ex-
panded. Similarly, the same state is shifted from the
vz ——15 state by

vz —I5azz-
Vz

tan( m.vz )

3
Kvz

(37)

Now if tan(mvi) &tan(eve) «1, then the equivalent two-
level system may be solved by second-order perturbation
theory

(R 'iz ) =0,
tan(m vi ) —tan(~vz )

(R iz)
tan(iv) )=

tan(n. vz )

E =tan(n. v'i)+

«iz)'
2 3 3

(38)

(39)

(40)

I y,'rzdr =v,'. (42)

Thus, the R' matrix coupling X channels can be calculat-
ed as easily as can a perturbing Hamiltonian between N
states using Eq. (41).

It will usually be possible to find a state near one of the
unperturbed states (since there are large flat regions in the
MQDT surface), so that the analysis leading to Eqs. (42)
and (43) will be valid; however, not all states will have
tan(nv, ') «1 for all i It is u. seful to consider a state
where tan(m. v,' )~ao for one i to see the significance of
the tangent function. Consider the system of Fig. 4 again;
however, this time note the state v& ——23. For a nonzero
Riz this state will remain unshifted using the second-
order perturbation analysis of Eq. (39), since tan(m. vz) is
very large (vz ——15.S).

The equivalent N-level system consists of two states far
separated by energy, so that second-order shifts are negli-
gible. But now consider the state composition, by evaluat-
ing a z from first-order perturbation theory and then relat-
ing it to Az by Eq. (32)

Az —— =~jz .
cos(m.vz) tan(eve)

(43)

where we have applied the MQDT restriction that E=O,
and used Eqs. (36) and (37) to introduce real energy shifts.
But Eq. (40) is exactly what we would have expected if we
had associated an interaction, V~z between the unper-
turbed states vi ——22 and vz ——15 such that

&iz~iz=-
m(vivz)'

This means that —R', z/m is the interaction between the
unperturbed channels P, and Pz defined in Eq. (15). The
scaling with vt and vz is to be expected, since the channels
defined in Eq. (15) have an energy-independent amplitude
near the core and are thus normalized so that for bound
channels
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25 lent picture as to what is the wave function composition
and what energies are allowed.

Once Eq. (33) is solved, with the restriction that E=O,
the eigenvector a' can be used to obtain a properly nor-
malized wave function

4= C g AgPg ——C g [1+tan (mv))]'~ ag'P;, (44a)

g [1+tan (n vI ))(a ) v;

' —1/2

FIG. 4. Two unperturbed Rydberg series (solid lines) which
converge to two different ionization limits, I~ &I2. The left
and right scales show effective quantum numbers relative to the
I& and I2 limits. The dashed line designated the position of an
eigenstate when the channel interaction is introduced. The ener-

gy shifts AE& and EE2 represent the energy shift of the eigen-
state from the nearest unperturbed state of channels l and 2,
respectively.

(44b)

where the normalization constant C has been evaluated by
normalizing the wave function to unity, using Eq. (42).

Note that in Eq. (44a), A; describes the relative admix-
ture of collision channels P;. If the P; channels had been
normalized to unity themselves, the relative admixture
would have been v; A; . A simple classical analog explains
these two sets of coefficients. The values A describe the
percentage of orbits' in which the Rydberg electron stays
in any given configuration. Thus, if A

&
———,', and 22 ———,',

the Rydberg electron would average one orbit in configu-
ration 1 for every two orbits in configuration 2. But dif-
ferent orbits have different periods Sin.ce v; is propor-
tional to the classical period, the quantity A; v; is propor-
tional to the average time spent in configuration i. The
A; coefficients best describe the Rydberg electron —ion-
core collision, but a real measurement will usually average
over some time rather than a specified number of orbits.
Thus, both normalization procedures are useful.

B. Autoionizing states

Thus, we see that the unperturbed state v'& ——23 suffers no
energy shift from the interaction R', 2, but does have Pz
character mixed into it. Figure 4 illustrates the origin of
this: the unperturbed state v& ——23 is shifted up due to its
interaction with the unperturbed state v2 ——15, but it is
simultaneously shifted down by its interaction with the
unperturbed state v2 ——16. The energy shifts cancel, al-
though the admixture of the two different $2 wave func-
tions cannot cancel. Thus, the use of the tangent function
becomes a shorthand way to sum over an infinite number
of states (including the continuum) and replace it with one
effective state in our equivalent N-level system. In his
formulation of one perturber interacting with an
"almost-continuum" of high Rydberg states, Fano illus-
trates how the tangent function can be obtained directly
from such a sum. '

IV. SOLUTIONS TO THE N-LEVEL SYSTEM

A. Bound states

The eigenvector equation (33) will always have
independent solutions; however, only those for which the
eigenvalue E=O will be solutions of the MQDT equa-
tions. Nevertheless, if the offset parameters 5; of Eq. (31)
are approximately chosen, the R' matrix will have small
elements so that approximate solutions will give an excel-

If there are n, open or continuum channels, then there
will be at least n, solutions to Eq. (35) which simultane-
ously satisfy the E=O condition. This is because the n,
values of tan(mv, ' ) for the open channels are no longer re-
lated to the energy directly, but can be chosen at will to
solve Eq. (35). To solve for those vectors and tan(mv'; )
values, it is useful to divide the R'+tan(n. v') matrix into
four quadrants which connect open channels to open
channels, open channels to bound channels, bound chan-
nels to bound channels, and bound channels to open chan-
nels as shown below (where "b" represents bound and "c"
represents continuum or open):

[R'+ tan(m v') ]bb R s,R' tan(m. v') =
[R '+ tan(n. v') ]„ .(45)

I R,'s [R'+ tan(m v')]~~'R ~ —R,', j a', =EJa,',
as ———[R + tan(mv )]gb RI„a, .

(46a)

(46b)

Equations (46) have n, different continuum solutions,
each of which is normalized according to

Then, following the procedure outlined by Seaton, ' we
obtain n, solutions by requiring that tan(harv, ')=sz for
each continuum channel i where j is an index between 1
and n, enumerating the independent solutions. This al-
lows us to solve Eq. (35) simply, reducing it to an n,
dimensional eigenvalue problem:
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g /I; = [(e/ ) + 1]g (a,' ) = 1,
(n )

(47) If
~

tan(nv2) —tan(mv~) &&
~

R'~2 ~, the solution can be
obtained from degenerate perturbation theory, requiring

since only one orbit is allowed in a continuum configura-
tion.

In Eq. (46a) the matrix coefficient is the same as the re-
action matrix of Seaton's formulation and the ej values
are thus the eigenvalues of the reaction matrix. Lee and
Lu'5 define a phase shift ~ in the autoionizing region,
whose tangent is the value —sj.. Lee and Lu' also define
a T matrix composed of the n, sets of continuum wave-
function coefficients A,J. We have avoided these addi-
tional definitions to stress the continuity of MQDT as one
passes from a bound to a continuum energy region.

The solutions outlined above will not be complete if
there exists a vector a' such that

a,' =O,

I g + tan(m v ) I bbab =0,
R,'bah ——0 .

(48a)

(48b)

(48c)

Under these circumstances, the vector a' will represent a
completely bound state, degenerate with, but uncoupled
to, the continua.

In a similar fashion, one can often construct combina-
tions of the n, continuum channels such that they no
longer couple to any one (or any one set) of the bound
channels. Thus, if nb &n, (where nb is the number of
bound channels), one can construct n, nb such—continu-
um channels that do not couple to the bound channels at
all. Since only tan(mv')bb depends on energy, the uncou-
pled continua channels can only add a constant back-
ground to any spectrum. All of the features of the spec-
trum can be constructed from an equivalent set of only
2nb channels. Fano demonstrated this same type of sim-
plification for the case of one isolated level interacting
with two continua. '

Ap ——+HI . (51)

That is, one obtains symmetric or antisymmetric com-
binations of channels 1 and 2. Figure (Sa) schematically
shows this solution by illustrating the eigenvalues of the
tan(n v'} matrix and the new eigenvalues of the
tan(n. v') +R' matrix (where we have picked
R'~~ ——Rzz ——0). For the correct choice, of tan(nv'~) and
tan(n vz) one of the new eigenvalues is zero.

If
~

tan(nv2} —tan(mvI) ( &&
~

R &2 ~, the simple pertur-
bation analysis applied in the earlier section holds and a
solution is obtained for tan(nv&) satisfying Eq. (39) and a
wave function such that

' 1/21+tan'(~v,')
1+tan (m v) )

&i2
tan(m vz )—tan(n. v~ )

(52)

Figure (5b) schematically shows this case, again illustrat-
ing eigenvalues before and after the perturbation.

For more than two channels, the above approximations
are readily expanded, using degenerate perturbation theory
when

/
tan(~v, ' }—tan(mvj ) [ &

/
R J /

and regular pertur-
bation theory otherwise. Since first-order perturbation
theory is additive, the only new complication that can
occur is when degenerate perturbation theory must be
used for several channels. In that case the solutions are
approximately the eigenvectors and eigenvalues of the ma-
trix R' restricted to only those channels lying in the de-
generate band. Since R' is independent of energy, these
degeneracies can only introduce a small number of com-
plications. Far more often, the solution will be readily

tan(7rv2) =tan(mv'$ ) =R $z . (50)

The wave functions are obtained from setting'a ~
——+a&,

and since tan(n. vz )=tan(n. v& ),

C. Approximate solutions

Since the MQDT equations have been replaced by an
energy restriction on an equivalent X-level system, it be-
comes possible to apply all of the well-known approxima-
tion techniques to the MQDT problem. Specifically, any
interaction between channels 1 and 2 will cause them to
repel each other. In the absence of other channels the
eigenvalues of the perturbed state if R '» ——R 2z

——0 will be

E = —,
' ([tan(n v2)+tan(eve )]

0.05—

+ I[tan(m. vz) —tan(n. v'~)] +4R ~z I
' ) . (49) 0.0

Consequently, solutions with a zero eigenvalue can only
occur when tan(m v~ ) and tan(eve) are either both positive
or both negative. Geometrically, this shows up (in N di-
mensions) as the requirement that the surface defined by
Eq. (22) must have a normal whose projections along the
X axes all have the same sign. Without this restriction,
Eq (30) could. not always be valid. For our two-channel
example, two cases stand out, corresponding to

~
tan(~vz) —tan(mv&)

~

being much less or much greater
than

~

R', ~ (.

(b)

FIG. 5. Pseudoenergies are shown before and after including
the R ~2 interaction which repels the states; e~ and e2 represent
the respective values of tan(m vI ) and tan{m v2 ). In {a)
~tan(nv2) —tan(nv~)

~
&&R» so that the solution (@=0) has

has nearly equal admixtures of P & and (bz. In (b)
~tan(mv2) —tan(n v~ )

~

&&R'», so that the solution has mostly P&
character. For both cases R I2

——0.02; the arrow designates a=0,
the condition under which the MQDT equations are solved.
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handled by first-order perturbation theory, where at most
a twofold degeneracy must be removed.

D. Photoionization spectra for highly excited states

In an increasing number of experiments, the isolated
core excitation (ICE) technique has been used to study au-
toionizing states. It simply illustrates the essentials of us-
ing MQDT to predict or to model spectra, particularly us-

ing the formalism developed here. We will briefly
describe the ICE technique and then describe expected
spectra and their analysis in some detail.

The wave function of a two-electron-like atom (e.g.,
alkaline-earth atoms) in a bound, Rydberg state usually
consists of mostly one configuration, having an unexcited
"core" electron and a high-n "Rydberg" electron. Al-
though many channels may be required to describe the
state fully, the normalized wave function will be dominat-
ed by the one configuration. This occurs because, as
described above, the normalized wave function represents
a time-averaged distribution and the electron's orbit is far
longer in a Rydberg orbit. Thus, to model the absorption
spectra from a Rydberg state, it is usually sufficient to
consider only the one, dominant configuration as the ini-
tial wave function. For example, the absorption spectra
of an excited state of barium that has both 6sns and Sd 7d
configurations will be dominated by the 6sns absorption
characteristics over a large wavelength range. '

Furthermore, optical absorptions from the two-electron
Rydberg state will be dominated by the core ionic transi-
tions. Direct photoionization of the Rydberg electron is
always a weak process since the Rydberg electron would
be ejected so far above threshold. The core electron, on
the other hand, still responds strongly to light near the
ionic core resonances. It is in this sense that absorptions
from bound Rydberg states correspond to isolated core ex-
citations. Under these circumstances, it has been shown
that the dipole transition matrix element from an initial
state

~

gvgl) (where g represents the ion-core ground
state and the Rydberg state is represented by its effective
quantum number vg and angular momentum I) to a final
autoionizing state

~

ev'I') is given by

p = (gvgl
( p i

ev'I')

sin[ir(vg —v')] (4vgv')'~=Age ~ll'
n.(vg v') vg+ v'—

where pg, is the transition moment for the isolated ion
from state g to state e, and 5' is the Kronecker delta, and
v' is the effective quantum number relative to the
excited-ion ionization limit. This transition moment cor-
responds to the transition moment for the ion (completely
isolated) times an overlap factor which projects the initial
Rydberg wave function onto the final Rydberg wave func-
tion, as in a sudden approximation. '9'

But, as we have seen in the previous sections, the wave
functions in the autoionizing region are not well
represented by single configurations (here the time-
averaging argument would vastly favor the continuum
channel), so the transition moment must be modified to
account for the relative amount of the

~

ev'I') configura-
tion in the true final wave function.

Now, if
~

ev'/') corresponds to a closed collision chan-
nel i, then expression (53) must only be modified by
(v') A;. The expression then simplifies to

g) ig2 sin[m ( v g —v') ]p= v age (~ ~)g e
(54)

1+tan (iv))
A) ———R)2

(R'iz) +tan (m.v'i)
(55b)

Thus 2 i almost has the functional form of a I.orentzian
(see Fig. 6). For small values of R', 2, this leads to a full

UJ

X
C3

0
-0.5 0.5

FIG. 6. A~ vs v~ for a two-channel case, with channel 2
open, R ~~

——R~2 ——0; R ~q ——0.4. A ~ reaches a maximum value at
6.25 and a minimum at 0.16.

where Wg and 8; are the binding energies of the Ryd-
berg electron in the initial and final configurations,
respectively.

For a given absorption spectra, since vg is fixed when
the excited, bound Ryberg state is prepared, only two fac-
tors from Eq. (54) can produce features in the absorption
profile. The first factor, sinn(vg —v')/(Wg —8;) pro-
duces a broad variation, requiring zeroes between each
different member of a Rydberg series and suppressing all
transitions where

~

v —v'
~

is large. The widths of
features produced solely by this factor would be nearly
50% of the spacing between features Fa.r more often, the
widths and locations of features are determined by the
second factor A; so that the ICE technique often provides
a simple, direct measurement of the autoionizing wave
function in terms of the collision-channel coefficients.
The variation of channel coefficients wHl easily determine
the MQDT parameters.

This can be illustrated with a two-channel example, in
which we assume a transition moment only to the bound
channel 1, so that the effect of the open channel 2 can be
easily seen. If we further choose R'ii ——822 ——0 [by choos-
ing appropriate 5; shifts according to Eq. (34)], then Eqs.
(46) and (47) can be solved,
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width at half maximum, I, in the spectrum of

2(R '12 )
I =

7TV y

where we have used Eq. (36) to relate an interval in
tan(m. vi ) to an energy interval. A 1 reaches its maximum
value of (Riz) when tan(mvi)=0, that is when 51+vi
is an integer. No information can be obtained from such
a spectrum regarding 5z, since the continuum wave func-
tion has played no role except for normalization through
Eq. (47). Nevertheless, two of the three MQDT parame-
ters have been easily determined this way.

If more than two channels are involved, the additional
channels will cause different effects depending on whether
they are open or closed. If the channels are open, the
problem is no more difficult, so we will consider that case
first. One can begin by choosing a new continuum basis
set composed of linear combinations of the original basis
set. For the correct combination, the R,', matrix will be
diagonalized. This will, of course, create a new R 1, vec-
tor. After this basis reconstruction, the open channels
will have a new definition and the v; will refer to the new
basis. As an example, if originally charm~1 2 was 4d3/zns
and channel 3 was 4dz/zns for strontium, then if both
channels were open, a better choice (to diagonalize R«)
might be

14dn»'Dz & ( 5
)' 14ds/zns & =( 5' )'

I
4d3/zns &

(57)
~

4dns, Dz & = —( —,
'

) '/
~
4ds/z ns & + ( —,

'
)
'

~

4d 3/zns & .

In this case vz would now refer to the combination coeffi-
cient as defined in Eq. (15) for a pure 'Dz state, and v3
would be for a pure Dz state.

Once we have diagonalized R,'„we can shift the
MQDT parameters according to Eq. (31) to obtain
R,', =0. A final rotation of the basis set would result in
the bound channel-1 coupling to one new continuum
channel. This rotation, however, would maintain the
length of the R 1, vector, so we can immediately use Eq.
(55) to write down the spectrum

~ I j2
1+tan (m.vi)
3

'2
mv)I

2
+tan (m.v'1 )

(58a)

(58b)

Again, the spectrum easily yields 51 and the sum of the
squared interaction strengths to each continuum channel.
Without a branching ratio measurement, no information
can be obtained about the individual R'&, . Similarly, no
information is available about the original R «.

If the additional channels are bound, they can either in-
troduce new structure or just cause a variation in the ob-
served line positions and widths. Consider only one addi-
tional bound channel, i =3 If th.e v; parameters are shift-
ed according to Eq. (31) until R,';=0 for all three chan-
nels, then Eq. (46) and (47) can be easily solved to obtain

2= [1+tan (harv'1)][tan(mv3)R', z —R',3Rz3]
[tan(harv'1) tan(irv3) —(R13) ] +[tan(nv3)(R'iz) +tan(~vi)(Rz3) —R izR13Rz3]

(59)

S( =

[1+tan (n.v'1 )]bi
(6

[tan(m. v'1 ) —s 1 ]z+b 1

tan(vrv3)[(R13) —(R iz) (Rz3) ]+2R izR13(Rz3)
tan (mv3)+(Rz3).

, (60b)

[R iz tan(~v3) —R13Rz3]
b) ——

tan (mv3)+(Rz3)
(60c)

The width bi varies over a considerable range as a func-
tion of tan(nv3),

R (3R23(bi);„=0 for tan(mv3)=
R)2

(61a)

If v3 « vi, as would be the case when channel 3 converges
to a higher ionization limit than channel 1 (channel 2 is
open), then v3 will be nearly constant as vi varies over an
integer cycle. The additional channel 3 will then only
change the observed spectral positions and widths rather
than introduce new structure. To illustrate this, we can
rewrite Eq. (59) in terms of a shift si and a width bi that
are functions of the slowly varying tan(mv3),

( b 1 )max (R 12 ) + (R 13 /R z3 )

(61b)
—R iz(Rz3)

for tan(m v3) =

For very large tan(nv3), the width reduces to the two-
channel case of Eq. (55b). For smaller tan(mv3), Eq. (60c)
shows that the width (and thus the autoionization rate) of
channel 1 is composed of two interfering parts: (1) direct
autoionization represented by R'iz and (2) indirect au-
toionization through channel 3 represented by
R izR z3 /tan( irv3 ). These two autoionization routes inter-
fere since they lead to the same final product "hannel 2.
The interference can produce a minimum width of zero,
as in Eq. (61a). This would correspond to the truly
bound, doubly excited state in the continuum referred to
in Eq. (48).

At the other extreme of the interference, Eq. (61b)
shows that bi can become quite large. If (R z3 ) = 1, then
according to Eq. (55b) with "3" substituted for "1," the
isolated 2—3 system would result in no structure and
channel 3 would look just like a continuum channel. In
this ease Eq. (61b) would give a maximum width that ex-
actly corresponds to the one-bound —two-continua case of
Eq. (58b). For different values of R z3, the maximum rate
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is either decreased or enhanced as the 1—3 interaction is
either spread out over a larger range, or compressed to a
sharper channel resonance.

These effects are illustrated in Fig. 7, which shows the
reduced linewidth v11 of 6p»2ns states for n =18—30.
This reduced linewidth is the width measured in v& units,
and is thus proportional to b1 for small values. Near the
vicinity of the 6p3/210d perturber, the linewidths show a
resonant, asymmetric increase, ranging from a minimum
value of 0.05 to a maximum of nearly 0.3. The width
does not decrease to a true zero since there are actually
many continuum channels involved, and each will have its
effect cancelled at a slightly different value of v1. Figure
7 also shows a fit to the values of the linewidth of these
resonances using a numerical solution of a four-channel
MQDT. ' Although the zero has been removed, the gen-
eral properties of the asymmetric resonance are the same
in a four-channel or a three-channel MQDT.

The shift s1, also representing an interference, can also
vary over a wide range

(S1)~;„=0 fOr tan(mV3) ++ac —-

2R12R13(R23)
or tan(m-v3) =

(R 12) (R23) (R13)

6pI~2ns states which show the dramatic width variation in
Fig. 7. For these autoionizing states a "Lu-Fano" plot is
deceptive since the perturbing 6p3~~10d state is spread
over a large region along the v~ axis and thus averages out
the large shifts that would be expected had the perturber
been bound. The width variation is a much better guide
to the channel interactions in this case. Figure 8 also
shows the calculated values of the apparent quantum de-
fects, using the same parameters as used to fit the
widths. '

If the additional channel 3 converges to a lower limit
than channel 1, then v3 »v~ and, as the energy is varied

v3 will pass through several cycles while v] is nearly con-
stant. In this case new structure will appear in the ICE
spectrum, and it is useful to rewrite Eq. (59) in terms of
the rapidly changing variable tan(rrv3),

1 ~tan (~v'1) [tan(~v'3) —s3 —q3b3]
A1 ——(R12)

(R'12) +tan (nv'1) [tan(mv3) $3] +b3

(63a)

tan(~vl )[(R 13)'—(R 12)'(R 23)']+2R 13R23«12)'
S3= 4tan (nv'1 )+(R12)

(63b)

(S1)m» ——+ —,
' (R12+R13/R23 )

(62a)

, (R 12R23+R 13)
for tan(m. v3 ) =+(R 23)

(R 12R 23+R '13 )

[tan(mv'1 )R 23 R 13R 12 l
b3 ——

2 ~ ~ 4tan (mv'1)+(R12)

tan(nv1)R13+(R j2) R23
q3=

R,2[tan(n. v1 )R23 R 12R13]

(63c)

(63d)

(62b)

The maximum shift also depends on both the 1—3 in-

teraction and the 3—2 continuum coupling. If R23 —0, as
for a bound channel, then the shift can result in effective
quantum number vI changes as large as + —,'. UsuaHy, in
the autoionizing region, however, the effective quantum
numbers (and thus the apparent "quantum defects" ) will
vary much less dramatically. Figure 8 shows the slight
variation in effective quantum numbers for the same

The first factor in Eq. (63a) represents the basic envelope
of a two-channel line shape as in Eq. (55b). The second
factor is a rapid modulation, each cycle of v3 representing
a basic Beutler-Pano line shape of width b3, shift s3, and
"q" value q3. The width and shift are the same as would
be observed by exciting to the i=3 channel directly (i.e.,
measuring A 3), although the asymmetry is absent in such
a direct measurement (q3~co). The envelope function
effectively restricts tan(n. v', ) to a range of +(R 12), within

4 4
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QUANTUM NUMBER

FI(x. 7. Reduced widths (v~I ) of some 6P»2ns states of bari-

um in the vicinity of the 6P3/210d perturber from as measured

( X ) and as fit (CI) by a four-channel MQDT analysis (Ref. 21).

QUANTUM NUMBER

FICs. 8. Quantum defects of some 6P1~2ns states as measured
( X ) and as fit (CI) using the same MQDT analysis used in Fig.
7 (Ref. 21).
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[(Ai),„]b3-Ri3 . (65)

This expression is consistent with a general expression de-
rived using the perturbation theory technique used to ob-
tain Eq. (43):

[(A i ),„]bj (R ij)—— (66)

Thus, the area under the features in the wings give the
branching ratio for autoionization when those higher
channels are open. In the case of Fig. 9, the spectra
predicts that 6p3/2/is states for n & 12 will autoionize pro-
ducing nearly three times as many Ba+(6pi~2) iona plus
d-wave electrons as s-wave electrons.

The spectrum of Fig. 9 does not show true zeroes be-
tween the peaks as predicted by Eq. (63a). This is because

4545 4560 4575 4590

WAVELENGTH (A)

FIG. 9. ICE spectrum for the 6s12s, 'S0~6P3qq12s, J=1
transition in barium. The structure results from mixing with
the 6P&&~ns and 6P~~qnd channels. The upper curve is the mea-
surement, the lower curve is a fit that uses a six-channel MQDT
analysis (Ref. 21). The large feature at 4557 A is a wavelength
marker.

which the denominator of Eq. (63d) does not vary much.
Over this range, q3 may be approximated for small R J

tan(n v'i ) R q3R i2
g3 ~ (64)«'iz)'

In Fig. 9, the ICE spectrum corresponding to
6s 12s, 'So~6@3/212s,J= 1 is shown. Through this energy
range the state is perturbed by many 6pI~zns and 6p»2nd
states. Near the center of the profile minima (q3 ——0) are
located near the resonances; whereas, in the wings maxi-
Iila (

~ q 3 ~
&& 1 ) are near the perturbing resonances. The

6p~~2ns resonances occur almost exactly midway between
the 6P~~2nd resonances, and can be clearly seen as addi-
tional peaks in the long-wavelength end of the spectrum.
A six-channel MQDT fit is also shown for comparison. '

Six channels were required since, as shown above, a gen-
eral fit requires n, =ns (=3 in this case). Without the
full six channels, either the 6pi~zns resonances, or the
background could not be fit. However, the essential
features of Eq. (63a) remain.

In the wings of the spectrum, if we use the large
tan(mv'i ) limits of Eqs. (63), we obtain a simple expression
for the area under a feature

there are more than one continua involved, so that again
an interference effect can only lead to a partial cancella-
tion. However, the perturbative analysis of the structure
in the wings is still valid as long as the satellite peaks are
clearly distinct, i.e., in the regions where the interference
effects are due only to the two bound channels, i = 1, and
3.

V'. CONCLUSION

In this work we have presented a simple derivation of
the MQDT equations in order to emphasize the physical
origin of their form. In a siinilar vein, we have suggested
an alternative set of MQDT parameters which emphasize
the physical interactions in a multichannel problem.
Specifically, there are two groups of parameters: one set
of quantum defects that represents the effects on the Ryd-
berg electron of the average, spherical potential due to the
core, and a second set of interchannel couplings that
represents the mixing of different Rydberg l or S series
due to anisotropies within the core. In addition to being
physically intuitive, these parameters should be calculable
by methods as simple as those used for calculating the
characteristics of alkali atoms.

We have also presented a geometrical interpretation of
the MQDT equations which allows one to deduce quickly
and intuitively the eigenstate composition for any valid
combination of effective quantum numbers. Similarly, in
order to simplify the determination of what combination
of effective quantum numbers are valid, we have intro-
duced the equivalent N-level system (to replace N chan-
nels) which can be constructed from our MQDT parame-
ters. The eigenstates of this system can be solved in stan-
dard fashions, and if a solution is found that has a pseu-
doenergy of zero, then this immediately identifies a solu-
tion of the original MQDT problem. Thus, we have re-
placed the boundary conditions of MQDT with an
equivalent pseudoenergy condition in our X-level system.
In many cases, this provides an easy technique for solving
the MQDT equations.

To illustrate the use of the equivalent N-level system,
we have treated the problem of photoionization of Ryd-
berg states through autoionizing resonances. Using the
ICE model, we have presented simple formulas that
represent all of the various types of spectra to be expected.
These spectra range from the simple autoionizing reso-
nance (two-channel case) to complex line shapes showing
many interferences; however, they are all easily treated
with a small number of paraineters.

Recent experiments that have observed autoionizing
Rydberg states ' ' ' ' ' have found that usually those
states have nearly constant quantum defects, even in com-
plex atoms, like barium. The analysis presented here has
shown that since autoionizing states are not restricted to
having a single-energy eigenvalue (as are bound states),
their spectrum presents a broader picture of the solutions
to the MQDT problem. Thus, the simplicity of the au-
toionizing states' spectra suggested a simplicity in
MQDT. Our alternative MQDT parameters and our
equivalent N-level formulation confirm that suggestion.
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