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It has been shown that the approximate solutions of the Fredholm integral equation for the
scattering amplitude obtained by demanding that f,„,=f;„=A~„fs„on the mass shell in the integral
equation (where fs„ is the scattering amplitude in the nth Born approximation, n and p are nonzero
positive integers, and A~ „ is a scattering-angle- and energy-dependent complex multiplying factor)
are identical to those obtained from the Schwinger variational principle with incoming and outgoing
trial wave functions which are correct to (p —1)th and (n —1)th order in the interaction potential in
a Born approximation. Further, the scattering amplitude obtained from the Schwinger variational
principle, with outgoing and incoming scattering waves correct up to first order in the interaction
potential in the Born approximation, has been employed to calculate total collisional cross sections
for e+—-H scattering in the 20—500-eV energy range. The results are in good agreement with the
adopted cross section of de Beer et ah. and those obtained in the modified Glauber approximation
and the [2,2] Pade approximant for E & 30 eV.

I. INTRODUCTION

In a recent investigation, Khare and Lata' have modi-
fied a method proposed by Das and have employed their
modified method to investigate elastic scattering of elec-
trons and positrons by atomic hydrogen. It may be re-
called that Das used an input scattering amplitude f;„ in
the Fredholm integral equation to obtain a better output
scattering amplitude f,„, as an approximate solution of
the integral equation. He took f;„as a complex multiple
of the first Born scattering amplitude fts~. The real and
imaginary parts of the complex multiple a +ib were
determined by minimizing

~ f,„, f;„~ integrated —over
the whole angular region with respect to the parameters
a and b . Thus the parameters, although dependent
upon the incident energy, are independent of the scatter-
ing angle 8. f«, so obtained was utilized by Das and his
associates to study elastic as well as inelastic scattering
of the electrons and positrons by the hydrogen and helium
atoms in the intermediate energy range. They claimed
that the method was quite successful. However, Jhanwar
et al. and Khare and Lata' have pointed out a number of
shortcomings of the method proposed by Das (henceforth
to be referred as the Das method).

To remove some of the deficiencies of the Das method,
Khare and Lata' took f;„as (a +ib )(fs&+fts2), where

f~z is the second Born term, in the Fredholm integral
equation to obtain a better f,„,. The parameters a and
b were determined in exactly the same manner as sug-
gested by Das. However, following the spirit of the
eikonal-Born-series (EBS) method, Khare and Lata
neglected from the expression for f«all the terms which
fall asymptotically faster than k;, k; being the wave
number of the incident particle. Thus in their method
(henceforth to be referred to as the KL method) the imag-
inary part of the third Born term fs31 and b were taken
as zero because they fall asymptotically as k; . They
also replaced the real part of the third Born term f~3g by

the third term of the Glauber series, fG3. Their results are
found to be better when compared with those obtained by
the Das method for the real part of the forward scattering
amplitude, total collisional cross sections (calculated with
the help of the optical theorem), and the differential cross
sections for the elastic scattering of electrons and posi-
trons by the hydrogen atom over the energy range varying
from 50 to 1000 eV. However, like the Das parameters,
a is also independent of the scattering angle, which is
not supposed to be. Furthermore, the KL method does
not distinguish between electrons and positrons as far as
the total collisional cross sections are concerned. On the
other hand, the Das method yields unrealistic large differ-
ences. between the two cross sections (see Table III of Ref.
1). It has also been noticed by Khare and Lata' that the
KL method underestimates total collisional cross sections
for e -He and e -Hz scatterings. Hence further im-
provement in the input trial wave function is desired.

In the present investigation we have obtained the pa-
rameters Az „by demanding f,„, be equal to f;„on the
mass shell in the Fredholm integral equation. We have
demonstrated that such solutions for the scattering ampli-
tude [fz „],where p and n are positive integers excluding
zero, are identical to those obtained from the Schwinger
variational principle" with incoming and outgoing trial
wave functions which are correct to (p —1)th and
(n —1)th order in the interaction potential in the Born ap-
proximation. Since these solutions are obtained from a
variational principle, they are likely to yield better results.
In recent years a number of investigators ' ' have em-
ployed the Schwinger variational principle to investigate
scattering of electrons and positrons by atoms. However,
in almost all the cases zeroth-order wave functions were
employed as the trial wave functions for both outgoing
and incoming scattered waves and the resultant [fj was
the same as given by the [l,l] Pade approximant. The re-
sults so obtained were not satisfactory. Buckley and Wal-
ters' took sufficiently flexible one-state trial wave func-
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tions and concluded that for s-s transition, [f] obtained
from the Schwinger variational principle does not account
for the long-range polarization effects. We note that the
trial wave functions employed by the above-mentioned au-
thors' were separable and the distortion of the wave
function of the target was not included, which is required
for the proper account of the polarization effects.

For the first time, in this paper, we employ trial wave
functions for the outgoing and incoming scattering waves
correct up to first order in the interaction potential in the
Schwinger variational principle. [f] so obtained, which
explicitly includes polarization effects, is expected to yield
better results in comparison with those obtained from the
[1,1] Pade approximant and nonvariational f,„, utilized
by Das and Khare and Lata. ' As a test case the calcula-
tions have been carried out for the total collisional cross
sections for the scattering of the electrons and positrons
by the hydrogen atom in the intermediate-energy range.
The results are compared with those obtained from [1,1],
[1,2], and [2,2] Pade approximants, the Das method, the
Khare-Lata method, the EBS method, the modified
Glauber approximation' (MGA), and also with the
adopted cross sections of de Heer et a/. ' For compar-
ison, calculations have also been carried out after taking
the imaginary part of [f] equal to fa2I+ fG4, where fa2I
is the imaginary part of the second Born term and fG4 ls
the fourth-order Glauber term.

II. THEORY

The scattering amplitude for the e+—-atom scattering
from the initial state i to the final state f is given by the
Fredholm integral equation'

f~'(ky, k;) = fg', (kg, k;)

where

fa, (ky q)f '(qk;)
217 q —k —ie

(2)

P

fap = gfaI

is the scattering amplitude in the pth Born approximation
and faI is the jth Born term. We note that (2) is still ex-
act. To obtain approximate solutions we take

f '(q, k;)=A, „fa„'(q,k;)

for all values of m (including m =i and f), where n is an
integer and Az „ is a complex multiplying factor. Putting
(4) into (2) we obtain

fone =fap+~p n(f B'p+ l+f B'p+2+ ' ' +fB'p ~n)

=fSp+~p, .(fa'p . fap) . —

From (4) we also have for m =f
f ' =~p,.fa'

(5)

(6)

To obtain the expressions utilized by Das and Khare
and Lata, ' the multiplying factor Ap„(to be denoted
by ap „+ibp „) is determined by minimizing

f ~ f,„, f;„~ dQ wi—th respect to ap„and bp„(we drop
the superscript fi to simplify the notation). Such a pro-
cedure yields

where f ' and. f~~l are the exact and first Born scattering
amplitudes, respectively. k& is the momentum
vector of the projectile after the scattering and
k~ =k; —2(E E;—), E; and E~ being the initial and in-
termediate target energies. We iterate Eq. (1), p times and
obtain

f '(ky, k;) = f)3p(kg, k;)

and

f IfBpR(fBpR+fBnR fap. nR)+fapI(fBpI+fanI fap. nI)Isin8d8
ap ~ =

f t(fapR+fBnR fap~nR) +(fBpI+fBnI fap+nI) Jsin~dB

f [fapI(fapR+fa. R fa, +„R ) fa,R(fa,I+—fa.I f—a, +.I ) I »»d~-
f I(fa,R+fa.R fa, .R)'+(fa,I+fa.—I fa, .I)'I»«de—

(»)

(7b)

where fa~R and fa I are the real and imaginary parts of
the mth Born scattering amplitude fa, respectively.
Remembering that the first Born term is purely real it is
easy to verify that for p =n- = 1 we get

f t=fal+(a +ib )fa2

and

f.".t =fal+(a +ib )(fa2+fa3) . (9)

a1 1
——a and b1 1

——bD D

Similarly, for p = 1 and n =2 we obtain

a1 2
——a and bi 2 ——bP P

where a, b are given by (6) of Ref. 1 and a, b are
given by (9) of Ref. 1. Thus we obtain from (5)

Let us now obtain a different type of approximate solu-
tion of the Fredholm integral equation by demanding
f,„,=f;„=A~„fa„on the mass shell in (5). Such a pro-
cedure yields

Bp
~p, n

fap —(fa, .—fa. )
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and the scattering amplitude [fp „]is given by

fapfa.
[fp, n 1 =faut =fin = f (f f )

~

It should be noted that Ap „given by (10) depends on ener-

gy as well as scattering angle. On the other hand, A.z„
given by Eqs. (7) depends only on energy. Equation (11)
may be rewritten as

functions of the system (projectile plus atom), respective-
ly; r and x are the coordinates of the projectile and the
atomic electrons, respectively. Go+ (r, r', x,x') is the outgo-
ing free-particle Careen's function of the system and U is
the reduced interaction energy. Let us now take

~ $1, )
and

~ $1, ) as the scattering wave functions in the

(n —l)th and (p —1)th Born approximation, respectively,
1.e.)

[f,.]=f8.g (12)

Hence asymptotically [fp „] agrees with the first p+n
terms of the Born series.

Now we proceed to demonstrate that (11) can also be
obtained from the Schwinger variational principle. The
fractional form for the direct scattering amplitude [f] as
obtained from the Schwinger variational principle in
terms of the outgoing $1+, (r,x} and incoming pl, (r,x)
wave functions is given by"

(@1, (
( U —UGll U}

(
@1+,, )

where $1, (r,x) and pk (r,x) are the initial and final wave
I

-=]Xl",.-'),

where there are n terms operating on
~ Pk ). Similarly,

p —1

m=0

=(xf (14b)

where there are p terms operating on (tI}1,
~

. Putting (14)f
in (13) we get

fBpfBn
[fp,.]=

fa 1+fa2+ +fap (fa.+1+f—a n+2+fa n+3+ +fa.+p '

[f ]
f8lfa1

fal —fa2
(16)

which is identical to (11). Thus we establish that the ap-
proximate solutions of the Fredholm integral equation for
the scattering amplitude ffp„] which are obtained by
demanding f,„,=f;„=Az „fa„on the mass shell are iden-
tically the same as those obtained from the Schwinger
variational principle with incoming and outgoing trial
wave functions which are correct to (p —1)th and
(n —1)th order in the interaction potential in a Born ap-
proximation. Taking p =n =1 in (11) we get

and

(fa 1 +fa2}'
fa 1+fa2 fa3 fa4-- (18)

Let us now consider the scattering amplitudes in the
form of Pade approximants. Using the table given by
Macdonald' for the epsilon algorithm, the expression for
the scattering amplitudes f[p „» in the [p, n] Pade approxi-
mant can be obtained. We find that f[11» is exactly the
same as given by (16). However, f[1 2» and f[2 2» are given
by

fa 1(fa 1 +fa2}
1,2

fa1 fa3— (17)

Similarly, the combinations ( n =2, p = 1) and (n =p =2)
yield, respectively, fa2fa2f[1,2» fa 1 +

fa2-fa3
(19)

(fa2f84 f83)(fBlf83 f82}

(fa2 f84 2fa3}(fBlf83 f82} (fa2f84 f83)(f8—1+f83 2f82)
(20)

Thus higher Pade approximants do not yield the same ex-
pressions as given by the Schwinger variational principle.
Nevertheless, if we take f83' equal to zero and rePlace
fa 38 by fG 3 in ( 17) as well as in ( 19) then both of them
asymptotically reduce to the eikonal Born series which is

correct up to order k; at higher energies.
It is evident that (8) and (16) have been derived with the

same inputs, i.e., plane waves for
~
$1+) and

~ $1, ). How-

ever, (16) does not explicitly contain fa2 in the numerator;
hence, as pointed out by Buckley and Walters, it is not ex-
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pected to represent long-range effects properly. On the
other hand, in (8), a +ib is just a number; hence, f,„,
contains polarization effects through fa2, explicitly in the
numerator. Hence, at relatively lower energies, (8) is ex-
pected to yield better results in comparison with those ob-
tained from (16). At high energies both (8) and (16) tend
to fa2. Similarly, (9) and (17) are obtained when

~ gz ) is

taken as the scattered wave function correct to first order
but with

~ QI, ) as a plane wave. However, now both (9)

and (17) contain fa2 in the numerator, but (17) has fa& in
the denominator whereas in (9) fa 3 appears in the
numerator. Hence the difference between the results ob-
tained from (9) and (17) is expected to be less than the
difference between the results obtained from (8) and (16).
At high energies both of them tend to fa3.

Equation (18) employs trial inputs which are better
than those employed in the derivation of (8), (9), (16), and
(17). Hence [f2 2] is expected to yield better results than
those given by [fi i], [fi 2], and nonvariational ampli-

D KI.tudes f,„„f,„„f[i 2], and f[2 2].
As remarked in the Introduction, in the present paper

we have calculated QT(e+) for the hydrogen atom in the
intermediate-energy range using (16)—(20) and the optical
theorem which is given as

f[2,2](0)= fa i(o)+fa2(o)

&fa4z(0)

Ifa i(0) fB2(o) I .—1+ 2 &fa4z(0)f,',(0)

(26)

and

Ifai(o +fa2(0) J'
2, 2 o

fa i(o)+fa2(o) —fG4(o)
(27)

f[2,2](0) fB1(o)+fa2(o)
fG4(o)+

fG4(o)1+ Ifa i(o) —fa2(0) J —,f a2(o)

(28)

respectively. The above equations include all the terms up
to k; asymptotically. %'e further note that the purely
imaginary fourth term of the Glauber series, fG4, also
varies as k; and is expected to be a good representation
of fa4z. Hence in (25) and (26) we replace ifa4z by fG4
and finally obtain

QT —— Im[f(0)], (21)
The above equations along with (21) are utilized to calcu-
late QT(e+). For further comparison we expand

[fi,2(0)]=fa i(0)+fa2(0) . (22)

Thus Im[f (0)) is equal to fa2z, and QT(e+) so obtained
is exactly equal to those given by EBS method. On the
other hand, under the above condition (18) and (20)
reduce, respectively, to

Ifa i(o)+fa2(o) I
'

fa i(0)+fa2(0) fB4R (0) ifa4z—(0)—(23)

f[2,2] (0)= fa i(0)+fa 2(0)

fa4(0)+
Ifai(0) —fa2(0)]fa4(Q)1+ fB2(0)

(24)

Now~ fa4z asymptotically varies as k; but fa4R goes
as k; . Hence if we neglect all those terms which fall
asymptotically faster than k;, then (23) and (24) reduce
to

Ifa i(0)+fa2(o) t'
2, 2 o

fa i(o)+fa2(o) —&fa4Z(0)
(25)

where Im[f(0)] is the imaginary part of the scattering
amplitude in the forward direction. Utilization of
(16)—(20) in (21) requires the evaluation of fa„(0) for
n =1,2, 3,4 for the hydrogen atom. The evaluation of
fai(0) is trivial and usually closure is employed to evalu-
ate fa2. However, as yet no tractable method is available
to evaluate fa3 and fa4. Nevertheless, if we employ clo-
sure to evaluate fa3(0) then it is well known that the
fa3(0) is equal to zero. ' This reduces (17) and (19) to

Im[f2, 2(0)]=fa2z(0)+fG4(0) ~ (29)

The same expression up to first power in fG4(Q) is ob-
tained from (28). The above equation is also utilized to
calculate QT(e+). It is evident that (22) and (29) when
used with (21) will not distinguish between Qz(e ) and
QT(e+). On the other hand (16), (27), and (28), like the
Das method, will yield different values for Qr(e ) and
Qr«+)

The evaluation of fa2 is carried out exactly in the same
manner as done by Jhanwar et al. ' For the evaluation of
fG4(0) we note that for the hydrogen atom '

fG(0) —fG2(0)= ik; . —. +221'+J(2])l 'g

l —l7/

where

(30)

&(g)= g mf 1+m —lg
2

( i')—
m! (1—m)

' (31)

fG2 is the second term of the Cx]auber series fG, (a) is
the Pochhammer symbol given by

(a)~ =a (1+a)(2+a) (m —1+a)= r(~+m)
I'(a)

with (a )0——1, and 21 = —Q/k;, Q being charge of the pro-

1— fG4(0)

fa i(o)+fa2(o)
I

in powers of fG4(0) and take terms only up to the first
power in fG4(0). Thus we get from (27)
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8 m —«Sl

m(m —1) t
X

(32)

where

m

s =+-
1=« I

and

m

T (33)

III. RESULTS AND DISCUSSION

Table I shows the values of fG4(0) and
Im[fG(0) —fG2(0)] for e -H elastic scattering in the en-

ergy range 20—500 eV. At 20 eV the two values differ by
about 55% indicating a fairly good contribution of the
higher-order imaginary terms of the Glauber series, i.e.,
fG6, fG s, etc. As expected, the difference between the two
values decreases with the increase of energy and is about
10% at 100 eV, which further reduces to about 2% at 500
eV.

In Table II we have shown the values of QT(e+) for the
hydrogen atom obtained from different approximations.
All the calculations have utilized optical theorem. The
values shown in the last column are the adopted cross sec-
tions of de Heer et al. ' for electron impact which we
take as reference values. The values obtained in the
present investigation through (16), (27), (28), and (29) are
denoted by P 1, P 2, P 3, and P 4, respectively. As
remarked earlier the values obtained by the application of
(17) and (19) are exactly the same as given by the EBS
method. From the table we notice that the P 1 values for
electron impact do not show even a quali. tative agreement
with those of de Heer et al. and are in general too small.
P 1 shows unrealistically large differences between
QT(e ) and QT(e+). Even at 500 eV, QT(e ) is larger
than QT(e+) by a factor of about 2.8. The Das method
also utilizes the same input trial function as employed in
(16), but a different procedure has'been adopted to obtain
the multiplying factor (a +ib ) Such a diffe.rence has
led to the increase in the values of QT(e+). The Das
values for QT(e ), although better than P 1, also do not
compare favorably with those of de Heer et al. The Das
method overestimates the cross sections. Thus it is evi-
dent that the representation of Pq+ and Pq by plane waves

t f
in variational (Schwinger) as well as nonvariational (Das)

jectile. Now we expand the right-hand side of (30) and
collect the terms of g, which is nothing but fG4(0). Fol-
lowing the above procedure we obtain

4 9 I 2SmfG4(0) = ik—;g
m (m+1) m (m+1)

8~m —«+ 2m (m —1)

TABLE I. Variation of fG4(0) and Im[fG(0) —fGq(0)] (in ao)
with energy for e+-H elastic scattering. The numbers within
the parentheses indicate the power of ten by which the entries
must be multiplied; e.g., —7.342{—1)= —7.342&& 10

E (eV)

30
50

100
200
300
400
500

fG4 (0)

—1.349
—7.342{—1)
—3.412( —1)
—1.206( —1)
—4.266( —2)
—2.322( —2)
—1.509( —2)
—1.079( —2)

1m[fG (0)—fG2(0)]

—8.701(—1)
—5.339{—1)
—2.745( —1)
—1.075( —1)
—4.019(—2)
—2.232( —2)
—1.464( —2)
—1.054( —2)

methods is not adequate. This is in agreement with the
conclusions of the previous investigators.

Improvement of the wave function g~. from the plane

wave to the scattered wave function correct up to first or-
der leads to the EBS and KL methods. These two
methods yield much better values for QT in comparison
of those given by P1 and the Das method. However,
these methods do not distinguish between QT(e ) and
QT(e+). Further, whereas the EBS method overestimates
the cross sections, Khare and Lata's method underesti-
mates them. As expected, the values obtained by these
two methods approach each other with the increase of im-
pact energy and the magnitudes of underestimation and
overestimation are also reduced.

P2 values are obtained by a further improvement of the
scattering wave functions. Such a change leads to dif-
ferent values for QT(e ) and QT(e+), both being lower
than those given by the EBS method. P2 underestimates
the cross sections but the overestimation by EBS is always
higher than the underestimation by (27) at all the impact
energies except 20 eV. The difference between QT(e )
and QT(e+) obtained in P2 is also quite reasonable. Ex-
cept at 20 eV the differences between P2 and those ob-
tained from [2,2] Pade approximant (denoted by P3) are
small (less than l%%uo). The table shows highly satisfactory
agreement between P2 and P3 values and the adopted
cross sections of de Heer et al. ' for E & 50 eV. At 30 eV
the difference between them is about 20%%uo which increases
to a rather large value at 20 eV. This trend is according
to the expectation. Since the cross sections given by P2
and P3 are correct only up to k;, they are, hence, not
likely to be satisfactory at low impact energies. It seems
from Table II that 30 eV is a lower limit for the applica-
tion of (27) and (28). We also note that the above equa-
tions are obtained from (25) and (26), respectively, after
replacing ftt4t by fG4. This replacement is also likely to
introduce additional error. A comparison of f~2t with

fG2 for 8 & 10 at 30 eV shows that the difference between
their values varies from 6% to 30%. Due to the diver-
gence of fG2 in the forward direction a comparison at
smaller angles is not useful. We may expect a similar
difference between f~4t and fG4. In our investigation the
ratio fG4/fttqt is always less than unity and it decreases
with energy. Hence QT is not likely to be very sensitive to
the value of fG4. We have noticed that a change of 50%
in the value of fG4 changes QT by about 25% and 10% at
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TABLE II. Total collision cross section (in ao) for the scattering of electrons and positrons by the
hydrogen atoms.

E (eV)

20
30
50

100
200
300
400
500

E (eV)

20
30
50

100
200
300
400
500

2.476
2.847
2.983
2.850
2.465
2.238
1.913
1.720

6.151
10.27
9.78
6.773
4.177
2.926
2.432
2.029

P1'

P2'

0.919
1.035
1.050
0.965
0.826
0.721
0.665
0.613

8.147
10.97
9.958
6.823
4.180
2.927
2.432
2.029

23.71
19.84
15.25
8.453
4.828
3.440
2.695
2.226

4.793
10.18
9.757
6.796
4.177
2.926
2.432
2.029

0.655
1.573
2.281
2.585
2.285
1.955
1.699
1.501

7.280
10.89
10.08
6.824
4.181
2.928
2.432
2.029

EBS'
e+

17.89
15.84
11.86
7.343
4.315
3.119
2.466
2.051

P4'
+e—

3.916
9.627
9.650
6.785
4.176
2.926
2.431
2.019

KL
e+

8.736
9.00
7.942
5.778
3.774
2.821
2.295
1.935

MGA'
e—+

8.878
11.32
10.09
6.845
4.183
3.059
2.432
2.029

14.36
12.72
10.30
6.850
4.180
3.060
2.430

P1, P2, P3, and P4 denote the results obtained in the present investigation by the use of (16), (27),
{28),and (29), respectively.
D and KL are the result of the Das and Khare-Lata methods (Ref. 1).

'EBS and MGA are the results of Jhanwar et al. (Ref. 21).
H are the adopted values of de Beer et al. (Ref. 17).

30 and 50 eV, respectively. The percent change further
decreases with the increase of energy. The contribution of
F3 is expected to be small, which is equal to zero when
evaluated through closure. Due to these reasons we obtain
a satisfactory agreement between the values of the cross
sections represented by P2, P3, and H in Table II down
to 30 eV. The agreement between theoretical and adopted
cross sections is likely to be further improved when the ef-
fects of exchange in the electron scattering and positroni-
um formation in the positron scattering are included. The
table further shows that Qr(e+) as given by (27) and (28)
is greater than Qr(e ) at all the impact energies. A simi-
lar trend has been observed in the experimental investiga-
tions of Hoffmann et al. and Deuring et al. for e +—-

Hq scattering in 30—300-eV energy range. However, they
observed that at 20 eV Qz. (e ) is greater than Qr(e+),
whereas in our investigation even at this energy Qz (e+) is
greater than Qt (e ). As already discussed, our theoreti-
cal values at 20 eV are not reliable. Finally, we note that
MGA values are slightly greater than P2 and P3 values
and are in better agreement with the adopted cross sec-
tions of de Heer et al 'This may b.e due to a fortunate
situation for the hydrogen atom. All the terms present in
the Born series and missing from the modified Glauber
series are zero in the forward direction when evaluated
through closure. ' However, like other approximations,

the MGA also yields a value at 20 eV which is not in
satisfactory agreement with the adopted cross section of
de Heer et al. Furthermore, unlike (27) and (28) MGA
does not distinguish between Qr(e+) and Qt (e ).

Finally, we conclude that out of all the methods dis-
cussed in the present paper Eq. (18), obtained from the
Schwinger variational principle, and the [2,2] Pade ap-
proximant look quite attractive for the investigation of e-
scattering by atoms and molecules in the intermediate-
energy range. Evaluation (18) and (20), for other targets
and even for the hydrogen atom in oblique directions, will
require the evaluation of f~3 and f~4. An attempt in this
direction would be progress. At present their replacement
by fG3 and fG„may not be too bad.
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