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Transition process under intense laser field:
Sr(5s 5P 'Pi)+ Ca(4s 'So)+Re@:Sr(5s 'So)+ Ca(3d 4P 'F3)
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A theory for multipole-multipole collision under intense laser field is studied, and the formulas of
transition probability and cross section are given. An application of this theory is made on the pro-
cess given in the title.

I. INTRODUCTION

Since the pioneering work of Gudzenko et al. and the
related experiments were published, a large amount of
works have been presented on the laser-induced collision
energy transfer (LICET).' The processes of LICET
are classified as inelastic collision, charge transfer, a pair
absorption, and radiative collisional fluorescence. They
are followed by experiments and are summarized by
Harris and collaboration. ' Meanwhile, high-resolution
experiments have been made by Brechignac et al. ' on a
sodium-strontium system and by Debarre' for a sodium-
calcium mixture. The line profile of LICET experiments
are proportional to the —0.8 power of the detuning fre-
quency when collisional dipole-dipole interaction is de-
cisive, although the theoretical result is —0.5. This
discrepancy has not been solved yet. The theoretical stud-
ies of LICET are so far classified roughly into the two ap-
proaches, i.e., two-state and multiple- (mostly three-) state
schemes. The former" is reduced to the celebrated
Landau-Zener formula, perturbation theory, ' and
Gudzenko et al. 's method, ' which give the formula of
the cross section covering the whole range of the intensity
of a laser field. Most of the works concerning the latter
case are so made as to reduce the number af states to
two. ' ' Harris et al. discussed by numerical analysis
the dependence of the laser field and detuning frequency
on the excitation cross section. However, the validity of
the state truncation procedure remains indeterminate. Re-
cent works of both experiment and theory on laser-
assisted collision are collected by Picque et al. George
and collaborators summarized semiclassical and
quantum-mechanical approaches for chemical reactions
and proposed the theory which combines radiative reso-
nance formation with predissociation. Herman made a
study of the inelastic collision in a two-state scheme
where the virtual states are considered in the forms of
coupling operators. Polarization effects in energy transfer
between laser-excited atoms are investigated by Nieuhuis
by means of density matrix. The density matrix was also
used by Faisal to analyze radiative Coulomb scattering
and other processes in strong field.

In the previous report' (hereafter known as paper I) we
suggested a method to solve three-channel equations and
applied it to strontium-calcium collision where dipole-
dipole interaction is predominant. Here we develop

LICET processes in a high-intensity laser field and derive
the formula of the cross section for prototype system.
Also discussed is the effect of the detuning frequency.

II. THEORY

In considering the laser-induced transition, we adopt a
prototype system, ' i.e., a three-state model where each
state is the product of the atomic wave functions of the
colliding atoms. We wish to avoid a redundant repetition
of the theory developed previously. ' The brief review of
the theory is as follows.

The system under consideration is simplified to the
three states, Ift }=

I a2}
I
bt } Ifz}= I ai }

I
"2}

I f3 }=
I

a& }
I

b3 },where
I aj } is the jth atomic state of

isolated atom A and
I
bj } is that of atom B as di-

agrammed in Fig. 1. Those atomic states are those of iso-
lated atoms, i.e., both atoms are infinitely separated. The
transition between

I f& } and
I f2} is via a multipole-

multipole interaction but
I f2 } and

I f3 }by a laser field.
The direct coupling between

I f, } and
I f3 } is forbidden.

The interaction Hamiltonian is

H;„,=( Y~ —Ys )eE cos(cot)+R "g"(X~,X~ ),

5s5p '
P

b3 3d4P F

t)2 4s3d D,

5s' 'S,
Co

4s' 'S,

FIG. 1. Energy diagrams of Sr and Ca.

where Ecos(cot) is the laser field, R is the nuclear dis-
tance between 3 and 8 and the coordinate system and is
the same as in paper I (Ref. 18). A linear trajectory is as-
sumed for the nuclear motion throughout this paper. The
wave function of the system is the linear combination of
those three states
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with

where Ck is a coefficient and cok is the nth energy divided
by A'. The coupled equations with respect to Ck under the
boundary condition C„(—ao ) =5&„are

gl2= &fi lg" I f2&

B~5' is the detuning frequency and p ' is the dipole mo-
ment between

~
b2& and

~
b3 &.

The S matrix only between
~
f2& and

~
f3& 1s

r

S22 —S32
S=

S32 S22

where

iPt/2[( P) iat/2+ ( +P) iat/2—
] S ~3

e iPt/2—
(

iat/2 iat/2)—u23

2A CX

a=[p2+(2uz3) ]'/, and p=hto+5to .

Leaving aside the details of the previous report, we show
the exact transition probabilities and related quantities

2

~
C$(t) (

= exp i f —5dt'

which obviously satisfies the unitarity constraint
D (t)D(t) &1. Let us see the function 5, , E, and the
probability

~
Ck

~

(k=2, 3), in more concrete forms.
The phase 5„,after simple procedure, is

=1 DD=1 ——
[ C2 [

—
i C3 i

Dp(t)
D(t)= f S Uq~exp i f—5dt" dt'=

m=2

5(t) = i —D(t)exp —2 f 5I dt'. dDt(t) t

(6)

5„= f [(a—P)sin(Q~x)p

2uvp2" —& 0

+(a+p)sin(Q2x)](1+x ) "/ dx,
(12)

where Q~ ——(p/2v)
~

hen —a —5to
~

and Q2 ——(p/2v)
~

bee
+ a —5to

~

. The exact quadrature (12) is unknown but is
estimated by the approximation

S„(A)= f (1+x )
"/ sin(Ax)dx=

0 n —2+3
(13)

UZi = Ui2= 0
u2)

(g)

The function D(t) is approximated by use of 5„, which is
the real part of 5, at time origin t=0 (the turning point of
the nuclear motion), and superscript 0 means 0th approxi-
mation. The unitarity condition D (t)D(t) & 1 is satisfied
as follows. From (5) and (6) we have

D(t)= f StU»e ' [1—D (t')D(t')]'/'dt' . (9)

As the main contribution to the integral is supposed to
come from the narrow region t=0 we put (see Sec. IV)

which is a simple assumption from the both infinitely
large and small limit of A (see Appendix) and an example,
S4, necessary in later sections, is illustrated in Fig. 2. We
therefore have

D(t) =[1—D (t)D(t)]' f S U2~exp( i5,t')dt'—
(10)

and lead

D(t) =(1+I'~F)'"I"
10

10

I

10

I I

1

10 10
A (cm~}

F= f StU„exp( —i5Pt')dt', FIG. 2. The value of S4 vs argument A. Solid line is the ap-
proximation 4,

'13) and broken line is the exact value.
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and A („ i ~i2 is the modified Bessel function of
[(n —1)/2]th order. The total cross section of the transi-
tion to the state

I f3 ) is

a3=2~ I p I
c, I'dp . (19)

2 "
I
au 23 I

'
(2)1 —1)I'(n /2)

&2n/(2n —1) —(2n +2)/(2n —1) ~~Q) g V ~n (22)

The argument Q2 in general is much larger than 0, ] and
thereby makes the function K(„1)/2(Q2) negligibly
smaller than K(„1)/2(Q1) as the function decreases ex-
ponentially with argument. Hereafter, we disregard the
term with Q2 and derive the dependence of o.

3 on the in-
tensity of the power density.

and

n —(2n + 1)/(2n —1)K2

The factor An is a constant dependent only on n and its
value is listed in Table I for a few cases of n

B. High power-density case

A. I.ow power-density case

The argument Q& in this case under the small detuning
frequency is approxim. ately given by

(20)
V SCOP

The phases 5„,Ql, and F F are
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I
vg 21 I

2n +2
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"
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The probability and cross section become

2 7T

I

2 Qn —/(2n — )

v b,co I (n /2 )
1/(2n —1)

2 gzi
XK(n —1)/2(QI) (21)

and
2

FtF=2" "m. Q" 'K (Q ) .~23g 21
n = lp( /2)

1 (n —1)/2 1

(26)

2.18 2.95 7.18

TABLE I. Example of 2„.

28.32

Direct analytical quadrature for the total cross section is
unattainable but by looking minutely at Qi and FtF we
can derive an intuitive formula. %%en the field is very
strong the phase changes rapidly with an impact parame-
ter p and K(„2)/2(Q1) vanishes sharply before and after
the zero point of Ql because a function Q)K(„1)/2(Q()
decreases exponentially with the argument. The zero
point po of Q& is
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p[(n2)p~v2
I g I

]1/(2n+2)
I

u
I

—5/(2n+2) (27)

and is supposed to be very small and may cause a large
maximum of F F. As a —p is almost same with 2

I u23 I

and F F is much larger than unity at po (and in its narrow
vicinity), we obtain from (16) and (18)

I C2 I=
I C3 I

=0.5. The total cross section cr3 may be given
by the simplest but fairly good formula, i.e.,

03=2&pa happ ~

0.5

Icsl

0.3

0.1

6.195 6.m
l

6.Zt0

/ (loo A)

n 2

F"F=2 "m
3

G„
vp" 'I (n /2)

(29)

where hpo is half the width of F F to keep the significant
probability and is decided as follows.

The function F Fof (26) is rewritten as

FICr. 3. Probability
I

C3
I

2 as the function of impact parame-
ter at the relative velocity v= 103 cm/sec and laser power densi-
ty P/A =10' W/cm2. The shape is almost square with its
height of 0.5 and the width is nearly 0.0001 A, which agrees
with the value from (31}.

and and is
I u23 I

'"+'" '"+"at
I u23 I

limit.

1 (n =2)
G„(Q,)=, 1+Q] (n =4)

3+3Q&+Q, (n =6),

where the function G„ for odd n is an infinite series but
the value is in between those of smaller and larger even
numbers adjacent to n. The half-width hpo is so defined
as to keep F~I' & 1, i.e.,

2 ap, =[in(F F), „]dQl

dp

III. THE CROSS SECTION OP THE PROCESS:
Sr(5s 5p 'P~ ) + Ca(4s 'So)+%co
~Sr(5s 'So }+ Ca(3 d 4p 'E3 )

The process under consideration is diagrammed in Fig.
1 and the meaning of the notations are the same as those
of Sec. Il. Initially the energy is stored in the level

I a2)
of Sr and Ca atoms is in the ground state

I
b~ ). By col-

lision, Sr makes a dipole transition to
I a& ) and, on the

contrary, Ca is excited to
I b2) via quadrupole transition,

and goes to
I b3) by the dipole-laser interaction. Each

parameter of Sec. II is replaced by (n =4 here)

and then

App ——
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I u23
1
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The total cross section (28) is written as
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The dependence of o3 on
I u23 I

in the asymptotic re~,'ion
is

2.10 2.15

P(A)
I

FIG. 4. Probability
I

C3
I

as the function of impact parame-
ter at the relative velocity v=103 cm/sec and laser power densi-
ty P/A =10' W/cm . The shape is nearly trapezoid with its
height of 0.75 and the width is approximately 0.1 A which
agrees with the value from (31}.
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Flax. 5. Probability
I

C3
I

as the function of impact parame-
ter at the relative velocity v=10 cm/sec and laser power densi-
ty I'/A =10 W/cm .
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All the parameters above are from Green et al. ' except
I
u» I

which is not clear and assumed as it is. The prob-
abilities and total cross section calculated by (18) and (19)
are shown in Figs. 3—6. When the field is weak, the prob-
ability and total cross section increase linearly with it as
easily supposed and are confirmed experimentally. But
the dependence on the dipole-quadrupole interaction is

I g2) I

/ and v ' / on the velocity. The behaviors in the
intense field, to our knowledge, are unknown either
theoretically or experimentally. We have shown intuitive-
ly that the cross section decreases in a way of (32), which
follows well the curves of Fig. 6. Also shown are the
transition probability vs impact parameter for two dif-
ferent intense-field cases. The latter case especially justi-
fies the derivation of (28), i.e., the constant probability 0.5
in the narrow region of p and rapid decrease outside.

IV. DISCUSSION

I

1Q

10

I I I

10 10 10 10
power density ( W/crn2)

FIG. 6. Total cross section o.3 vs laser power density at
several relative velocities: A, v=10 cm/sec; B,v=10 cm/sec;
C, v=10 cm/sec; D, v=10 cm/sec; E, v=10 cm/sec. The
asymptotic behaviors of A, B, and C follow well to (33), but D
and E are not yet in the asymptotic region.

D= f S"U»e ' [1—Dt(t')D(t')])/2dt'

~~ L ~a~
where

changes with time much more slowly than the other fac-
tor in the integrand of D and D the approximation is
reasonable. To see this aspect we reconsider the (column)
vector D

x= f Iu»Idt'

and

S22
expp

Defined as

2
d [1—Dt(x)D(x)]' ~

coax

(overdot denotes derivative by x) the ratio gives a cri-
terion to the problem, namely if, in the region contributive
to the integral, y is much larger then unity, then the ap-
proximation is justified, but not otherwise. After straight-
forward algebra we have

We have investigated the dependence of the transition
probability and cross section on the intensity of applied
laser field. Also the general treatment is made for mul-
tipole interaction which causes the transition from the ini-
tial state to the virtual state. The cross section changes

I

6/(2n —)) —(2n+5)/(2n+2)

the field is weak, that is to say, with the increase of multi-
plicity n, the dependence of o.3 on g2~ becomes weaker but
stronger on velocity. The reason is understood that the
interaction is dependent on R " and so the significant re-
gion becomes narrower with the n. In strong-field limit,
o3 changes with

I uz3 I

' "+ ' ' "+ ', because the impact
parameter po, which maximizes the probability, is propor-
tional to

I u23 I

' "+ ' and the width Ape which is
hardly dependent on n, changes with

I u23 I
'. Present

theory guarantees the unitarity of probability by approxi-
mating (9) as (10). If the factor [1 Dt(t)D(t)]'/—

4 0
S*

~ Aced —5,0&=i(bn) ~~) I "2) I
W i u32—exp i f 'dx'

l»2 I

~'~= Iu» I'[Iu» I'+(C-~~)2],
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+D ~l =4 Re(~z2D& —~3zD2)exp ~'(~~ —5„') fdx 0

=4(1~22Di
I
'+1~3»21') &4( IDt I +I» I

)'=8D'(x»(x)

and then

) 1

8D t(x)D(x)

2 0 2
Q23 &r —~~

+
Q2&Qp]

The first two terms in the large parentheses above com-
pensate each other, because when the laser field is weak
and the first term is small, the second term becomes
larger and vice versa. The ratio in actual process of Sec.
III is 10 in the case of, say, Fig. 3. When the power den-
sity is low the factor D (x)D(x) is sufficiently small as
known from (18) and (20) and makes y large.

It is interesting to observe Green et al. 's result, "
though correct comparison is impossible due to the dif-
ferent parametrization. Their experiment shows that the
total cross section increases linearly with the weak-field
intensity and seems to begin to saturate at about 10'
W/cm, although their surmise is the slow increase, even
beyond it. Our example of U = 10 cm/sec correspondent
to their experiment shows saturation also at 10' W/cm
and has the peak of 40 A . The observed value at 7&&10
W/cm is several times larger than ours. The marked
discrepancy between theory and experiment exist in the
dependence of detuning frequency 5' on the line shape.
High resolution experiments confirm the law of 5~
but theories on the contrary indicates 5' in the case of
dipole-dipole interaction. Our method in this respect is
same with other theories. This discrepancy was supposed
to come from the hypothesis of linear trajectory of nu-
clear motion. ' Although the relative nuclear velocity is
high where linear trajectory is pertinent our formulation
does not reach to the experiment.

The comment above concerns the case of negative de-
tuning frequency and the line shape on the side of positive
5' rapidly decreases with it. When a laser field is weak
the total cross section satisfies'

where

36coA p

cr3 &x: J p z K&(z)dp

—+5co exp( —A5co ~
) as 5'—+ oo

et al. 's analysis. '

Finally we wish to review the theory presented here.
The results of the title process have characteristic features
different from other studies' in that our cross section be-
gins to decrease when the intensity of the laser field
exceeds a certain point. Herman and Geltman' showed
the increase of cross section with the intensity to the
1/( n —1) power ( n =3 for dipole-dipole, n =4 for dipole-
quadrupole). Origin of this difference comes from an in-
termediate state. The transition from

~
f~) to

~ f3) is
made only via the virtual state

~
f2). Initially, the Sr

atom makes a dipole transition to ground state while the
Ca atom is excited to the virtual level by quadrupole in-
teraction. The Ca atom induced by an applied laser field
then makes a dipole transition to the target state
Ca(3d4p 'E3) as is observed by Green et al. ' The obser-
vation made by them indicates that the ratio of the rate of
production of target-state Ca atoms by this prototype col-
lision process is 450 times larger. Therefore the process is
regarded as the prototype and the virtual state plays an in-
dispensable role in it. If the prototype system is reduced
forcibly to a two-state problem or the second perturbation
is applied, the laser field acts as a direct coupling between
the initial and final states. The cross section then keeps
increasing with the intensity. So far as present theory is
concerned, the cross section o3 decreases with it, the
reason of which is as following. By the strong dipole-field
interaction the atomic states

~

b2) and
~
b3) shift their

energy by about p E/2 and, consequently, the energy
82

difference between the first two states
~ f&) and

t f2)
also occurs only when both atoms approach close enough
to each other to make the interaction large enough, i.e.,
the impact parameter to maximize the transition probabil-
ity becomes smaller, with a more intense field, to cause a
smaller cross section. The dependence of cross section on
the relative velocity is common to general collision prob-
lems. When the velocity is low enough the system has
enough time for complete transition from

~ f& ) to
~
f2)

on the way incoming and complete return to
~ f ~ ) on the

way outgoing, and leaves no transition at all. High veloci-
ty, on the other hand, gives the system insufficient time
for transition throughout the encounter. A velocity to
maximize the probability is proportional to the interaction
potential squared as is supposed from the Landau-Zener
formula. As mentioned above, the dipole-quadrupole in-
teraction is very large in the significant transition region
when the field is intense. Thereby, the peak of cross shifts
to the high-velocity side with the intensity.

and

A) 8)
1 20(p 'p ')
6 3vhn)A

which except the factor of 5' ~ agrees with Brechignac
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APPENDIX

We wish to derive an approximate relation (13). It is
easily derived from the definition of S„(13) that when
3 ~~1 we have

S„= Ax
dx =

P (1+ 2)n/2

If n is even and is written as n =2m we have

Sz —— sin(x)(A +x ) dx =A Re[e E&( —A ix—) —e E&(A ix—)]p"2 2 —m 2m —1( 1) d 1

0 (m —1)! dc ' 2A

where C =A and E& is an exponential integral. The term in the square brackets in Eq. (A2) is written as

(A2)

e "E~(—A ix) —e "—E~(A ix)—
~ p = lim

elX elX

A +ix A —ix
—e E, ( —A i0—)+e E~(A i0—)=—(A &&1) .

(A3)

Substituting (A3) into (A2) we have S„=A/(n —2+A ) . (A5)

g 2m —1yCNl (A4)

which is independent of n Com.bining (Al) and (A4), S„
of whole region of A is approximately given by

Although even n is assumed in deriving (A2), the function
above may be interpolated to hold when n is odd.
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