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A heuristic microscopic two-level-atom model with fluctuations is developed to explore, theoreti-
cally, the effect of fluctuations on mirrorless optical bistability. In stochastic models, bistability ap-
pears as a bimodal distribution function. We show that the predictions of bimodality and bistability
are the same in the heuristic and semiclassical (nonstochastic) microscopic models.

I. INTRODUCTION

Over the last decade, there has been considerable in-
terest in the problem of optical bistability? (OB), which
has usually concentrated on Fabry-Perot devices® or ring
cavity* devices. Recent experimental® and theoretical®—°
interest has involved devices in which there are no specific
mirrors or surfaces in the system to provide the feedback,
i.e., “mirrorless” optical bistability (MOB). Since there
are many systems in which MOB might occur, with a
diversity of mechanisms, we simplify our discussion by
confining it exclusively to models in which the medium
consists of stationary, homogeneously broadened two-level
atoms and in which certain common assumptions like the
rotating-wave approximation are made. No experiment
has as yet seen MOB under circumstances in which such a
model is appropriate, and .various theoretical treatments
(see below for details) have been inconsistent on the issue
of whether or not MOB exists.

In this paper we construct a heuristic stochastic micro-
scopic model of an N-atom system. The purpose of
studying this model is that it is statistical and is thus
based on a set of approximations that are different from
those that are used in the other models. It contains an ex-
plicit random modeling of decays which can be integrated
numerically. We find that the results of this model are
consistent with the semiclassical predictions of bistability,
even to details of operation. We believe that this provides
further credence to the idea that MOB in two-level-atom
systems is a real phenomenon.

A. Background

In MOB the feedback is provided by the image charge
of each atom that is induced in the polarization of the
other atoms. The feedback results in a shift of the fre-
quency of the atomic resonance. As the system saturates
with increasing incident field, the dipoles and therefore
the fed-back signal become small and the frequency shift
decreases. Systems with field-dependent frequency shifts
often have parameter ranges in which they are bistable,
and our system is no different. The difference between
OB in a cavity and MOB is that there is no trapped field
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in MOB; instead, the matter system exists in more than
one state without necessarily having a strong effect on the
field.

Semiclassical theories are derived from quantum elec-
trodynamics (QED) through a factorization of binary
products of operators. QED can always be formulated'®
such that, if the incident field is a coherent state, the fac-
torizations read (O, (1)Op(1r)) =(04(1)){O0p(tr)),
where O and O’ are atomic operators, a4 /3 label atoms,
and ¢t and 7z denote time and a retarded time. In this
usage all theories showing bistability use factorizations
and all but one® are semiclassical. Thus MOB addresses
the proper use of factorizations, especially those that re-
late semiclassical and quantum descriptions of optical sys-
tems.

Macroscopic semiclassical theory based on a self-
consistent coupling of the density matrix (or Bloch equa-
tions) with the Maxwell equations* does not predict MOB.
This failure results from using the self-consistent Maxwell
field as the force field acting on the atoms.!! The
Maxwell field contains a fictitious self-field term'? which
exactly cancels out the feedback from the other atoms,
thus preventing MOB. Macroscopic Maxwell-Bloch
theories are usually applied to cases in which atomic den-
sities are low, so that the self-field term is small. MOB is
a high-density phenomenon and needs a more careful
treatment. In a recent paper® we considered two alterna-
tive models, a microscopic semiclassical model in which
the self-field term does not exist and a macroscopic model
in which we include the local field correction'® to cancel
out the self-field term and restore the feedback. Thus
MOB also addresses the issue of the passage between mi-
croscopic and macroscopic electrodynamics. When the
frequency shift of MOB is evaluated far off resonance it
yields the Lorenz-Lorentz correction to the index of re-
fraction,'?> and MOB is one of the nonlinearities associat-
ed with this correction. MOB is also the dispersive,
steady-state analog of the transient, resonant phenomena,
superradiance and subradiance.!*!3

In microscopic theory one is faced with a large number
of different atom-atom interactions. The details of the
spatial configuration do have important consequences for
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the details of MOB. Macroscopic theory ignores these de-
tails by lumping them into a single coefficient. In order
to make a comparison of the two cases we make an ansatz
that the coefficients describing the spatial details can be
taken to be the same for all atom-atom interactions: This
ansatz eliminates all microscopic structural details of the
N-atom system. The macroscopic and microscopic
theories then can have steady states that are equivalent.'®
However, both models permit, in principle, a very large
number of stationary states other than the ones involved
in MOB. By numerical integration of the microscopic
model we have tried, without success, to force the system
to reach one of these states. We still are not certain
whether these states do not exist in practice, or whether
they are not stable. We have also done a few calculations
on a seven-atom system in which the microscopic
structural details have been retained. This case shows
MOB, but it is not clear how to relate its threshold and
other properties to the macroscopic coefficients. Hence
our ansatz does not cause MOB (any more than it causes
the Lorenz-Lorentz correction) and it permits generaliza-
tions.

The two-atom problem has been explored theoretically
using quantum electrodynamics!’ in which the factoriza-
tion hypothesis is not made, and retardation is included,
but without an external field. A short-time analysis has
been given for a case with an external field.'®* The fluores-
cence of a spatially distributed many-body system of
laser-driven three-level atoms has also been addressed,!®
where the factorization hypothesis has been used. These
investigations have given no support to the idea that
MOB exists. The expected correspondence between the
prediction of semiclassical theory and QED are bistability
with regard to the former and bimodality with regard to
the latter. If written in the Heisenberg picture,'® the
operator equations of motion lead to an infinite hierarchy
for the moments that need to be truncated in order to be
tractable. Approximations leading to the imposition of
equal-time commutation relations permit truncation at
second moments. However, a second-moment analysis
cannot address the issue of whether a distribution func-
tion is bimodal, so the current QED analysis is incapable
of addressing the issues raised in semiclassical theory.
The quantum analysis includes fluctuations, which are ab-
sent in the semiclassical model. The heuristic semiclassi-
cal model used here also addresses the role of fluctuations
in MOB. Since our results are completely consistent with
the semiclassical result, we have shown that if MOB turns
out to be inconsistent with QED, it is not because of fluc-
tuations alone.

Calculations using many-body theory in the single-
mode approximation also predict MOB.® These involve
factorizations that are different from the semiclassical
factorizations. Such models ignore propagation, and we
have not yet attempted to relate the results of this model
to the ones discussed above. Hence they are not con-
sidered in any of the subsequent discussion.

The QED results!”~!? imply that the factorization pro-
cedure of semiclassical theory is invalid. While the
heuristic model arises from a factorization of operators, it
reintroduces the factorization question through the sto-

chastic variables, insofar as one needs to make a factoriza-
tion of the statistical average of binary products of atomic
variables in order to derive the microscopic semiclassical
model from the heuristic model. We thus examine the
factorization approximation from the perspective of the
heuristic model and find that its validity depends explicit-
ly on the interpretation of the variables in semiclassical
theory.

II. HEURISTIC MODEL

The heuristic model is based on the microscopic, semi-
classical density-matrix and Maxwell equations of two-
level atoms interacting with a radiation field. The slowly
varying envelope approximation is made with respect to
time. The convention for defining the slowly varying am-
plitude & of the electric field E reads

E(t,z)=~+[&(t,z)exp(—ivt)+c.c.], (1

and the slowly varying amplitude of the off-diagonal
density-matrix element of the ath atom is R,(z), defined
by

pap(@)=T[iR (1) exp( —ivt)+c.c.] . 2)

The plane-wave field incident on the system is denoted E;
(amplitude &) and is linearly polarized in the direction
€;. Here, v is the frequency, p denotes the 2X2 density
matrix, i =V —1, and c.c. denotes the complex conjugate.
For simplicity we assume all atomic dipoles point in the
direction €; and that all atoms lie in a plane perpendicular
to it. We write the atom-atom coherent dipole interaction
AaB as )

Aop=C explikr op) kl ! 1 NG

+ —_
rap  (kreg)?  (krgg)®

where r,5=|r,—rg| is the separation between atoms a
(located at 1,) and B, k (k= |k|) is the wave vector of
the optical field, and ¢ is a coefficient that is unity when
the variables are made dimensionless (see below). The am-
plitude of the field incident on atom « is then

$a=?a”lexp(ikra)+i z AaBRB(t) . 4)
B(#a)

The time retardation of the slowly varying amplitudes of
the polarizations is ignored, but the phases are preserved.
This approximation is ostensibly similar to the neglect of
retardation in the quantum theory. However, in the latter
the approximation is imposed on operators, which effects
the structural integrity of the theory, while here it is im-
posed on c-numbers and does not alter the equations in
any fundamental way. Note that there is no term involv-
ing R,(¢) in Eq. (4), and hence there is no self-field. The
atoms obey the equations
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dR (1)
T— —_ § (¢ —-tqa)Ra(t)
— AR (D+ & ny(t), (5)
dny(t)
B 38t —t,)[ 14+ 4(1)]
dt 7 ,

—3[EaRo(D)* +c.c.], (6)

where A, is the detuning (taken to be independent of a for
all calculations discussed in this paper). The Dirac delta
functions act on the discontinuous atomic variable v,(¢)
by evaluating it at a time just prior to the time ,,, i.e.,

[ dr8(t —1,0(0)= lim v, (1) . o)
t—»tqa

The ¢4, are sets of randomly chosen, statistically indepen-
dent times such that on the average there is one #,, for
each unit of time and for each a. For all but a set of
singular points, the atoms obey undamped Bloch equa-
tions. The delta functions, which give damping and fluc-
tuations, formally represent a procedure implemented in
the numerical integration in which the ath atom is re-
turned to the ground state (with zero polarization) when-
ever a time ¢f,, is encountered. Physically, this is
equivalent to removing the ath atom from the system at

I, and replacing it with another atom in the ground state. -

The statistics of the #,, imply that, on the average, each
atom decays once in a unit time interval, which sets the
decay time equal to unity. All Rabi frequencies and de-
tunings are made dimensionless by this choice. Under
this model of decay, the decay rates for the polarization
and inversion are the same. In a proper quantum model
the rates differ by a factor of 2. The model thus contains
unrealistic elements and the results need to be treated with
some caution.

A. Simplifications

The response of the N-atom system is very sensitive to
geometry. However, the amount of parameter variation
implicit in Eq. (4) is unmanageable. We therefore restrict
our discussion to the case in which we take 7,5 to be in-
dependent of a and B, and kr, <<1. We set A,5=A4A, and
define a term B =(N —1)A4. The real part of B corre-
sponds to the factor that enters into the macroscopic
theory through the local field correction® ! when the con-
ventional formula!® is used. We restrict our attention to
the case in which all atoms have a detuning A,=—1.5 in
which case the macroscopic semiclassical threshold condi-
tion for bistability® reads ReB < —6 or

6
Red < N1 (8)
In the limit that kr <1, Red goes as 1/73 and hence
varies rapidly with r, while ImA is independent of r and
hence is independent of geometry. Unless stated other-
wise, we use ImA4 = —0.46 which comes from a calcula-
tion in which real geometries were used. It turns out that

the results are not greatly influenced by small changes in
ImA. Note that ImA leads to superradiant!* and subradi-
ant!® decays, both of which occur in our system. Howev-
er, bistability is a phenomenon that occurs on timescales
long compared to decay times, and it is not surprising that
these coherent decay phenomena play a minor role in the
bistability. However, we show below that these decays
have an influence on passage times. The upper and lower
bistable states have no associations with the Dicke states
that enter into the analysis of superradiance.!%%

III. DIAGNOSTICS

The numerical analysis generates a time trace which we
treat as data. In particular, we choose to examine the
statistics of the inversions using the function

— 1 ¥ 1 t , —(t—t)/Tg ,
=y 3 & [ _are na(t') . ©)

In Eq. (9) the inversion is averaged over all atoms and is
time averaged by a filter whose time constant is T (band-
width ~1/Tg). The filter is important, since there are at
least two timescales in the atomic response. On short
timescales, there are Rabi cycles that do not interest us.
We are concerned with fluctuations that occur on times
greater than the decay time. Hence we choose Tr=1 to
filter out the high-frequency response. This choice of T
is justified by methods described below.

While we have not yet demonstrated bistability, we need
to develop a method for examining its statistics should it
occur. Accordingly, we define a constant 7, such that if
7 > 7, the system is said to be in the upper state and for
7i <7, the system is said to be in the lower state. The
choice 7i,=—0.4 is made using the same criterion that
determines Tr. A passage time is measured from the
time the system enters a state to the time it leaves it. In-
dividual passage times are denoted ¢, or t;, where the
subscript indicates the state to which the system goes. An
up (down) passage time is the time spent in the down (up)
state before changing. The mean passage time is denoted
T, (Ty).

A. Criteria

We are interested in examining events that are memory-
less, i.e., in which the probability of an event is indepen-
dent of previous occurrences of similar events. The time
intervals in such processes are distributed exponentially.
Hence, when we are looking at the passage times of in-
terest, we should find distributions that go as

1 -/
Plt)= e~ (10a)
and
Plty)= e '/Ta (10b)
T,

Equations (10a) and (10b) must be simultaneously satis-
fied. The choice of Tr and 7, comes from meeting this
requirement. The details of the calculations are given in
the Appendix. We do not normally compute enough
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statistics to check theése distributions in detail. Instead,
we use a simpler requirement, namely that the standard
deviation in the passage times must equal the means to
within 20%, which is the uncertainty in the results due to
the stochastic method. This requirement is independently
verified for every mean passage time reported.

A system which is predicted to be bistable in a deter-
ministic theory is bimodal in a stochastic theory. The bi-
modal condition and its passage statistics change with
operating conditions. When we compare cases, we try to
get as close as possible to the condition T, =Ty, to make
the comparison meaningful. When we refer to the influ-
ence or lack thereof of some parameter on the results we
refer to the statistics at this operating point, not to the
choice of incident field that generates it. The latter nearly
always depends on specific parameters.

IV. RESULTS

In Fig. 1 we illustrate the points made above for the
case of two atoms, which is the only one for which we can
compute enough statistics to obtain detailed distributions
of passage times. In Fig. 1(a) we give the statistics for 7,
and in Fig. 1(b) we give the passage time statistics for a
calculation that was continued for about 10* decay times.
The distribution of inversions is clearly bimodal, and the
distribution of decay times is roughly exponential. The
mean up (down) passage time is 2.68 (3.35) and its stan-
dard deviation is 2.64 (3.30). Hence the standard devia-
tions are nearly equal to the means.

(a)Average inversion

N

no. cases

3l

(b)Passage times

no. cases

—-t, 0 0 t™
FIG. 1. Statistics for (a) mean inversion and (b) passage times
(left, up times increasing to left, right, down times increasing to
right), for a two-atom calculation lasting 10* decay times. One
point per decay time is examined for the statistics of 7. Here
E;=3.60, ReA = —8. The value of 7, is shown in (a).
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FIG. 2. Statistics of 7 for N=4, 5, 6, 7, and 8.

A. N-atom calculations

Figure 1 establishes that bimodality is possible with as
few as two atoms. We now consider how the bimodal
condition varies with the number of atoms. The condition
T,=T, is extremely difficult to determine precisely. In
practice, we scan stepwise across the region in which the
condition occurs and pick the calculation that meets it
most closely. We then report the geometric mean passage
time (T, T,;)!/?, which varies slowly in the neighborhood
of the point T,=T,. The geometric mean also varies
slowly with different choices of 7i.. In all cases we have
investigated the parametric variation of the geometric
mean is small compared to the estimated 10% errors of
the numerical analysis. These errors are comparable to
the uncertainties in the passage times due to the stochastic
method.

In Fig. 2 we show the bimodal distributions that are ob-
tained when N is varied from 4 to 8. We keep ReB fixed
by simultaneously varying Re4. In Fig. 3 we show the
geometric mean passage times. What is evident in Fig. 2
is that the bimodal feature of all distributions is more dis-

10
Re(B)= -8.0

< .
°
t:

0 T T T T T T

2 4 6 8
N
FIG. 3. Geometric mean passage time vs N for ReB = —8.
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SEMICLASSICAL
THRESHOLD

(Tqu)1/2

|
: L] )
() 10
—Re(B)
FIG. 4. Geometric mean passage time vs ReB for N =2
(crosses), 4 (plusses), and 7 (circles). Location of semiclassical

threshold Re B <« — 6 shown as vertical dashed line.

tinct than N =2, but there is no rapid rise for larger N.
We cannot tell from Fig. 2 whether the degree of bimodal-
ity saturates with increasing N or just increases slowly
(e.g., as VN ). The study given below on hysteresis loops
suggests that the latter is correct. The passage times in
Fig. 3 are consistent with the distributions in Figs. 1 and
2. They rise rapidly up to N =4 and then level off.

B. Bimodality versus coupling

We next consider how the bimodal condition varies
with changing ReB. In Fig. 4 we show the passage times

(a)

0.00+

as a function of ReB for N =2, 4, and 7. A vertical line
is drawn at ReB = —6, the value at which semiclassical
theory predicts bistability. All results to the right of the
point ReB = —6 and none to the left are bimodal. Hence
the semiclassical prediction is necessary and sufficient for
bimodal distributions. In each case the passage times in-
crease with ReB but saturate at larger values. However, it
appears that a simultaneous increase of ReB and N could
lead to quite large passage times. Our numerical routine
is inadequate to examine such regimes.

The condition Red =0 implies ImA4 =0. Since the
latter is fixed in Fig. 4, the case ReB =0 does not corre-
spond to any achievable set of parameters, but does pro-
vide a calculation in which the only effects of coupling in-
volve superradiant and subradiant decays. We computed
ImA =Red =0 for N =2, 4, and 7 and find that all give
mean passage times near 1.5. Since the times in Fig. 4 are
substantially larger than 1.5, the superradiant and subra-
diant effects are appreciable.

C. Hysteresis loops

While we are unable to compute passage times beyond
the regimes shown in Figs. 3 and 4, we can study hys-
teresis. Hysteresis loops are convenient for comparing the
results of the heuristic model with semiclassical theory.
The microscopic semiclassical equations are the same as
Egs. (5) and (6) except that the factors Eq 8(t —1,,) are
replaced by a unit constant. In these calculations we take
& to vary in time as a sawtooth and make a parametric
plot of 7(z) versus &;(¢). In Fig. 5(a) we show a hys-
teresis loop for ReB=—14, N =7 generated from a
dynamical calculation of the semiclasssical theory. In this
calculation the cycle time used to complete a loop is 40

(c)

0.00+

n n
-1.00 T 7 -1.00
00
El
L
e 4 SWITCH UP
3 STATISTICS
o
o
E
-1.0 1.0 -1.0 1.0-1.0  _ 1.0 I
n n SWITCH
‘ DOWN
b STATISTICS
(d)
FIG. 5. (a) Semiclassical steady-state loop (— — —) and dynamical loop (solid curve). (b) Histograms of the inversions at E;=5.5,

5.75, and 6.0 [arrows indicate position on axis of (a), bars indicate position in (c)]. (c) Widest of 30 hysteresis loops generated from the
heuristic model under conditions identical to those in (a). (d) Statistics of switching in 28 of the 30 loops generated under conditions
identical to those in (c). Upper histogram: number of loops that switched up at that value of the incident field. Lower histogram
(plotted downwards): number of loops that switched down at that value of the incident field.
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decay times (see below for rationale). The dashed curve in
Fig. 5(a) is the semiclassical S curve generated from a
steady-state analysis (it and the numerical run coincide
over much of the plot). Because of the rapid sweep of &,
the dynamical loop is much wider than the S curve. We
have computed a loop with a cycling time of 1000 decay
times which does follow the S curve adiabatically. In Fig.
5(b) we show the statistics of 7 for three positions in the
loop around the point &;=5.75 for which T, =T,. This
point is close to the upper turning point of the S curve
which suggests that the upper state is more susceptible to
fluctuations than the lower state.

We made 30 hysteresis loops with the heuristic model
using the same parameters as in the calculation of Fig.
5(a). In Fig. 5(c) we show. the widest hysteresis loop ob-
tained among these runs. This loop agrees well with the
semiclassical loop in Fig. 5(a). Note that we need a cycle
time that is comparable to the passage times (about 10 de-
cay times). Otherwise, there would be many noise-driven
transitions in the course of each cycle. These times are
too short for the system to track the S curve adiabatically.
We expect that the observed hysteresis loops should be
narrower than the one in Fig. 5(c), insofar as the rapid
passage time should cause transitions between the states
before the turning point is reached. This expectation is
verified in 28 of the calculated loops, one of which made
two extra noise-driven transitions and is dropped from
further consideration. The remaining calculation failed to
make a transition to the upper branch. No loop was
formed and it is also dropped. In Fig. 5(d) we summarize
the statistics of the values of the field at which the transi-
tions occurred for the 28 calculations that resulted in a
single loop. While in all cases the up passage occurred at
a higher field than the down passage, the passage statistics
show that anomalous loops should be possible. The re-
sults in Fig. 5 show that the heuristic and semiclassical re-
sults are largely consistent as to the details of bistability.

In Fig. 6 we show one of two nearly identical loops gen-
erated for N =40. In this calculation we take
Red =—0.4 and ImA4 = —0.2 (the value of ImA used
earlier is no longer realistic for the interatomic separations
giving this ReA4) and we have used a cycle time of 100 de-
cays. In this case the choice of cycle time is set by the
need to complete the calculation in finite time. For these
parameters the upper (lower) turning point of the S curve

1.00

31

0.00

-1.00 i . . —

FIG. 6. Hysteresis loops for N =40, 4 =—0.4—0.2i, cycle
times =100 decay times.

is at &; =8 (5) and the hysteresis loops are in very good
agreement with the semiclassical predictions. Hence the
bistable condition continues to improve with increasing N.

D. Factorization

In this subsection we consider the validity of making a
factorization of the average of products of statistical vari-
ables that allows us to derive a semiclassical model from
the heuristic model. For the purpose of discussion, we use
the notation Ty,(1) = (vs,(t) )4, where v denotes either n or
R, the subscript s denotes the statistical variables in the
heuristic model, and { ), signifies a time average when
evaluated numerically and a statistical average in the
analysis of Egs. (5) and (6). A variable without the sub-
script s denotes a variable in a conventional semiclassical
model. When Eq. (4) is used to eliminate &, in Egs. (5)
and (6), there are then two products that must be factor-
ized. The factorization of n.,(¢)R.g(t) in Eq. (5) is essen-
tial, since it leads to the frequency shift that makes MOB
possible. The factorization of [R,(2)]*R,g(2) in Eq. (6) is
probably not essential since it makes a small contribution
to bistability through the term Im 4. ,

We show in Table I the factorizations obtained from a
seven-atom calculation for 2000 decay times whose histo-
gram of 7(¢) is the middle figure of Fig. 5(b). We ex-
plicitly compute the statistical averages of the variables
and products for a=1 and B=2 (all atom pairs are
equivalent so this choice involves no loss of generality).
We also computed factorizations for the N =7 and 8 cal-
culations in Fig. 3 to check consistency. We estimate the
numerical error with calculations using Red =ImA4 =0
and N =7. Factorization must be valid in this case so all
discrepancies are numerical. In addition, we computed
factorizations for the below-threshold cases in Fig. 4 for
N =7. The factorization errors of ([Rg(t)]*R.a(2)),
show no case-to-case consistency. However, the imagi-
nary parts of (ng ()R (1)), and (ng(1)),{(Rsa(1)),
differ by a factor of 2, so the factorization of this essential
term is quite inaccurate. This factorization error is much

TABLE 1. Numerical values for the average of the products
(top) and the product of averages (bottom) from the calculation
giving the middle plot in Fig. 5(b).

(ns1R;2),=0.068+i0.149
(ng1)a{Ry3)s =0.063+i0.067

(n51Rs2 ), =0.034+i0.029
(ng1)u{Ry2), =0.020—70.002

(ng1R;,);=0.1084i0.291
(n51)1{Ry2)1=0.1024i0.286

(Rs1RY ), =0.121+i0.001
(Ry1)a{R% s =0.063—i0.003

(R; 1R ), =0.080+i0.003
(Rs1)u{RY),=0.039—i0.003

(Rs1RY );=0.171—i0.001
(Rg1 )1{R}Y)=0.202—i0.002
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larger than can be accounted for by numerical error, is
consistent for all bimodal cases, and nearly vanishes for
the cases below threshold. To understand these results,
note that R,,(t) and T7i,(t) have unique steady-state
values. Hence, if factorization were exactly valid, then
the resulting equations would necessarily deny bistability.
This means that factorization must be invalid if the physi-
cal system shows bistability. For the same reasons, if
such a system is validly described by semiclassical theory,
the variables in the semiclassical theory are not
(va(2))g’s.

We adopt an ad hoc procedure for examining statistical
averages that have multiple values. The numerics deter-
mine, at every instance, whether the system is in the upper
or lower state, and it is a well-defined numerical pro-
cedure to take the time averages in the individual states.
(We have no idea what statistical averages these corre-
spond to.) We adopt these averages as { ), and { ); and
report them and their factorizations in Table I. By and
large the factorizations in the two states are quite accu-
rate.  The critical factorization  (Ro(t)ngg(2));
=(Ry4(1)){nsp(t) ), is nearly perfect. There is a 15% er-
ror in the factorization of ([R;a(#)]*R.a(1));, which is
found in all cases, but is probably unimportant. The fac-
torization in the upper state has large percent errors, but
the terms are all nearly zero and the results can be attri-
buted to numerical error. If any of the factorization er-
rors in the upper state are real, they are largely irrelevant.
Hence the averages that correspond to the dynamics of
the semiclassical variables do factorize.

V. SUMMARY

In this paper we investigate, numerically, a heuristic,
microscopic N-atom model with fluctuations. We find
the statistics of the system to be bimodal where the corre-
sponding semiclassical theory predicts bistability. The
hysteresis loops are in substantial agreement with semi-
classical calculations. The bimodality condition improves
slowly as the number of atoms and the interatom coupling
increases. We also show that the semiclassical calcula-
tions agree on the details of MOB to within numerical er-
ror, and that there is a way of justifying the factorization
of semiclassical theory.

APPENDIX

In this appendix we illustrate some of the results ob-
tained in our verification of our initial choices of Tp=1
and 7i, = —0.4. The objective verification of these values
is based on the criteria in Egs. (10a) and (10b). Several in-
dependent tests were made to determine T, and we illus-
trate the method with a case using N =7, E;=5.75, and
ReA = —2. For both this study and the verification of 7,
we make an unfiltered time trace of 10° decay times. This
trace is then filtered using various values of T until the
mean passage times equal the variances. The results of
this test are illustrated in Fig. 7 for Tr=0, 0.25, 0.5, and
1.0. The statistics of the up passage times are consistently
discrepant with the exponential distribution of Eq. (10a)
and the standard deviations are substantially different

()T, =0 , (b)T =0.25
-—t, ty— -—1t, ty—
()T, =05 (DT =1.0

du dl

FIG. 7. Passage time statistics for various values of the filter
time. See Fig. 1 for details. Denote the standard deviation of
the times with AT, then (a) T,=2.22, AT, =5.22, T;=1.94,
ATy=1.77; (b) T, =5.35, AT, =8.25, T;=5.39, AT;=6.72; (c)
T,=9.21, AT, =11.03, T;=9.75, AT;=9.66; (d) T,=11.79,
AT,=11.66, T;=12.94, AT,=12.83. ‘

from the means for all values of Tr below 1.0. Hence for
values of T < 1, the results are a composite of short- (see
the large peak at ¢, =0 in the figures) and long-time-scale
phenomena, indicating that T is too small. In other tests
we choose parameters such that the down passage times
are discrepant. While larger values of T are also con-
sistent with the criteria, they simply damp out all tem-
poral responses.

We illustrate in Fig. 8 part of the verification of
7i,=—0.4 with the case N =4, ReA=—4.67, and
E;=5.2. Weset Tr=1 and vary 1,. We show (T, T;)'"?
as a function of 7, as an example of tests that show that
it is a slowly varying quantity in the neighborhood of the
operating points that we report. For 7, = —0.4 the mean
up (down) time is 7.68 (8.09) and the variance is 7.22
(7.66), which fall within our criteria. For 7i,=—0.2 the
mean and variance of the up time are 4.04 and 6.75 and

10
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FIG. 8. Geometric mean passage time vs 7.
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for fi,=—0.6 the mean and variance of the down time
are 6.73 and 10.18. Both are substantially discrepant with
the criteria of Egs. (10a) and (10b) and indicate a two-
time-scale response. The second time scale involves the

fluctuations about the upper or lower state, which can be
quite large for small N. It turns out that at the operating
point T, =Ty, the long-time average inversion is within
5% of —0.4, which is how 7, was chosen initially.
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