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Pseudopotential molecular-structure calculations for alkali-metal-atom —H2 systems
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Two-center molecular-structure calculations using an I-dependent pseudopotential technique have
been performed for alkali-metal-atom —H2 systems, and the adiabatic potential energies for the
ground states and numerous excited states of these systems have been obtained for the C„,and C2„
symmetries. The H2 molecule was assumed to lie in its ground state X'Xg+(v =0) and its bond
length fixed to the equilibrium value r, =1.4 a.u. The interaction between the valence electron of
the alkali-metal atom and H2 is described by a one-center effective interaction which is modeled to
reproduce differential elastic-scattering experimental data at low energies. The results are generally
in good agreement with available ab initio calculations indicating the reliability and the usefulness
of such an approach. The present calculations fill in the lack of information concerning most of
these systems.

I. INTRODUCTION

Knowledge of the potential-energy surfaces is of great
importance in understanding either quantitatively or qual-
itatively various reactive or nonreactive processes which
may occur during collisions between electronically excited
atoms and molecules. The purpose of this paper is to
show that the semiempirical l-dependent pseudopotential
method, which has been successfully used recently for the
study of M-He interactions' (where M is an alkali-metal
atom), can be also considered as a reliable method for
treating the M-H2 systems.

Molecular-structure calculations concerning the M-H2
systems are rather few in number and often incomplete.
Full ab initio calculations were performed for LiH2 (Refs.
2—6) and NaHz, ' at various levels of sophistication, il-
lustrating the complexity of this approach. More recent-
ly, the CsH2 system has been investigated using-an ab ini-
tio pseudopotential method. Apart from these ab initio
calculations, the LiH2 (Ref. 10) and NaH2 (Ref. 11) sys-
tems have been also investigated with the semiempirical
diatomics-in-molecules (DIM) method based on informa-
tion about the diatomic fragments. This method, while
very useful for obtaining qualitative behavior of the
potential-energy surfaces, does not seem to give sufficient-
ly accurate results for the purpose of quantitative compar-
isons.

The ab initio methods for calculating the potential-
energy surfaces have to solve a many-body problem in-
dependently of any experimental data. This problem, al-
ready very complex in the case of a diatomic molecule
when the number of electrons is large, becomes tremen-
dous for a triatomic molecule because of additional de-
grees of freedom to describe the system. The level of so-
phistication of such calculations depends upon the elec-
tronic configurations used to define the electronic wave
function of the system, and then reliable results are gen-

erally obtained at the expense of large computational ef-
forts. This precludes extensive calculations, and therefore
the full ab initio potential-energy surfaces may be of limit-
ed use for calculating nonadiabatic coupling needed in the
treatment of scattering problems. They may be very use-
ful nevertheless as a guide or reference for a less rigorous
approach of the many-body problem.

In order to shorten computational efforts required by
full ab initio methods, the pseudopotential approach has
been developed. ' Because only a few valence electrons
are generally responsible for chemical bonding, the
many-body problem is reduced to the interactions between
valence electrons and cores. Then, only the correlations
between the valence electrons have to be explicitly includ-
ed in the calculations, the interaction between a valence
electron and a core being described by an effective poten-
tial. This effective potential may be built ab initio, ' re-
quiring the knowledge of the core orbitals. The
semiempirical approach which consists in modeling the
effective interaction in order to reproduce some experi-
mental data seems easier to use for obtaining quite reliable
results. '

In the present study of the M-H2 systems we use an ex-
tension of the l-dependent pseudopotential approach pre-
viously used for the M-He systems. ' However, a further
simplification is made here by representing the interaction
between the alkali valence electron e and Hz by an effec-
tive one-center interaction which takes into account the
anisotropy of the molecule. Qur approach presents some
analogies with that used by Bottcher' for NaNq, but
differs on the modelization of the effective interaction, the
most important point. being that our pseudopotential is
energy independent. In Sec. II details on the effective in-
teractions are given, as well as the method of calculation
of the adiabatic potential energies. The results obtained
for all the M-H2 systems are reported and discussed in
Sec. III with references to previous ab initio theoretical
works. Finally, a general conclusion is given in Sec. IV.
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II. METHOD OF CALCULATION

A. General framework 1=0

1

2 «~+d~)'

In the spirit of the semiempirical I-dependent pseudo-
potential approach previously used for the M-He sys-
tems, ' the interaction between M and H2 is reduced to a
three-body system consisting of the alkali valence electrone, the alkali-metal-atom core A and H2 considered as an
anisotropic core 8 (see Fig. 1). The molecule H2 is as-
sumed to be in its ground state X'Xg (U =0). Therefore,
our calculated adiabatic potential energies correspond to
the equilibrium distance r, =1.4 a.u. (atomic units will be
generally used throughout the article) between the two hy-
drogen atoms.

Within the Born-Oppenheimer approximation, the
problem of determining the adiabatic potential energies
becomes the same as solving the one-electron Schrodinger
equation

for any given distance R between 3 and B (situated at the
center of mass of Hz) and angle y specifying the direction
of the H2-molecular axis with respect to the vector R tak-
en as quantization axis (see Fig. 1), in order to obtain the
electronic energy e; (R,y ) for a given electronic state i
Then, the adiabatic potential energies E;(R,y) are defined
as

E;(R,y) =e;(R,y)+ Vgs(R, y),
where V~s(R, y) is the potential describing the interaction
between the two cores. The electronic Hamiltonian is de-
fined as

~e = —
2 ~r„+V~ + Va+ Vcr

where V~ and V~ are, respectively, operators describing
the e - A and e Beffective -interactions. Vcz
represents a three-body interaction (the so-called cross
term) which has to be included in the calculations in order
to have the correct behavior of E(R,y) at large R values.
The spin-orbit interaction is not included in the present
calculations. The Vz ~ interactions contain a short-range
part which is described by a,n /-dependent pseudopoten-
tial, and a long-range part including polarization terms.
As in Ref. 1, we take

a&1
(4)

2 (~'+d')'
where %~" is an angular momentum projector on center 3
and Vz~(rz) is a Gaussian-type potential. The values of
the parameters defining Vz~(rz), as well as those of ad, ,

aq, and d~ were previously obtained by Bardsley. ' Note
that for I &l,„, where lm, „depends on the alkali-metal
atom A, the radial operators V&1 are identical. Let us dis-
cuss now in more detail V~ and Vc~.

B. The effective interaction e -H2 and the cross term

The operator Vz describing the e -H2 interaction is
written, as for Vz, as the sum of a short-range part and of
a long-range part that we limit to terms in R . But
now, anisotropic terms are also included to take into ac-
count the molecular structure of H2, to be consistent with
the long-range part, we limit them to terms in P2(cos8)
for the short-range part, where 8 is the angle between the
molecular axis and rs (see Fig. 1). Then,

Vz ——g V~I'(r~)H~ + g Vz~'(r~) ,' IP2(cos8), H~ I—
(0) (2) 2 3gr,

2 (rs+dg) 2 (rg+d/) (rg+dg)

XPz(cos8),

where the symbol I I denotes an anticommutator. Be-
cause P2(cos8) does not commute with the angular
momentum projector HI, it is necessary to introduce the
anticommutator in Eq. (5) to ensure the hermiticity of the
anisotropic short-range operator. This can be easily veri-
fied if one notes that the action of the anticommutator on
the electronic wave function is defined as

jP2(cos8), H/ I tP,/(r/, rg )

+1
YI (r~) f dr s f P(2c so8)+P (2c so8)]

m= —1

X &7 *(r~)P,I«a, &a)

FIG. 1. Three-body two-center model for describing the M-
H2 interaction. The M ion is in 2 and the center of mass of H2
is in B.

with r~ =r~/r~.
We consider first the short-range part of the interac-

tion. It is described by a pseudopotential in analogy with
the description of the e -He short-range interaction. ' As
for the e -He interaction, the role of the pseudopotential
is also mainly to simulate the Pauli principle, and there-
fore it has to be 1 dependent. However, for e -H2, the l
dependence of the pseudopotential is more difficult to for-
mulate than for e -He, in particular when e is near the
core 8. We have generalized the isotropic pseudopotential
used for e -He, by introducing an angular dependence in
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0, and using also the same Gaussian-type radial operators: I
I

I
I

I
[

l
I

I
I

I

y(0, 2)( ) g (0,2) t . iB
(7)

~CT =— CXd COS( 82i )

(R2+d~)(rii+ds)

ad r Ri(i3 c Oocssyo—cos82i )
(&)

+
2(R2+d2 )3/2(r2+d2 )3/2

R
r

(8)

where we have also included the additional cutoff func-
tion which was introduced and discussed previously for
the I-He systems, '

This formulation allows us to take into account to a cer-
tain degree the I symmetry as the electron approaches H2,
and also gives us more flexibility to describe the correct
e -H2 interaction.

The long-range part of the e -H2 interaction is rela-
tively well-known. ' ' We use the cutoff functions previ-
ously defined by Hara, ' with the same cutoff radius
dii ——1.6 a.u. , to avoid any divergence of the terms for
rz ——0. We have used the values ad' ——5.1786 a.u. and

ad ' ——1.2019 a.u. (Ref. 16) for the isotropic and anisotro-

pic static dipole polarizabilities, respectively, and the
value Q=0.49 a.u. (Ref. 17) for the quadrupole moment.
These values correspond to H2 in its ground state
X'Xs+(U =0). The e -H2 interaction defined above was
then modeled in order to reproduce scattering experimen-
tal data. For this purpose, the differential cross sections
for the e -H2 elastic scattering were calculated using the
method developed by Takayanagi and Geltman. ' This
method was later used by Hara' and Sur and Ghosh, '

but with different e -H2 interactions than used in Ref. 18
or in the present work. For a given set of parameters de-
fining our e -H2 interaction, the phase shifts for each I
wave (up to the f wave) were calculated from uncoupled
radial equations, for three orientations of the H-H axis
with respect to the quantization axis (O,II/4, 11/2). The
averaged differential cross sections were then derived and
compared with experimental data. In spite of unavoidable
difficulties due to several parameters to adjust at the same
time, we were able to reasonably reproduce the differential
elastic scattering data of Linder and Schmidt in the en-
ergy range 0.6—10 eV and the theoretical scattering length
I.o ——1.27 a.u. obtained by Chang, by limiting the I
dependence of the pseudopotential to l=0, 1, as for the
case of the e -He interaction. ' The calculated differen-
tial cross sections were sufficiently sensitive to the param-
eters to strongly indicate their variation limits. The best
agreement with the experimental data, shown in Fig. 2,
was obtained for 20 ' ——4.5, A0 ' ——0, 80 '=0.4,
AI&i ———0.4, AI&i ———2.5, Bt&'i ——0.4(0) (&) (0,2)

Let us consider now the well-known cross term result-
ing from the polarization of H2 by both the point charges
e and A. To be consistent with our choice of cutoff
functions for the long-range part of the e -H2 interac-
tion, the cross term was defined as

lA

CV 0

CD
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I/l
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CKu 4

l—.
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UJ
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U
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1eV
0 O~~+
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r
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FIG. 2. Differential cross sections vs scattering angle for the
elastic scattering of e by H& in its ground state X X~+ (v =0),
for three energies as indicated in the figure. The symbols are
the experimental points of Linder and Schmidt (Ref. 20).

I

30

1 —expf, (R/r~ )=
0 for R &r„.

2'
for R &rz

(9b)

Note that the anisotropic part of the cross term can be
easily obtained by specifying the dipole polarizability ten-
sor in terms of the components of the unit vector defining
the orientation of the H2-molecular axis. '

C. The alkali-ion —82 interaction

The long-range part of the alkali-ion —H2 interaction
can be easily derived. ' Some information about the
repulsive part of the potentials can be obtained from
beam-scattering experiments. However it is limited to
only a small R-value range and the potentials derived
from the scattering data are averaged over all orientations
of the H2-molecular axis. This latter point precludes the
use of an extrapolation method, as the one used previously
for the alkali-ion —He interactions, to build the full po-
tential curves for any symmetry of the system.

The method proposed here to estimate the alkali-
ion —H2 interaction I/~s(R, y) for any values of R and y
is prompted by a stationary perturbative approach used by
Hara' to study the scattering of electrons by hydrogen
molecules. We consider the interactions between the
alkali-ion A and each point charge constituting the H2
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where C; and D; are defined as

C;=(raisin 8&cos2y);,

D; = ( r„sin8& cos8& cosy );,
(19a)

(19b)

D. Molecular-structure calculations

The molecular code previously used for the M-He sys-
tems' has been adapted in order to calculate the matrix
elements of the additional anisotropic terms involved in
the case of the M-Hz interactions, allowing us to calculate

and ( ); denotes the average value with respect to the
wave function of the alkali-metal atom in the state i
Note that only the quadrupole interaction due to H2 gives
a R asymptotic behavior of V;(R,y) and only if the
molecular state correlating with the state i of the alkali-
metal atom is not an nS state. This quadrupole interac-
tion does not contribute to the order R . The coeffi-
cients C; and D; take into account the azimuthal orienta-
tion y of rz with respect to the plan formed by the core
A and the direction H-H of the molecule. This asymptot-
ic expression will be useful later on in this article when
discussing the behavior of the adiabatic potential curves.

Because the present study concerns the interactions of
the M-H2 systems in the C „and C2„symmetries, we
have also limited to the same symmetries our calculations
of the alkali-ion —H2 interaction potentials. However, it is
straightforward to extend to the general C, symmetry the
calculations of the alkali-ion —Hz interactions using the
method described above. Finally, it is also worthwhile
noting that this method could be used for other systems;.
in particular, some preliminary calculations on alkali-
ion —He systems have demonstrated to us the usefulness
of the method for obtaining reliable results.

the electronic energies E;(R,y). Again, as in Ref. 1, the
molecular wave function f,"(r&,R,y) was expanded over
the same large basis set of Slater-type orbitals (STO) cen-
tered on the alkali ion, and ensuring the stability of the
calculated electronic energies up to corresponding highly
excited states of the alkali-metal atom. We recall that the
nonlinear parameters of the STO were optimized in order
to reproduce accurately the ionization energies of the ex-
cited states up to first nG state (in general, the accuracy is
much better than 2.5&& 10 a.u.).' Our basis set is suffi-
ciently flexible to take implicitly into account at short dis-
tances the coupling with the ionic term associated with
the alkali-ion —H2 systems, but is obviously unable to
predict the energies of these ionic systems.

In the present work, we have limited our calculations to
the C, and C2„symmetries of the systems. However,
the calculations could be extended to the C, symmetry
provided that the molecular code is adapted accordingly.
For each symmetry, all the adiabatic potential energies
correlating with a particular alkali-metal-atom state were
calculated. In the C „symmetry, the classification of the
adiabatic potential-energy curves is identical to that for
the M-He systems, and the electronic terms result from a
diagonalization of the one-electron Hamiltonian for each
value of the projection ML of the total orbital momentum
L (equal to that of the valence electron, in the present
case). In the C2„symmetry, the adiabatic potential energy
are classified as usually done, in four classes of electron-
ic terms (namely, the classes A ~, B~, B2, and A &). Each
class of electronic terms results from a different diagonal-
ization of the electronic Hamiltonian. It is useful to say
here that ~ [21+3+(—1) ], ~ [2/ —1+(—1) ], and

~ [21+ I —( —1) ] terms of classes A ~, A 2, and B~ ( B2 )

arise, respectively, from a given nl level of the M atom.

TABLE I. Characteristic parameters for the ground-state potential of Li H2 in the C„„and C2„symmetries: position R,q {in a.u. )

and depth D~ (in eV) of the potential well; position R, (in a.u. ) and height E, (in eV) of the long-range potential barrier found in the

C„„symmetry. Comparison with previous ab initio calculations at various levels of approximation.

Symmetry Present

R & 4.85

1.77 X 10-'

R, 9.1

4.3 X 10-'

1.75 X 10

R~ 3.88

-4.75

-4.0X 10

-9.5
4.0X 10-'

-4.0

-2.4X 10

4.7
(4.7)
4.63 X 10-'
(6.47 X 10 )

-9.75
( —11.5)

3.8 X 10-'
(3.0X10 ')
3.75

(3.75)
2.50X 10

(2.53 X10-')

3.912

2.25 X 10-'

4.21 3.99

1.93X 10 ' 2.02 X 10

4.25

1.64 X 10

'Hartree-Fock self-consistent-field (HF-SCF) calculations of Lester (Ref. 26).
HF calculations of Kutzelnigg et al. (Ref. 27) using the independent-electron-pair-approximation —pair-natural-orbital (IEPA-PNO)

method with or without (in parentheses) correlation energy.
'HF-SCF calculations of Raffenetti and Ruedenberg (Ref. 28).
Unrestricted Hartree-Fock —unrestricted Moiler-Plesset second-order perturbation approximation {using a standard basis set of

Gaussian orbitals designated by 6-31G**){HF-UMP2/6-31G* ) calculations of of Collins et al. (Ref. 29).
'HF/6-31G* calculations of Hobza and Schleyer (Ref. 30).
ab initio model potential calculations of Switalski et al. (Ref. 31}.
1.77X 10 =1.77X 10
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TABLE II. Charaaracteristic parameters (as in Table I) of the rou

C2„symmetries obtained from th
in a e o the ground-state potentials of the alk 1'-' —H

and of Switalski et al. (Ref. 30) (b)
'

e . ) in the case af Na+H&.
rom the ab initio calculations of Raff. o a enetti and Ruedenberg (Ref. 28) (a)

0OU

Symmetry

~ooV

Alkali ion

R
D,
R~

Present

5.75
4.63 X 10-'
9.3
4.2X10-'
4.68
1.08 X 10

(a)

4.705
1.25 X 10

Na+
(b)

5.20
7.8 X 10—'

6.95
2.7 X 10—'

10.1
3.6X 10-'
5.75
6.29 X 10

7.18
1.22 X 10-4

10.5
3.3 X10-'
6.11
5.43 X 10-'

Cs+

7.7
6.8 X10-'

11.1
2.9X10-'
6.53
4.65X10 '

III. RESULTS AND DISCUSSIONS
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——I.4 a.u. should be small and the com-
parisons with our results remain meanin ful. Moreover
these are the onln y extensive results concerning the excited
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[multiconfiguration self-consiste t-f id-en - ie —optimized-va-
lence-configuration (MCSCF-OVC) method]
fotolor wo evels of approximation (15 OVC and 28 OVC) il-
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Krauss than are the results for th C ry.
~ ~

or e „symmetry. The
characteristic parameters of our A 8

,q ——. e, R,q
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CEPA) method; the second method in the most accurate
but was only used to obtain the X A& and A B2 potential
curves]. The agreement with the PNO-CEPA results is
quite good, with our X A ~ potential curve slightly more
repulsive and our A B2 potential curve slightly less at-
tractive than that obtained from the PNO-CEPA calcula-
tions. In comparison, our results agree well with the
RHF-SCF calculations for the X A i and 8 A i potentials,
but our A B& and A B2 potentials are more attractive
than those of the RHF-SCF method T.his result may. be
explained by the fact that some important correlations ef-
fects are not taken into account in the RHF-SCF calcula-
tions as they are in the PNO-CEPA method. These corre-
lation effects are probably less important for the 8 Ai
state for which the potential curve is rapidly repulsive.
The characteristic parameters for the A Bz potential
curve, which is the most attractive one, are D,q

——0.348
eV and Req 408 a.u. in our calculations; the PNO-
'CEPA results give Deq =0.39 eV and R,q

——3.88 a.u. for
RHH ——1.4 a.u. In comparison, the recent restricted-
Hartree-Fock —self-consistent-field —configuration-inter-
action (RHF-SCF-CI) calculations of Sevin and Chaquin
agree well with the RHF-SCF calculations of Botschwina
et al. to determine an absolute minimum of the A 82
potential curve for RHH ——1.42 a.u. with D,q

——0.25 eV
and R,q

=4.16 a.u. , but are far from the PNO-CEPA re-
sults7 which find the absolute minimum for RH H

——1.49
a.u. with D~ ——0.43 eV and R,q ——3.92 a.u. Finally, we
discuss the most recent DIM calculations of Blais et al. ,

"
since their surface have been used for extensive dynamics
calculations. Their X A i potential curve is found to be
more repulsive for R )4 a.u. , and their A 82 potential
well less deep (D~=0.24 eV, R,q=4.6 a.u. for RH H ——1.4
a.u. ) than in our calculations and those of the PNO-
CEPA method. The results of the DIM calculations are,
however, in quite good agreement with ours and those of
the RHF-SCF calculations for the 8 Ai potential curve.
But, the results of the DIM calculations differ markedly
from ours and the ab initio ones ' by predicting the ex-
istence of a 8 Bq potential curve, of ionic character,

which crosses the B A ~ potential curve at R=5 a.u. and
exhibits an avoided crossing with the A B2 potential
curve at R=3.5 a.u.

In the case of the C „symmetry, our results are in fair
agreement with the RHF-SCF calculations and, as ex-
pected from the results obtained for the Cz„symmetry,
our A II potential well is found to be deeper than the ab
initio one. In the case of the 8 X+ potential curve, which
is rapidly repulsive, our results are again in good agree-
ment with the RHF-SCF calculations. Our predictions
concerning more excited adiabatic potential curves are fi-
nally shown in Figs. 11 and 12.

D. KHz, RbHz, and CsHz systems

Figures 13—18 present some of our results for the K,
Rb, and Cs-H2 systems in the C, and C2„symmetries.
Unfortunately, there is neither experimental nor theoreti-
cal information concerning KH2 and RbH2 for compar-
isons with our results. Recently, the CsH2 system has
been investigated by Gadea et aI. using an ab initio pseu-
dopotential method and some preliminary results have
been reported. According to the authors, Fig. 2 of their
article shows only a qualitative picture of several A i and
B2 potential curves, making a quantitative comparison

with their results meaningless. We simply remark that
qualitatively one observes similar features in the excited
potential-energy curves, with some avoided crossings be-
tween the potential curves which are found more pro-
nounced in their calculations than in ours. In general, the
potential energies obtained from these ab initio pseudopo-
tential calculations are much lower than ours; in particu-
lar, the crossing observed between the B A~ and B B2 po-
tential curves (see Fig. 18) is found located just above the
6 P level in the calculations of Gadea et al. , at about
R=6 a.u. , while it is found located above the 5 D level in
our calculations, at about R =4.6 a.u.
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FIG. 13. Adiabatic potential energies of some excited states
of KHz in C„„symmetry, as in Fig. 7.

FIG. 14. Adiabatic potential energies of some excited states
of KHz in Cz symmetry as in Fig. 8
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E. General discussion of our results
for the M-H2 systems

Some structure is observed in the potential-energy
curves for the excited states of the M-Hz systems in the
C „and C2„symmetries shown in Figs. 7, 8, and 11—18.
It is similar to that which was previously observed in the
potential-energy curves of the M-He systems, ' but the
main differences are generally observed at the avoided
crossing between adiabatic potential curves. For the M-
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FIG. 166. Adiabatic potential energies of some excited states
of RbH2 in C2„symmetry, as in Fig. 8. (a)
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FIG. 19. Interaction potential of Na{nS) with H2 for the
C „and C2„symmetries as indicated in the figure, for n =4 (a)
and n=5 &b&. , present results; ———,results of Ivanov
{Ref.32) obtained from an asymptotic method.



32 PSEUDOPOTENTIAL MOLECULAR-STRUCTURE CALCULATIONS. . . 2667

H2 systems, these avoided crossings are more or less ac-
centuated depending on the symmetry of the system.
Moreover, some crossing may occur between some A~
and B2 potential curves correlating with different M-
atom levels, at intermediate distances, due to much lower
adiabatic potential energies obtained for a B2 state than
for the other molecular states associated with a given M
atomic level. This is not observed correspondingly be-
tween the X+ and II potential curves of the C „sym-
metry, or in the case of the corresponding situation for
the M-He system. See, for example, Figs. 13 and 14,
where the crossing observed at R=7.8 a.u. between the
Bz(3 D) and A &(5 S) potential curves of KH2 is not seen

between the II(3 D) and X+(52S) potential curves.
Therefore, very different coupling between molecular
states may result, depending on the symmetry (see, for ex-
ample, Ref. 11 and references therein). Consequently, we
would like to emphasize the point that it might be very
audacious to use data for the M-He systems in order to
interpret some nonreactive M-H2 scattering processes; this
was usually done in the past because of the lack of infor-
mation concerning the M-H2 potential surfaces. It is
worthwhile noting that it is only for the Cz„symmetry
that the ground-state potential curve is found to cross the
first excited potential curve (that is the A Bq curve), ex-
cept for the case of KH2. And it is only for LiH2 that the
activation energy at this crossing is found to be low, mak-
ing the crossing visible in Fig. 6. Finally some of the
structure observed in the excited potential curves in the
range from intermediate to large distances is due to oscil-
lations in the electronic wave function g, (r&,R,y). As in
the case of the M-He systems, ' the adiabatic potential en-
ergy V;(R,y) measured relative to its asymptote may be
also estimated for the M-Hz systems from an asymptotic
method by considering the scattering of a free electron by
the hydrogen molecule. ' In Fig. 19 we show the compar-
ison between our results and those obtained from such an
approach3 in the case of NaH2, both for the X+ and A|
potential curves correlating with the 4 S and 5 S states of

Na. The agreement, while qualitative, is, however, rather
good over a large range of R values and indicates that
such an asymptotic method could be quite useful for in-
vestigating high Rydberg states of the M-Hq systems.

In Figs. 20—23 the adiabatic potential-energy curves
V;(R,y) relative to their asymptotes are reported for all
the M-H2 systems in the X X+, X A~, 8 X+, 8 A],
A II, A B&, and A B2 states, allowing us to see the evo-
lution of these curves when going from Li to Cs, or from
the C „symmetry to the C2„symmetry. As in the case
of the M-He systems, ' one observes that for a given sym-
metry the repulsive strength of the same potential curve
increases from Li to Cs, due to a more compressed wave
function in the case of the lightest M atoms; and the order
of the repulsive strengths is also changed for the B X+
and B A~ states due to coupling with the immediate
upper state. Again, the B X+ (B A&) potential curve is
more rapidly repulsive than the X X+ (X A~) potential
curve, while the A II, A B~, and A B2 potential curves
present deeper wells when going from Cs to Li. The
behavior of the potential curves with respect to each oth-
er, and with respect to the symmetry, C„„orC2„, may be
explained in terms of electronic densities. We can also ex-
plain the behavior of the potential curves in the range
from large to intermediate distances by considering the
asymptotic expression for V;(R,y) [see Eq. (18)]. From
such a study, we obtain the following results. The X X+
and X A~ potential curves are both attractive in R
with the same contribution in ad', but the attractive

strength of the X A~ potential curve is reduced by the
term in ud '. At shorter distances, the repulsive strengths

of the curves are mainly determined by the alkali-ion —H2
interactions, and the X X+ potential curves become more
rapidly repulsive than the X A ~ ones. This is particularly
clear from the X A ~ potential curve of LiH2 (see Fig. 20)
where an abrupt change in the repulsive strength of the
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respects could be improved in the future, and gives us
confidence in the predictions concerning those of the M-
H2 systems for which no information is available up to
now. Extension of these calculations to the general C,
symmetry is only a question of additional computational
efforts. A possible extension to slight variations of the
RH H distances is presently envisaged; however, this may
not be sufficient for the study of the dynamics of some
collisional processes, as it was shown to be in Ref. 11
where large positive deviations of RH H were found to be
important. The pseudopotential two-center approach
could be also used to treat other systems, in particular the
M-N2 systems. Moreover, extension of the l-dependent

pseudopotential approach to a three-center problem is an-
ticipated for the future in view of treating reactive pro-
cesses. Work is now in progress to use the present results
in the study of some low-energy nonreactive collisional
processes, in particular the fine-structure transitions in the
first n I' levels of the M atom and some intermultiplet
transitions induced by collisions with H2.
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