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Two-center molecular-structure calculations using an I-dependent pseudopotential technique have
been performed for alkali-metal-atom—H, systems, and the adiabatic potential energies for the
ground states and numerous excited states of these systems have been obtained for the C_, and C,,
symmetries. The H, molecule was assumed to lie in its ground state X'S} (v =0) and its bond
length fixed to the equilibrium value r,=1.4 a.u. The interaction between the valence electron of
the alkali-metal atom and H, is described by a one-center effective interaction which is modeled to
reproduce differential elastic-scattering experimental data at low energies. The results are generally
in good agreement with available ab initio calculations indicating the reliability and the usefulness
of such an approach. The present calculations fill in the lack of information concerning most of

these systems.

I. INTRODUCTION

Knowledge of the potential-energy surfaces is of great
importance in understanding either quantitatively or qual-
itatively various reactive or nonreactive processes which
may occur during collisions between electronically excited
atoms and molecules. The purpose of this paper is to
show that the semiempirical /-dependent pseudopotential
method, which has been successfully used recently for the
study of M-He interactions! (where M is an alkali-metal
atom), can be also considered as a reliable method for
treating the M-H, systems.

Molecular-structure calculations concerning the M-H,
systems are rather few in number and often incomplete.
Full ab initio calculations were performed for LiH, (Refs.
2—6) and NaH,,”? at various levels of sophistication, il-
lustrating the complexity of this approach. More recent-
ly, the CsH, system has been investigated using-an ab ini-
tio pseudopotential method.® Apart from these ab initio
calculations, the LiH, (Ref. 10) and NaH, (Ref. 11) sys-
tems have been also investigated with the semiempirical
diatomics-in-molecules (DIM) method based on informa-
tion about the diatomic fragments. This method, while
very useful for obtaining qualitative behavior of the
potential-energy surfaces, does not seem to give sufficient-
ly accurate results for the purpose of quantitative compar-
isons.

The ab initio methods for calculating the potential-
energy surfaces have to solve a many-body problem in-
dependently of any experimental data. This problem, al-
ready very complex in the case of a diatomic molecule
when the number of electrons is large, becomes tremen-
dous for a triatomic molecule because of additional de-
grees of freedom to describe the system. The level of so-
phistication of such calculations depends upon the elec-
tronic configurations used to define the electronic wave
function of the system, and then reliable results are gen-
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erally obtained at the expense of large computational ef-
forts. This precludes extensive calculations, and therefore
the full ab initio potential-energy surfaces may be of limit-
ed use for calculating nonadiabatic coupling needed in the
treatment of scattering problems. ‘They may be very use-
ful nevertheless as a guide or reference for a less rigorous
approach of the many-body problem.

In order to shorten computational efforts required by
full ab initio methods, the pseudopotential approach has
been developed.'? Because only a few valence electrons
are generally responsible for chemical bonding, the
many-body problem is reduced to the interactions between
valence electrons and cores. Then, only the correlations
between the valence electrons have to be explicitly includ-
ed in the calculations, the interaction between a valence
electron and a core being described by an effective poten-
tial. This effective potential may be built ab initio,'? re-
quiring the knowledge of the core orbitals. The
semiempirical approach which consists in modeling the
effective interaction in order to reproduce some experi-
mental data seems easier to use for obtaining quite reliable
results.!

In the present study of the M-H, systems we use an ex-
tension. of the /-dependent pseudopotential approach pre-
viously used for the M-He systems.! However, a further
simplification is made here by representing the interaction
between the alkali valence electron e ~ and H, by an effec-
tive one-center interaction which takes into account the
anisotropy of the molecule. Our approach presents some
analogies with that used by Bottcher!* for NaN,, but
differs on the modelization of the effective interaction, the
most important point being that our pseudopotential is
energy independent.  In Sec. II details on the effective in-
teractions are given, as well as the method of calculation
of the adiabatic potential energies. The results obtained
for all the M-H, systems are reported and discussed in
Sec. III with references to previous ab initio theoretical
works. Finally, a general conclusion is given in Sec. IV.
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II. METHOD OF CALCULATION

A. General framework

In the spirit of the semiempirical /-dependent pseudo-
potential approach previously used for the M-He sys-
tems,! the interaction between M and H, is reduced to a
three-body system consisting of the alkali valence electron
e, the alkali-metal-atom core A and H, considered as an
anisotropic core B (see Fig. 1). The molecule H, is as-
sumed to be in its ground state X 12;-(11 =0). Therefore,
our calculated adiabatic potential energies correspond to
the equilibrium distance r,=1.4 a.u. (atomic units will be
generally used throughout the article) between the two hy-
drogen atoms.

Within the Born-Oppenheimer approximation, the
problem of determining the adiabatic potential energies
becomes the same as solving the one-electron Schrédinger
equation '

HyP=e;Rywd (1)

for any given distance R between A and B (situated at the
center of mass of H,) and angle y specifying the direction
of the Hy,-molecular axis with respect to the vector R tak-
en as quantization axis (see Fig. 1), in order to obtain the
electronic energy €;(R,y) for a given electronic state i.
Then, the adiabatic potential energies E;(R,y) are defined
as

E/(R,y)=¢;(R,y)}+V5(R,y), 2)

where V 45(R,y) is the potential describing the interaction
between the two cores. The electronic Hamiltonian is de-
fined as

He:—-%VEA“{"VA‘FVB‘i‘VCT, (3)
where V, and Vjp are, respectively, operators describing
the e -4 and e -B effective interactions. V¢r
represents a three-body interaction ‘(the so-called cross
term) which has to be included in the calculations in order
to have the correct behavior of E(R,y) at large R values.
The spin-orbit interaction is not included in the present
calculations. The V, p interactions contain a short-range
part which is described by an /-dependent pseudopoten-
tial, and a long-range part including polarization terms.
As in Ref. 1, we take

H-H axis

FIG. 1. Three-body two-center model for describing the M-
H, interaction. The M ion is in 4 and the center of mass of H,
is in B.
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where 21! is an angular momentum projector on center A
and V(r4) is a Gaussian-type potential. The values of
the parameters defining V4 (r,), as well as those of 4,
ay ”m and d, were previously obtained by Bardsley.!? Note
that for I >1/,,, where I, depends on the alkali-metal
atom A, the radial operators V,; are identical. Let us dis-
cuss now in more detail ¥z and V.

4)

B. The effective interaction e ~-H, and the cross term

The operator Vjp describing the e ~-H, interaction is
written, as for V4, as the sum of a short-range part and of
a long-range part that we limit to terms in R —* But
now, anisotropic terms are also included to take into ac-
count the molecular structure of H,; to be consistent with
the long-range part, we limit them to terms in P,(cos8)
for the short-range part, where 6 is the angle between the
molecular axis and rp (see Fig. 1). Then,

V= 3 Virs)ZE+ S ViP(rp)+ {Py(cosd), 77}
1=0

1=0
1 ag, e ad)rs or3
2 (rg+d3)? |2 (rB+d3)P  (PE+dE)
X P,(cosf) , ) (5)

where the symbol { } denotes an anticommutator. Be-
cause P,(cosf) does not commute with the angular
momentum projector .@f, it is necessary to introduce the
anticommutator in Eq. (5) to ensure the hermiticity of the
anisotropic short-range operator. This can be easily veri-
fied if one notes that the action of the anticommutator on
the electronic wave function is defined as

{P3(cos0), 2}t (Rp,75)

+1
= 3 Y['®p) [ di3[P;(cos8)+P,(cos6’)]

m=-—1
XY™ (3 (R p,78) (6)

Wlth ?B =l'B/rB.

We consider first the short-range part of the interac-
tion. It is described by a pseudopotential in analogy with
the description of the e ~-He short-range interaction.! As
for the e ~-He interaction, the role of the pseudopotential
is also mainly to simulate the Pauli principle, and there-
fore it has to be ! dependent. However, for e ~-H,, the /
dependence of the pseudopotential is more difficult to for-
mulate than for e ~-He, in particular when e ~ is near the
core B. We have generalized the isotropic pseudopotential
used for e ~-He, by introducing an angular dependence in
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0, and using also the same Gaussian-type radial operators:

V2 (rg)= 402 TP )
This formulation allows us to take into account to a cer-
tain degree the / symmetry as the electron approaches H,
and also gives us more flexibility to describe the correct
e ~-H, interaction.

The long-range part of the e ~-H, interaction is rela-
tively well-known.!#13 We use the cutoff functions previ-
ously defined by Hara,!> with the same cutoff radius
dp=1.6 a.u., to avoid any dlvergence of the terms for
rg=0. We have used the values ad =5.1786 a.u. and

(2)—1 2019 a.u. (Ref. 16) for the isotropic and anisotro-

pic static dipole polarizabilities, respectively, and the
value Q=0.49 a.u. (Ref. 17) for the quadrupole moment.
These values correspond to H, in its ground state
X 12;' (v =0). The e ~-H, interaction defined above was
then modeled in order to reproduce scattering experimen-
tal data. For this purpose, the differential cross sections
" for the e ~-H, elastic scattering were calculated using the
method developed by Takayanagi and Geltman.'® This
method was later used by Hara®® and Sur and Ghosh,!
but with different e ~-H, interactions than used in Ref. 18
or in the present work. For a given set of parameters de-
fining our e ~-H, interaction, the phase shifts for each /
wave (up to the f wave) were calculated from uncoupled
radial equations, for three orientations of the H-H axis
with respect to the quantization axis (0,I1/4,I1/2). The
averaged differential cross sections were then derived and
compared with experimental data. In spite of unavoidable
difficulties due to several parameters to adjust at the same
time, we were able to reasonably reproduce the differential
elastic scattering data of Linder and Schmidt® in the en-
ergy range 0.6—10 eV and the theoretical scattering length
Lo=127 au. obtained by Chang,?' by limiting the I
dependence of the pseudopotential to /=0,1, as for the
case of the e ~-He interaction.! The calculated differen-
tial cross sections were sufficiently sensitive to the param-
eters to strongly indicate their variation limits. The best
agreement with the expenmental data, shown 1n F1g 2,
was obtained for D=45 4P=0, BY=04,
A4{Y)=—-0.4, 4/%, = —2 5 B,“;%’~o4
Let us consider now the well-known cross term?? result-
ing from the polarization of H, by both the point charges
e~ and 4. To be consistent with our choice of cutoff
functions for the long-range part of the e ~-H, interac-
tion, the cross term was defined as

aﬁg)cos( 635)

Vor=—
T (R2+d3)(r}+d3)
aﬁ,?rBR (3 cosO cosy —cosfp) R
2R+ ap a1 | |

(8)

where we have also included the additional cutoff func-
tion which was introduced and discussed previously for
the M-He systems,’
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FIG. 2. Differential cross sections vs scattering angle for the
elastic scattering of e~ by H, in its ground state X*=} (v =0),
for three energies as indicated in the figure. The symbols are
the experimental points of Linder and Schmidt (Ref. 20).

‘R 5
__1]
T4

0 forR <ry . (9b)

—exp for R>r, (9a)

fe(R/rq)=

Note that the anisotropic part of the cross term can be
easily obtained by specifying the dipole polarizability ten-
sor in terms of the components of the unit vector defining
the orientation of the H,-molecular axis.!*

C. The alkali-ion—H, interaction

The long-range part of the alkali-ion—H, interaction
can be easily derived.!* Some information about the
repulsive part of the potentials can be obtained from
beam-scattering experiments.”?> However it is limited to
only a small R-value range and the potentials derived
from the scattering data are averaged over all orientations
of the Hy-molecular axis. This latter point precludes the
use of an extrapolation method, as the one used previously
for the alkali-ion—He interactions,! to build the full po-
tential curves for any symmetry of the system.

The method proposed here to estimate the alkali-
ion—H, interaction Vp(R,y) for any values of R and y
is prompted by a stationary perturbative approach used by
Hara!® to study the scattering of electrons by hydrogen
molecules. We consider the interactions between the
alkali-ion 4 and each point charge constituting the H,
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FIG. 3. Three-center model for describing the M-ion—H, in-
teraction. The two protons p;, and p, are placed symmetrically
with respect to B at the distance 7,=1.4 a.u. from each other.

molecule: two protons p; placed symmetrically with
respect to the center of mass B and two electrons e;~ (see
Fig. 3). But here, the interactions are not only Coulom-
bic, but include also a short-range part described by a
pseudopotential. Thus, for the ¢, - A4 interaction we use
an / dependent effective interaction

o 1
via= > Valri) P1—
1=0 47

(10

and the p;-A interaction is assumed to be local and
described by
1

vpa=—Va, (Riy)+ Ry’ (11)
where the V,; radial operators are those defined in Eq.
(4). The first-order term of the stationary perturbative
method, which gives us the electrostatic potential, is just
the average value of the sum of the interactions v;, and
vp,4 With respect to the ground-state wave function of the

H, molecule. In order to evaluate this term, the Coulom-
bic part of the interactions can be expanded in terms of
Legendre polynomials P;(cosy). Then it can be seen that
only even terms will contribute to the static potential.
Moreover, it can be shown also that the term in P,(cosy)
of the Coulombic interactions corresponds asymptotically
to the quadrupole interaction. As previously done by
Hara,'> we use a linear combination of atomic orbitals
(LCAO) approximation for the ground-state wave func-
tion of Hj:

Pp=@ 12 (12)

with
1 2 172

3 z
PEVIS D &

and where S is the overlap of the normalized Slater orbi-
tals describing the two-center one-electron wave function

83
el

— Brij

e (13)

J
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@; with the value of 8 optimized for H, (6=1.166)."°
Then, because ®;, leads to an underestimation of the
value of the quadrupole moment (Q,.=0.32 a.u.) we
have calculated the electrostatic potential by considering
the short-range parts of the interactions v;4 and vp,4 and
retaining only the terms in Py(cosy) of the Legendre po-
lynomial expansion of the Coulombic parts of the interac-
tions. This defines V.. The full static potential is ob-
tained by adding consistently with Eq. (5) the quadrupole
contribution to the alkali-ion—H), interaction:

QR
(R?+d3)?

We have verified that the terms in P4(cosy) of the
Coulombic interaction expansion are very small for any
value of R with respect to terms in Py and P,, and there-
fore they have been neglected.

Finally, to obtain the full potential V,5(R,y) describ-
ing the ground state of the alkali-ion—H, systems, we add
to Vgaiic(R,y) the induction energy, consistently with the
expressions previously defined for the e ~-H, interaction
[see Eq. (5)]

Vstatic(Ra7)=V;tatic(R’y)"” P2(COS'}/) . (14)

(0)

Ay
Vinduqtion(R’ Y)=— m
al i R?
—mPZ(cosy) (15)
as well as the dispersion energy
aq, af}:

3
Vdispersion(R"y)z_TF (R2+d,21 )3/2(R2+d§)3/2

1 %, a%’R 2p,(cosy)

2 (R>+d%)%R?*+d3)?

(16)

We use the Slater-Kirkwood formula®* for estimating the
factor Fin Eq. (16) and take
—1

172 (0)

adA o;dB
F= , 17
N, N, (17

where N, (Np) is the number of electrons in the core 4
(B). With the expressions defined above for the long-
range parts of e ~-H, and A4-H, interactions and also that
of the cross term [see Eq. (8)], the adiabatic potential en-
ergies have the correct asymptotic behavior up to terms in
R ~%. Defining V;(R,y)=E;(R,y)—E;i(,y), one has

(0)

6 . : @d
Vi(R,y)= —?Qs—[ (riPy(cos6,));Py(cosy)+ +C;sin?y —2D;cosy siny] — R—: {(ri[Py(cosO,4)+1]); + %FadA}
o?) ,
— ——B?( {(rZ[3P,(cosO,)+1]); + %FadA } P,(cosy )+ <+ C;siny —6D;cosy siny) for R— oo , (18)

2R
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where C; and D; are defined as

C;= (rf, sin6 4cos2¢); , (19a)

(19b)

and ( ); denotes the average value with respect to the
wave function of the alkali-metal atom in the state i.
Note that only the quadrupole interaction due to H, gives
a R~ asymptotic behavior of V;(R,y) and only if the
molecular state correlating with the state i of the alkali-
metal atom is not an nS state. This quadrupole interac-
tion does not contribute to the order R ~5. The coeffi-
cients C; and D; take into account the azimuthal orienta-
tion ¢ of r, with respect to the plan formed by the core
A and the direction H-H of the molecule. This asymptot-
ic expression will be useful later on in this article when
discussing the behavior of the adiabatic potential curves.
Because the present study concerns the interactions of
the M-H, systems in the C_, and C,, symmetries, we
have also limited to the same symmetries our calculations
of the alkali-ion—H), interaction potentials. However, it is
straightforward to extend to the general C; symmetry the
calculations of the alkali-ion—H, interactions using the
method described above. Finally, it is also worthwhile

D; =(r’sinf 4cos0 scosp); ,

noting that this method could be used for other systems;.

in particular, some preliminary calculations on alkali-
ion—He systems have demonstrated to us the usefulness
of the method for obtaining reliable results.

D. Molecular-structure calculations

The molecular code previously used for the M-He sys-
tems! has been adapted in order to calculate the matrix
elements of the additional anisotropic terms involved in
the case of the M-H, interactions, allowing us to calculate

the electronic energies €;(R,y). Again, as in Ref. 1, the
molecular wave function %{"(r,,R,y) was expanded over
the same large basis set of Slater-type orbitals (STO) cen-
tered on the alkali ion, and ensuring the stability of the
calculated electronic energies up to corresponding highly
excited states of the alkali-metal atom. We recall that the
nonlinear parameters of the STO were optimized in order
to reproduce accurately the ionization energies of the ex-
cited states up to first nG state (in general, the accuracy is
much better than 2.5% 10~* a.u.).! Our basis set is suffi-
ciently flexible to take implicitly into account at short dis-
tances the coupling with the ionic term associated with
the alkali-ion—H,™ systems, but is obviously unable to
predict the energies of these ionic systems.

In the present work, we have limited our calculations to
the C_, and C,, symmetries of the systems. However,
the calculations could be extended to the C, symmetry
provided that the molecular code is adapted accordingly.
For each symmetry, all the adiabatic potential energies
correlating with a particular alkali-metal-atom state were
calculated. In the C, symmetry, the classification of the
adiabatic potential-energy curves is identical to that for
the M-He systems, and the electronic terms result from a
diagonalization of the one-electron Hamiltonian for each
value of the projection M; of the total orbital momentum
L (equal to that of the valence electron, in the present
case). In the C,, symmetry, the adiabatic potential energy
are classified as usually done,? in four classes of electron-
ic terms (namely, the classes 4, B, B,, and 4,). Each
class of electronic terms results from a different diagonal-
ization of the electronic Hamiltonian. It is useful to say
here that +[2/+4+3+(—1)], +[2/—1+(—1)"], and
4021 +1—(—1)'] terms of classes 4, 4,, and B, (B,)
arise, respectively, from a given nl level of the M atom.

TABLE 1. Characteristic parameters for the ground-state potential of Li*Hj in the C,, and C,, symmetries: position R.q (in a.u.)
and depth D, (in V) of the potential well; position R, (in a.u.) and height E, (in eV) of the long-range potential barrier found in the
C ., symmetry. Comparison with previous ab initio calculations at various levels of approximation.

Symmetry Present a b c d e f
R, 485 ~4.75 4.7
@.7
C.» D, 1.77x1072 ~4.0%x1072 4.63x 1072
(6.47x1072?)
R, 9.1 ~9.5 ~9.75
(~11.5)
E, 4.3x107? 4.0x 1073 3.8x1073
(3.0x1073)
R, 3.88 ~4.0 3.75 3.912 4.21 3.99 4.25
Cy (3.75)
D, 1.75x107'  ~2.4x107! 2.50x107'  2.25x107'  1.93x107'  2.02x107'  1.64x107!
(2.531071)

#Hartree-Fock self-consistent-field (HF-SCF) calculations of Lester (Ref. 26).
YHF calculations of Kutzelnigg et al. (Ref. 27) using the independent-electron-pair-approximation—pair-natural-orbital (IEPA-PNO)

method with or without (in parentheses) correlation energy.
°HF-SCF calculations of Raffenetti and Ruedenberg (Ref. 28).

4Unrestricted Hartree-Fock—unrestricted Moller-Plesset second-order perturbation approximation (using a standard basis set of
Gaussian orbitals designated by 6-31G**) (HF-UMP2/6-31G**) calculations of of Collins et al. (Ref. 29).

°HF/6-31G** calculations of Hobza and Schleyer (Ref. 30).

fab initio model potential calculations of Switalski et al. (Ref. 31).

£1.77x10"2=1.77x 1072
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TABLE II. Characteristic parameters (as in Table I) of the ground-state potentials of the alkali-ion—H, systems in the C,,, and
C,, symmetries obtained from the present calculations, and from the ab initio calculations of Raffenetti and Ruedenberg (Ref. 28) (a)

and of Switalski et al. (Ref. 30) (b) in the case of Na*H,.

Alkali ion Nat K+ Rb* Cst
Symmetry Present (a) (b)
R 5.75 6.95 7.18 7.7
c Dy 4.63x103 2.7%x 1073 1.22x10~* 6.8 10~*
- wv R, 9.3 10.1 10.5 11.1
D, 4.2x1073 3.6x1073 3.3x1073 2.9x107?
C R 4.68 4.705 5.20 5.75 6.11 6.53
» D, 1.08x 10! 1.25% 10! 7.8% 1072 629102 5431072 4.65x1072

III. RESULTS AND DISCUSSIONS

Calculations were performed on all the M-H, systems
for distances R between 2 and 50 a.u., and the adiabatic
potential energies corresponding to the ground state and
numerous excited levels of the M atom were obtained for
the C,, and C,, symmetries. Only some examples of our
calculations will be shown, but tabulated energies will be
available upon request from the authors. Because infor-
mation on the alkali-ion—H, systems is presently available
only for Li*H, and Na*H,, let us first discuss our results
concerning the alkali-ion—H), interaction potentials before
considering the M-H, systems. We recall that all our cal-
culations were performed with the characteristic parame-
ters of H, corresponding to a distance between the two
protons fixed at r,=1.4 a.u.

A. Alkali-ion—H, systems

The characteristic parameters of the ground-state in-
teraction potentials for the alkali-ion—H, systems that we
have obtained are reported in Tables I and II along with

VieV)

R(a.u.)

FIG. 4. Interaction potential ¥ (R) for the ground state of
LitH,.

C ., symmetry:
calculations of Lester (Ref. 26).

— — —, present results; 0, HF-SCF
C,, symmetry: ——, present

results; ®, HF-SCF calculations of Lester (Ref. 26).

previous ab initio results, when available.%?¢=3° The
LitH, system has been investigated by full ab initio
methods,»26—2° at various levels of approximation which
are difficult to analyze here. In spite of the simplicity of
our method of calculating V,g(R,y), the agreement with
the ab initio calculations is satisfactory (see Table I). The
position of the potential well is correctly predicted, while
the well depth is slightly underestimated with respect to
the full ab initio results. It is worthwhile noting that in
the C, symmetry, our predictions concerning the small
potential barrier observed at large R is in close agreement
with the full @b initio calculations of Lester,?® and those
of Kutzelnigg et al.?’ when the correlation energy is not
considered. Note in this connection that for such small
potential energies, inclusion of the correlation energy is a
very delicate problem. Figure 4 shows as an example the
overall agreement with the full ab initio calculations of
Lester?® that we have obtained for the potential-energy
curves of Li*H, in the C_, and C,, symmetries. For
Na'tH, in the C,, symmetry, our predictions concerning
the well depth of the potential curve are in closer agree-
ment with the full ab initio calculations of Raffenetti and
Ruedenberg?® than are the ab initio model potential calcu-
lations of Switalski et al.3° Our calculations predict de-
creasing potential well depths and potential barriers
heights when going from Li*H, to Cs*H,, and located
accordingly at larger and larger distances (see Table II). It
is interesting to note that the well depths of the potentials
in the C,, symmetry, are larger by about a factor of 3 to
10 than those found for the corresponding alkali-ion—He
system (see Table II of Ref. 1, for example), but the situa-
tion is reverse in the case of the C, , symmetry where the
potential wells are found to be much less deep. This can
be explained as being a result of the opposing contribu-
tions of the quadrupole interaction due to H, [see Eq.
(14)], which is the main term at large distances.

B. LiH; system

Our results for the ground state and the first excited
states of LiH, in the C, and C,, symmetries are shown,
respectively, in Figs. 5 and 6 along with ab initio calcula-
tions.>* Note that the Hartree-Fock (HF) results of
Krauss? refer to a distance between the two hydrogen
atoms of Ryy=1.5 a.u. However, in view of the depen-
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FIG. 5. Adiabatic potential energies of the lowest states of
LiH, in C_, symmetry. Present results compared with the HF
calculations of Krauss (Ref. 2), O, and with the MCSCF-OVC
calculations of Wagner et al. (Ref. 4) for two levels of approxi-
mation (X, 15 OVC and @, 28 OVC). The ab initio potential
curves have been correlated asymptotically to the experimental
levels for meaningful comparisons with our results. Arrows in-
dicate the position of the asymptotic energies.

dence of the adiabatic potential energies on Ry.p,? the
changes for Ry y=1.4 a.u. should be small and the com-
parisons with our results remain meaningful. Moreover,
these are the only extensive results concerning the excited
states which are available for a systematic comparison
with our results. The results of Wagner et al.* obtained
for the ground state from more sophisticated calculations
[multiconfiguration  self-consistent-field—optimized-va-
lence-configuration (MCSCF-OVC) method] are presented
for two levels of approximation (15 OVC and 28 OVC) il-
lustrating the difficulty for correctly taking into account

10
R (au.)

FIG. 6. Adiabatic potential energies of the lowest states of
LiH, in C,, symmetry, as in Fig. 5.
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FIG. 7. Adiabatic potential energies of some excited states of
LiH, in C,, symmetry. , 3=+, — — —, I states; the oth-
er curves (%A, etc.) have not been drawn for the clarity of the
figure. -

the correlation effects, in particular at large and inter-
mediate distances. Their results in the C _, symmetry in-
dicate a steeper repulsive curve than ours. The agreement
on the whole is good, in particular for the C,, symmetry.
We find, in agreement with previous ab initio calcula-
tions, that the X23% potential presents a well
(Deq=3.9><10-3 eV, R,=9 a.u.) which is deeper than
for the X?4; potential (Deq=1.73X1072 eV, Ry =12.0
a.u.). Concerning the excited states, our results for the
C,, symmetry are in better agreement with those of
Krauss? than are the results for the C_, symmetry. The
characteristic parameters of our 42B, potential curve are
D.=0.61 eV, R,;=3.3 a.u. Comparatively Krauss* has

R (au.)

FIG. 8. Adiabatic potential energies of some excited states of
LiH, in C,, symmetry. , 24; — — —, *By; ——, ’B,.
The 24, potential curves, which are very close to the lowest 24,
potential curves correlating asymptotically with the same levels,
have not been drawn for the clarity of the figure.
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FIG. 9. Adiabatic potential energies of the lowest states of
NaH, in C,, symmetry. Present results compared with the
RHF-SCF calculations of Botschwina et al. (Ref. 7), O.

found D.,=0.62 eV, R,;=3.3 a.u. The MCSCF-OVC
calculations of Mizutani et al.’ give D=0.41 eV,
R=3.5 au; and the Hartree-Fock (using a standard
"basis set of Gaussian orbitals designated by 6-31G**)
(HF/6-31G**) calculations of Hobza and von Schleyer,’
supposed to be more accurate than those of Mitzutani
et al.,’ find Dy =0.71 eV, Req=3.22 a.u. Taking into
account the fact that all these ab initio calculations were
performed for Ry y=1.5 a.u., which was found to give
an absolute minimum in the 42B, potential curve,° the
value that we have found for D, at Ryy=14 a.u. is
quite reasonable. The most striking point of our calcula-

-0.12

n 8 12
R (au)

FIG. 10. Adiabatic potential energies of the lowest states of
NaH, in C,, symmetry. Present results compared with the
RHF-SCF (0) and PNO-CEPA (@) calculations of Botschwina
et al. (Ref. 7).

FIG. 11. Adiabatic potential energies of some excited states
of NaH, in C,, symmetry, as in Fig. 7.

tions is to find that the X24, potential curve crosses the
A’B, potential curve at a distance R=2.35 a.u., with a
corresponding activation energy E,~0.77 eV relative to
the 3%P level. This result is in good agreement with the
calculations of Krauss.2 However, the shoulder observed
in our B24, potential curve (see Fig. 6), due to coupling
with the C2?4, state, was not found in the calculations of
Krauss, perhaps because of the reduced basis set involved
in his calculations. Finally, in Figs. 7 and 8 we show our
predictions concerning the excited adiabatic potential
curves for the C, and C,, symmetries.

C. NaH, system

Figures 9 and 10 present the comparison between our
results and the ones obtained by Botschwina et al.’
from extensive ab initio calculations at two levels of ap-
proximation [using either the restricted Hartree-Fock
self-consistent-field (RHF-SCF) method or the pair-natu-
ral-orbital—coupled-electron-pair-approximation  (PNO-

-0.03

-0.05

-0.06 |

R (awu.)

FIG. 12. Adiabatic potential energies of some excited states
of NaH, in C,, symmetry, as in Fig. 8.
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CEPA) method; the second method in the most accurate
but was only used to obtain the X4, and 4B, potential
curves]. The agreement with the PNO-CEPA results is
quite good, with our X24, potential curve slightly more
repulsive and our 42B, potential curve slightly less at-
tractive than that obtained from the PNO-CEPA calcula-
tions. In comparison, our results agree well with the
RHF-SCF calculations for the X24, and B?4, potentials,
but our A%B; and A42B, potentials are more attractive
than those of the RHF-SCF method. This result may be
explained by the fact that some important correlations ef-
fects are not taken into account in the RHF-SCF calcula-
tions as they are in the PNO-CEPA method. These corre-
lation effects are probably less important for the B24,
state for which the potential curve is rapidly repulsive.
The characteristic parameters for the A2B, potential
curve, which is the most attractive one, are D.,=0.348
eV and R, =4.08 au. in our calculations; the PNO-
‘CEPA results’ give Do, =0.39 eV and R.,=3.88 a.u. for
Ryu=14 au. In comparison, the recent restricted-
Hartree-Fock — self-consistent-field — configuration-inter-
action (RHF-SCF-CI) calculations of Sevin and Chaquin®
agree well with the RHF-SCF calculations of Botschwina
et al.” to determine an absolute minimum of the A%B,
potential curve for Rypy=142 a.u. with D=025 eV
and R.,=4.16 a.u,, but are far from the PNO-CEPA re-
sults” which find the absolute minimum for Ry.py=1.49
a.u. with D,;=0.43 eV and R,=3.92 a.u. Finally, we
discuss the most recent DIM calculations of Blais et al.,!!
since their surface have been used for extensive dynamics
calculations. Their X24, potential curve is found to be
more repulsive for R >4 a.u., and their A’B, potential
well less deep (Deq~0.24 eV, R ~4.6 a.u. for Ryy=1.4
a.u.) than in our calculations and those of the PNO-
CEPA method.” The results of the DIM calculations are,
however, in quite good agreement with ours and those of
the RHF-SCF calculations’ for the B24, potential curve.
But, the results of the DIM calculations differ markedly
from ours and the ab initio ones® by predicting the ex-
istence of a B?B, potential curve, of ionic character,
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FIG. 13. Adiabatic potential energies of some excited states
of KH; in C,, symmetry, as in Fig. 7.
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which crosses the B24, potential curve at R~5 a.u. and
exhibits an avoided crossing with the A2B, potential
curve at R~3.5 a.u.

In the case of the C, symmetry, our results are in fair

agreement with the RHF-SCF calculations’ and, as ex-
pected from the results obtained for the C,, symmetry,
our AZII potential well is found to be deeper than the ab
initio one. In the case of the B2= potential curve, which
is rapidly repulsive, our results are again in good agree-
ment with the RHF-SCF calculations. Our predictions
concerning more excited adiabatic potential curves are fi-
nally shown in Figs. 11 and 12.

D. KH,, RbH,, and CsH, systems

Figures 13—18 present some of our results for the K,
Rb, and Cs-H, systems in the C_, and C,, symmetries.
Unfortunately, there is neither experimental nor theoreti-
cal information concerning KH, and RbH, for compar-
isons with our results. Recently, the CsH, system has
been investigated by Gadea et al.’ using an ab initio pseu-
dopotential method and some preliminary results have
been reported. According to the authors, Fig. 2 of their
article shows only a qualitative picture of several 24, and
2B, potential curves, making a quantitative comparison
with their results meaningless. We simply remark that
qualitatively one observes similar features in the excited
potential-energy curves, with some avoided crossings be-
tween the potential curves which are found more pro-
nounced in their calculations than in ours. In general, the
potential energies obtained from these ab initio pseudopo-
tential calculations are much lower than ours; in particu-
lar, the crossing observed between the B4, and B2B, po-
tential curves (see Fig. 18) is found located just above the
6P level in the calculations of Gadea et al.,’ at about
R=6 a.u., while it is found located above the 52D level in
our calculations, at about R=4.6 a.u.
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FIG. 14. Adiabatic potential energies of some excited states
of KH, in C,, symmetry, as in Fig. 8.
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FIG. 15. Adiabatic potential energies of some excited states
of RbH, in C, symmetry, as in Fig. 7.
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FIG. 16. Adiabatic potential energies of some excited states
of RbH; in C,, symmetry, as in Fig. 8.
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FIG. 17. Adiabatic potential energies of ground state and
some excited states of CsH; in C,, symmetry, as in Fig. 7.
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FIG. 18. Adiabatic potential energies of ground state and
some excited states of CsH, in C,, symmetry, as in Fig. 8.

E. General discussion of our results

for the M-H, systems

Some structure is observed in the potential-energy
curves for the excited states of the M-H, systems in the
C ., and C,, symmetries shown in Figs. 7, 8, and 11—18.
It is similar to that which was previously observed in the
potential-energy curves of the M-He systems,! but the
main differences are generally observed at the avoided
crossing between adiabatic potential curves. For the M-

V({10-3a.u)

30

R(a.u.)

FIG. 19. Interaction potential of Na(nS) with H, for the
C., and C,, symmetries as indicated in the figure, for n=4 (a)

and n=>5 (b).

, present results; — — —, results of Ivanov

(Ref. 32) obtained from an asymptotic method.
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H, systems, these avoided crossings are more or less ac-
centuated depending on the symmetry of the system.
Moreover, some crossing may occur between some 24,
and 2B, potential curves correlating with different M-
atom levels, at intermediate distances, due to much lower
adiabatic potential energies obtained for a 2B, state than
for the other molecular states associated with a given M
atomic level. This is not observed correspondingly be-
tween the 2% and 2II potential curves of the C, sym-
metry, or in the case of the corresponding situation for
the M-He system. See, for example, Figs. 13 and 14,
where the crossing observed at R~7.8 a.u. between the
2B,(3?D) and 24,(5%S) potential curves of KH, is not seen
between the 2I1(32D) and 2Z%(52S) potential curves.
Therefore, very different coupling between molecular
states may result, depending on the symmetry (see, for ex-
ample, Ref. 11 and references therein). Consequently, we
would like to emphasize the point that it might be very
audacious to use data for the M-He systems in order to
interpret some nonreactive M-H, scattering processes; this
was usually done in the past because of the lack of infor-
mation concerning the M-H, potential surfaces. It is
worthwhile noting that it is only for the C,, symmetry
that the ground-state potential curve is found to cross the
first excited potential curve (that is the 42B, curve), ex-
cept for the case of KH,. And it is only for LiH, that the
activation energy at this crossing is found to be low, mak-
ing the crossing visible in Fig. 6. Finally some of the
structure observed in the excited potential curves in the
range from intermediate to large distances is due to oscil-
lations in the electronic wave function ¢,.(r4,R,y). Asin
the case of the M-He systems,! the adiabatic potential en-
ergy V;(R,y) measured relative to its asymptote may be
also estimated for the M-H, systems from an asymptotic
method by considering the scattering of a free electron by
the hydrogen molecule.?! In Fig. 19 we show the compar-
ison between our results and those obtained from such an
approach™ in the case of NaH,, both for the 22+ and 24,
potential curves correlating with the 42S and 525 states of

0.3}
0.2 F

>

()

> 0.1F
0.0}

FIG. 20. Interaction potential V' (R) for the ground state of
the M-H, systems. — — —, X?3+; , X?4,. The repulsive
strength of the potential curve increases from Li to Cs.
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Na. The agreement, while qualitative, is, however, rather
good over a large range of R values and indicates that
such an asymptotic method could be quite useful for in-
vestigating high Rydberg states of the M-H, systems.

In Figs. 20—23 the adiabatic potential-energy curves
V;(R,y) relative to their asymptotes are reported for all
the M-H, systems in the X2=%, X24,, B*=*, B%4,,
A, A’B,, and A’B, states, allowing us to see the evo-
lution of these curves when going from Li to Cs, or from
the C_, symmetry to the C,, symmetry. As in the case
of the M-He systems,! one observes that for a given sym-
metry the repulsive strength of the same potential curve
increases from Li to Cs, due to a more compressed wave
function in the case of the lightest M atoms; and the order
of the repulsive strengths is also changed for the B2Z+
and B?4, states due to coupling with the immediate
upper state. Again, the B>+ (B%4,) potential curve is
more rapidly repulsive than the X*=+ (X24,) potential
curve, while the 4°I1, A2B,, and A2B2 potential curves
present deeper wells when going from Cs to Li. The
behavior of the potential curves with respect to each oth-
er, and with respect to the symmetry, C, or C,,, may be
explained in terms of electronic densities. We can also ex-
plain the behavior of the potential curves in the range
from large to intermediate distances by considering the
asymptotic expression for V;(R,y) [see Eq. (18)]. From
such a study, we obtain the following results. The X23+
and X2A4, potential curves are both attractive in R ~6,
with the same contribution in af};), but the attractive

strength of the X24, potential curve is reduced by the

term in af,?. At shorter distances, the repulsive strengths

of the curves are mainly determined by the alkali-ion—H,
interactions, and the X*3+ potential curves become more
rapidly repulsive than the X4, ones. This is particularly
clear from the X24; potential curve of LiH, (see Fig. 20)
where an abrupt change in the repulsive strength of the

vV (eV)

FIG. 21. Interaction potentials V(R) for the B3+ (a) and
B%A, (b) states of the M-H, systems. —-—.—- , Li; —-—-, Na;
———,K; — — —,Rb; , Cs.
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FIG. 22. Interaction potentials V(R) for the 4% (a) and
AB, (b) states of the M-H, systems, as in Fig. 20.

curve is observed for distances smaller than R~4 a.u.,
corresponding to the well in the Li*™H, potential curve
(see Fig. 4). The B*Z* potential curves are attractive in
R 3 and R ¢, while the B4, potentlal curves are repul-

sive in R ~% and R ~° by the term in a(d , the term in a&O)

being attractive. However, for the B22+ and B2A1
states, the repulsive interaction due to the overlap of the
electronic densities contributes up to relatively large dis-
tances. Therefore, in Fig. 21 it is seen that the B>+ po-
tential curves are less repulsive than the B24, ones at
large distances, while at short distances the order of the
repulsive strength is changed because of the alkali-ion—H,
interaction. At large distances, the 4 1 potential curves
are repulsive in R ~5, but then the terms in R ~¢ which
are attractive become more important at shorter distances.
The AzBl and 4’B, potential curves are both attractive
in R~ and in R —% by the term in ad ) (which is the same

as the one for the 42T potential curve) The attractive
strengths of the 42B, potential curves is increased with
respect to that of the A’B, potential curves by dlfferent
contributions in R %, and in R ~% by the term in ad Be-

cause an M atom excited in a nP4, state can approach
"‘more closely the H, molecule than it does when it is excit-
ed in a nP, state, and more closely in the C,, symmetry

TABLE IIl. Positions R (in a.u.) and depths
systems.
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FIG. 23. Interaction potentials V(R) for the 42B, states of
the M-H, systems, as in Fig. 20.

than in the C, symmetry, we find that the 4°I1, 42B,,
and A2B2 potential curves have wells which are the
deepest in the case of the 42B, states. Finally, Table III
summarizes the positions and the depths of the potential
curves for the X’Z+, X24,, A%I1, AB,, and A>B, states
of all the M-H, systems. We note that comparatively, the
depths of the ground-state potential curves of the M-H,
systems are about a factor of 10 deeper than those for the
M-He systems; and the AII potential curves of the M-H,
systems have comparable well depths with the 4211 po-
tential curves of the M-He systems.!

IV. CONCLUSIONS

Extensive molecular-structure calculations for all the
M-H, systems in which H, is in its ground state
X 2+(v =0) have been made by using an /-dependent
pseudopotentlal technique, and the adiabatic potential en-
ergies from the ground states up to highly excited levels
have been obtained for the C, and C,, symmetries. The
alkali-ion—H, interaction potentials have been also calcu-
lated. No experimental data are presently available for
comparisons. However, comparisons with previous ab in-
itio calculations performed at various levels of approxima-
tion have been possible, and good agreement has been. ob-
tained with the most sophisticated calculations. This in-
dicates the reliability of our approach, which in other

D, (in eV) of the X?3+, X24,, A1, A’B,, and A’B, potential wells of the M-H,

X2zt X24, . AT A?B, A’B,
State R D¢, R D, R, D, R D, R, D¢,
Alkali- '
metal
Li 9.0 3.90x 1073 10.4 1.87x1073 4.23 1.38x 10! 3.90 1.98x 10~} 3.25 6.00x 107!
Na 9.5 3.52x 1073 10.5 1.83x 103 5.23 5.78x 1072  4.55 1.38x 10! 4.15 3.43x10°!
K 11.4 2.02x10~3 12.25 1.23x 103 6.33 2.89x 102 560  7.90x102 5.18 1.80x 107!
Rb 11.75 1.94% 103 12.75 1.20x 103 6.81 2.48x10"2 6.0 7.02 1072 5.50 1.49x 107!
Cs 12.60 1.61x 103 13.40 1.04x 103 7.25 2.07x1072  6.35. 5.80x1072 5.80 1.40x 10!
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respects could be improved in the future, and gives us
confidence in the predictions concerning those of the M-
H, systems for which no information is available up to
now. Extension of these calculations to the general C;
symmetry is only a question of additional computational
efforts. A possible extension to slight variations of the
Ry.y distances is presently envisaged; however, this may
not be sufficient for the study of the dynamics of some
collisional processes, as it was shown to be in Ref. 11
where large positive deviations of Ry were found to be
important. The pseudopotential two-center approach
could be also used to treat other systems, in particular the
M-N, systems. Moreover, extension of the /-dependent
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pseudopotential approach to a three-center problem is an-
ticipated for the future in view of treating reactive pro-
cesses. Work is now in progress to use the present results
in the study of some low-energy nonreactive collisional
processes, in particular the fine-structure transitions in the
first n2P levels of the M atom and some intermultiplet
transitions induced by collisions with H,.
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