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It is proposed that the addition of a matrix optical potential to a close-coupling calculation should
lead to improved results in studies of electron-atom scattering. This procedure is described with use
of a pseudostate expansion to evaluate the optical potential. The integro-differential equations are
solved by a linear-algebraic method. As a test case, applications are made to electron-hydrogen
scattering, and the results are compared with those obtained by other calculational procedures, and
with experiment.

I. INTRODUCTION

The optical-potential approach arises in a natural way
as an extension of the close-coupling approach to
electron-atom scattering at intermediate energies. We
focus our attention on the description of the excitation of
a discrete state for electron impact energies at which
many other channels are open. If the incident energy is
greater than the lowest ionization potential, an infinite
number of channels will be open. It is not possible to in-
clude the large number of (all) open channels explicitly in
a close-coupling calculation. It becomes necessary to
adopt a procedure in which the effect on a specific transi-
tion of processes involving other channels too numerous
for explicit treatment can be included. This is done
through the development of an optical potential.

Optical-potential methods in the theory atomic scatter-
ing have been extensively developed and employed by
Bransden and McCarthy and their collaborators. '

References to earlier work and to other authors can be
found in Ref. 7.

The essential ideas of this approach can be qualitatively
presented as follows (a more formal treatment is given in
Sec. II). Certain channels are selected in which we are
specifically interested; perhaps only one if we are con-
cerned with elastic scattering, or a few if we want to
describe some excitations. The infinite set of coupled
integro-differential equations of the close coupling
method are partitioned into two groups P and Q. The P
group describes those channels we wish to consider expli-
citly; the more numerous Q set contains the rest. The
equations for the Q set are solved formally by a Green's-
function technique in a manner which relates the solution
for the Q to those for the P. At this point, one normally
introduces an approximation which is practically neces-
sary although not formally required, of neglecting the
coupling of the channels in the Q set with each other (the
coupling of Q to P is, however, essential). The resulting
formal solution for the Q set is substituted into the equa-
tions for the P set, which then contains nonlocal, energy-
dependent, complex terms we describe as the optical po-
tential. It is useful to observe that in the low-energy limit
for elastic scattering, the optical potential reduces to the
ordinary polarization potential (with nonadiabatic and

energy-dependent corrections).
This approach ought to be generally applicable in the

intermediate energy range; i.e., in that regime of electron
incident energies above the first ionization threshold but
insufficiently large to permit accurate application of
high-energy (Born, Glauber, etc.). In addition, it should
be possible to treat the problem of elastic scattering from
excited states, which is important in the determination of
the widths and shifts of spectral lines in astrophysical and
low-density laboratory plasmas. This problem acquires its
complexity from the large number of channels accessible
with relatively low incident energies.

In general, we think it is useful to regard the optical po-
tential approach as an approximation. Given a sufficient-
ly fast and large (in memory) computer, one could solve
the scattering problem through a close-coupling expansion
involving many pseudostates in sufficient detail to permit
accurate extraction of amplitudes in the presence of pseu-
dothreshold structure by T matrix fitting. At present it
is only in the case of the electron-hydrogen system that re-
sults of this sort are available. Use of the optical poten-
tial in the manner described here omits the detailed
dynamics associated with the coupling of the pseudostates
with each other. However, we shall see that in the case of
elastic scattering, excellent agreement is obtained with
more comprehensive calculations without the need to
resort to a fitting process to suppress pseudoresonances.
In the case of excitation, the present results, though not as
satisfactory as in the case of elastic scattering, clearly go a
long way toward correcting the errors of a limited basis
close-coupling calculation.

This paper describes our initial efforts to implement
this procedure. The optical potential is constructed using
a set of pseudostates to enable evaluation of the sum over
intermediate states. After the optical potential has been
constructed, it is necessary to solve the remaining iritegro-
differential equations in the P space. We have chosen
for this purpose a linear-algebraic integral-equation
method' " supplemented by an asymptotic E-matrix
propagation procedure in the asymptotic region. ' The
formal theory of the optical potential is described in Sec.
II. Our numerical methods are discussed briefly in Sec.
III. Section IV contains the pseudostate basis. Specific
numerical results for the test case of electron-hydrogen
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scattering are presented in Sec. V. These results em-
phasize elastic scattering by the atomic ground state. We
compare our results with measurements of differential
cross sections, ' and with recent measurements of the spin
asymmetry at 90 in elastic scattering. ' Finally, a sum-
mary of this work and our conclusions are presented in
Sec. VI.

II. THEORY

In order to establish the notation, we first review briefly
the derivation of the fundamental integro-differential
equations. We then introduce the optical potential, and
describe how it is to be computed, allowing for both
closed and open pseudochannels. Finally, we describe the
linear-algebraic method which is to be used to solve the
coupled integrodifferential equations.

For simplicity we consider a target atom (or ion) of nu-
clear charge Z with one electron. The formal generaliza-
tion to more complex targets is, we believe, rather obvi-
ous. Let r denote the coordinates of the scattering elec-
tron and x that of atomic electron, both with respect to
the atomic nucleus as origin. %,(r, x) is a wave function
obeying the X-matrix boundary condition in which there
is an incident particle in channel a only. Conserved quan-
tum numbers (L,S,II—total angular momentum, total
spin, and parity) are implied. This function is to be ex-
panded in a complete set of states (atomic functions sup-
plemented by pseudostates) for the target atom; multiplied
by scattering functions to be determined for the projectile:

4', (r,x)=[1+( —1) P,z]

where

ZeHT(r)= —V, + r
(2.3b)

1 d 2 d li(Ii+1) (Z —1)e
(2.6)

and K,J (the "kernel" ) is an operator containing both
direct (local) and exchange (nonlocal) contributions

KJ(r,x)
r

e
5 5(r —x)

(and Z is the nuclear charge).
The equations for the functions PJ, are obtained by re-

quiring that the Schrodinger equation should be exactly
satisfied in that part of function space spanned by the tar-
get functions. Specifically, we have

f u (x)YL&,"~,(r,x)[H(r, x) —E]+,(r,x)drd x =0.
(2.4)

After a considerable amount of algebraic manipulations,
we obtain equations for the P~, which can be put in the
following form:

(HI —k; )P;, (r)+ g f dxx Kz(r, x)PJ, (x)=0, (2.5)
J

in which H~ is the radial Hamiltonian for angular
1

momentum l&

X gg, ,(r)~, (x)Y~, , (r), rz) .
J

(2.1)
+ ( —1) u (x)[Wi(x, r) (k; E~)5I —I, 5( (,—]uj(r) .

2

H(r, x) =HT(r)+HT(x)+
/r —x/

(2.3a)

In this equation, F, , is a two-particle spherical har-

monic for total angular momentum L (z component M,
parity II) while I

&
and Iz are the individual angular mo-

menta. We associate l~ with r~ and lz with x. The func-
tion uj(x) is a member of the complete set of states
describing the target for angular momentum l2, and

PI, (r) is the corresponding radial scattering function. The
index j on P includes all the quantum numbers required to
specify a channel. The sum includes the partial angular
momenta l'~ and and 12 and the indices of the target
states.

The functions uz(x) are supposed to diagonalize the
Hamiltonian of the target HT,

f d x uk (x)Yi'„(xm)HT(x)uj( )Yxi ~,(x) =EJ5jk .

(2.2)

If the set of states used in (1) were complete, Eq. (2) im-
plies that they would be the exact eigenfunctions of the
target Hamiltonian. We require that Eq. (2) must be ex-
actly satisfied for whatever finite set of target states is ac-
tually used. The set of functions u then usually contains
both exact and approximate target states (or pseudostates).

The Hamiltonian for the scattering problem is

In these expressions

k; =E —E;,

(2.7)

(2.8a)
2

VJ(r)= f d xdru;( )[xY III(r, x)]* uj(x)r —x

(2.8b)

We shall refer to VJ as the direct potential (matrix) and
WJ as the exchange potential (matrix). The angular in-
tegrations can be performed according to Percival and
Seaton. ' This leads to

VJ(r) = g Q(L, l„l2,lI, lz, A, )y'J '(r), (2.9a)

~ u;*(x)u~(x)
r

(2.10)

and Q is a coefficient whose general expression is

W~J(x, r) =e g Q(L, I&, lz, l2, 1I,A)r &
/r"&+', (,2.9b)

in which r & is the lesser and r& the greater of x and r;
y &

' is given by
2 r
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I

Q(L, lq, lz, lg, lz, A)=( —1) ' ' [(2Iq+1)(2lp+1)(2lg +1)(2lz+1)]'
l ] A, l1 l2 A, l2 I l2 l1

0 0 0 0 0 0 k l1 l2
(2.11)

(H~ —k; )y;(r,y) 5(r —y) .l l (2.12)

Then we have

and the standard notation for the 3-j and 6-j symbols has
been used.

%"e are now ready to introduce the optical potential.
For this purpose we separate the set of channels con-
sidered into two groups: Set 1, those to be considered ex-
plicitly (the P space). These channels have indices in the
range of j from jo to j~, and the sum over channels in this
set will be denoted g~. Set 2 (the Q space) comprises all
other channels, and the sum over these is denoted g&.
Consider now Eq. (2.5). Suppose i is a channel in set 2.
We approximate Eq. (2.5) by restricting the sum over j to
channels in set l. Equation (2.5) is then an inhomogene-
ous equation, which is solved by introducing the Green's
function, y;(r,y), which satisfies

FI(kr) ~sin8~,

where

81=kr + (Z —1) ln(2kr) — + cr&
lm.

2

(2.17a)

(2.17b)

(o.
~ is the Coulomb phase), and let G~ be an irregular solu-

tion

The calculation of the optical potential requires the
Crreen's function y . Since H~ as defined in Eq. (6) con-
tains only a pure Coulomb potential, y can be specified
analytically. The direct diagonal potential element V
could be included in the calculation of y~ without any
change in the formalism, but then y~ would have to be
found by numerical solution of a differential equation,
and the calculation would be much slower.

Let F~(k~r) be a regular Coulomb wave function with
the asymptotic form

P;,(r)= —g f dyy f dxx y;(r,y)K&(y, x)PJ, (x) . G~(kr)~cos8~ . (2.17c)

j EP

(2.13)

)&y (y,z)K~~(z, x) . (2.15)

We now return to Eq. (2.5) for the case in which i is in set
l. In this case we separate the sum over channels into the
part involving the P and Q subspaces, and use Eq. (2.13)
for those channels which belong to Q. The result is an
equation (or a set of coupled equations) restricted to the P
space:

(Hi —k; )P;, (r)

+ g f dx P [KJ(r,x)+ Uz(r, x)]PJ.,(x)=O,
jcp

(2.14)

in which

U~J(r, x)= —g f y dy f z dzK; (r,y)
ming

(2.18)

For km & 0, negative energy Coulomb wave functions are
required. Let these be denoted fg and gt for the regular
and irregular cases. We define new function x

&
and xz by

I X1
r l + le —~r (2.19a)

.X2. '

where v =
km. Then 71 may be chosen to be the regular

confluent hypergeometric function,

(If V ~ is included, the asymptotic forms are unchanged. )

In the case of a neutral system, the logarithmic term and
o~ do not appear, and the Coulomb functions become
Bessel functions. The Green's function appropriate for
use in (2.16) is

F((k~r()
y~(r, x)= [G((k~r) )+iFI(k~r) )] .

k rx

The quantities UJ define the optical potential.
Approximations are generally necessary in the construc-

tion of the optical potential. The most usual of these is
the neglect of exchange in the matrix elements between
the Pand Q spaces; i.e., in Eq. (2.15) put

X~(r) =~F~(l + 1 —Z/v, 2l +2,2xr),

and X2 is the irregular function

Xq ——U(l + 1 —Z/x, 2l +2, 2ar) .

(2.19b)

(2.19c)

K; (r,y)=V; (r)
&(» —y)

2
The Green's function is proportional to the product fjgI.

Then U;J reduces to y(r, x)= ' fE(r )g~(r ) .3 (v, l)
(2.20)

UJ(r, x) = —g V~(r)y (r —x) V ~(x) . (2.16)
ming

Equations (2.14) and (2.16) are the equations to be
solved in this work.

The constant of proportionality is determined from the
Wronskian of f~ and g~, which can be evaluated using the
asymptotic forms of the functions. The result is
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qi+) I'(1+ 1 —Z/v)
I (21+2)

(2.21)

Finally we consider the linear-algebraic method em-
ployed for the solutions of the coupled set of Eq. (2.14).
As a result of the previous considerations, the channels
explicitly considered are restricted to the I' space, and the
kernel E is a nonlocal, energy-dependent quantity.

In the linear-algebraic method, " we convert the
integro-differential equations into integral equations by

1 Fi, (k;r )Gi, (k;r )
Q;(r,x)=

k; rx

Then we find

(2.22)

introducing the appropriate Careen's function. Only (some
of the) open channels are explicitly considered. The
Green's function, denoted Q, to be employed is similar to
that of Eq. (18) except that it is convenient to employ K-
matrix boundary conditions, even though the X matrix is
complex, in consequence of the use of a complex optical
potential. Thus

j

r

P;n(r) =—Fi (k;r)5n —g f Qz(r, x) [Vz(x) (e I—r)5ij]gzn(x)+ f y [u;(y) Wz(y, x)uz(x)+ Uij(x,y)]gzn(y) x2dx,
r ' "

jcp
(2.23)

in which Eq. (2.7) has been used, and for simplicity of no-
tation we have included the term (k; —EJ ) in the defini-
tion of Wij,

W&(y, x)= W&(y, x) —(k; Ez )5i i, —5i i, . (2.24)

We rewrite Eq. (2.23) by introducing an operator =,

:,z(r,y) = f Q;(r,x)[u;(y) Wi(y, x)uz(x)+ Uz(x, y)]x dx,

(2.25)

The factor 1/r in Eq. (2.27) has been included in F':

F,'=(llr )F, (k, r )5,.
The solution of Eq. (2.29) is just

P=(I+B) 'F' .

(2.30)

(2.31)

After P has been determined on the grid of points, the
K matrix is determined by fitting the solution at large dis-
tances to the prescribed asymptotic form

so that Eq. (2.23) becomes y;n(r)~, /~ [Fi (kir)5;n+I inG/ (k;r)] .1
(2.32)

Fi(k; r)
P,,(r)= '

5;,r

—g f IQ;(r,y)[V;;(y) (e ly)5—j]
jap

The large-distance behavior of the functions F and 6 was
specified in Eq. (2.17). Although the K matrix is com-
plex, the S matrix and the cross sections can be computed
from X in the usual way,

+ -=;,(r,y) I 4,.(y)y'dy . (2.26)
1+iK
1 —iK (2.33)

g (5ij 5mn + Birn,jn )4j'a ( rn ) =
j,n

In this equation

1
Fi, (k r )5;, .

rm
(2.27)

B~,n =rn'p(rn) Qi(r~, rn) V,,(r„)
2 . .e 6,J + 'j(rm rn )r

(2.28)

It is convenient, in considering these equations, to intro-
duce combined indices I=(i,m), J=(j,n) and to arrange
elements so that for each grid point, the channels follow
in order. Then B;~zn becomes Blq,' F and P are matrices
with columns designated by the channel of incidence (a).
Then with all indices suppressed, Eq. (2.27) is simply

(I+B)P=F' . (2.29)

Equation (2.26) is one of a coupled set of integral equa-
tions. They are to be converted into a matrix equation
through the introduction of a coordinate grid, whose
points are denoted r~, and a set of quadrature weights
p~. The result of this conversion has the form

III. NUMERICAL METHODS

We will describe here briefly the essential features of
the numerical methods with which the formal discussion
of the proceeding section has been implemented. A more
complete account will be published elsewhere. '

An essential feature which strongly influences the accu-
racy obtainable with a linear-algebraic method is the algo-
rithm used for numerical integration. %"e believe this
matter has been given insufficient attention in the past.
The point is that there is a derivative discontinuity in the
function Q(r, x) which enters into both Eqs. (2.25) and
(2.28). Such discontinuities also occur in the functions
Uj(x,y) and Wiz(x, y) which enter into the construction
of:-,i [Eq. (2.25)]. If the algorithm for numerical integra-
tion does not tak'e account of these discontinuities, the ac-
curacy obtained will be significantly reduced. We have
demonstrated this to occur in specific, simple examples in
Ref. 16.

It is desirable that the derivative discontinuities should
occur on the mesh points of the grid, since this enables the
integration weights to be adjusted properly to take ac-
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count of the discontinuities. This consideration suggests
that Gaussian quadratures are not optimal in this prob-
lem, and argues in favor of the use of Newton-Cotes —type
formulas with a mesh that is regular except for occasional
jumps in the grid spacing. Our procedure is based on a
five-point Newton-Cotes quadrature in which the error is
proportional to h . This enables us to obtain a rather
high degree of accuracy with a modest number of mesh
points. Details are described in Ref. 16. However, there
is an upper limit to the mesh sparing that can be used in
our approach which is set by the oscillations of wave
functions in the asymptotic region. Therefore, it is neces-
sary to use a finer mesh at large distance at high incident
energies than at lower energies.

There is an additional complication which arises from
the existence of long-range forces. Because of the degen-
eracy of the levels of the hydrogenic system with respect
to / for a given n, there are off-diagonal terms proportion-
al to 1/r, 1/r, etc. , in K~~, Eq. (2.7). Analogous terms
appear in UJ, which because U(x,y) becomes sharply
peaked at x =y for large x,y, give rise to an effective po-
larization interaction proportional to 1/r at large r. The
result of this is that the IC matrix cannot be determined
accurately by matching the solutions to spherical Bessel
functions (or Coulomb functions in the case of ions) at
moderate values of r. We must use either more exact
asymptotic functions which take account of the long-
range interactions or, as is done in this case, carry the cal-
culations out to large values of r. This is reasonably sim-
ple because exchange is negligible and the optical potential
may be regarded as diagonal (with respect to coordinates)
in this region. We have followed here the procedure of
Henry et al. ' for propagating L matrices as incorporated
in their program ASYM3.

The optical potential calculations have been made in-
cluding values of the total angular momentum I. &5 at
low energies, k &1.4, and L, &6 for higher energies.
Contributions from higher angular mornenta are included
approximately using the unitarized Born approximation
with exchange (UBX). However, a model polarization po-
tential described in Ref. 13 is used to determine the is-ls
element of the K matrix. Further discussion of the UBX
method for the treatment of large L can be found in Ref.
9.

IV. PSEUDOSTATE BASIS

TABLE I. Parameters and energies (in Ry) of the pseudostate
basis. Note that the energies refer to the combination, Eq. (4.1),
rather than to the individual components.

1.0
0.5
0.5
1/3
1/3
1/3
0.2

—1.0
—0.25
—0.111 111
—0.062 38
—0.01723

0.195 88
2.039 64

1

1

1

2
1

I =1
1.0
0.5
1/3
1/3
0.2

—0.25
—0.111 111
—0.062 19
+ 0.02744

0.909 12

l=2
0.5
1/3
0.2

—0.111 11
—0.062 45
+ 0.041 87

I=3
0.5
0.25

—0.0625
+ 0.033 13

0.0

ergies given in the table, and this is readily confirmed by a
calculation of overlaps, that the set contains good approx-
imations to the 4s, 4p, and 4d state (plus the exact 4f). It
should therefore be possible to obtain reasonable results
for elastic scattering from the states in the n =3 manifold.

We use this set in the following way. The states
through n=3 are placed in the P space, the remaining
twelve, which are orthogonal to them, define the Q space.
The assumption is made here that these 12 states are com-
plete enough to permit sufficiently accurate evaluation of
the optical potential.

. The present calculation is based on the 18-state pseudo-
state basis described in Ref. 17. It contains 7 s states, 5 p
states, 3 d states, 2 f states, and 1 g state, of which 7 (1s,
2s, 3s, 2p, 3p, and 4f) are exact atomic states and 11 are
pseudostates. A given state is denoted as

u'"(r) = g c'"r e (4.1)
k

in which j is the state number of l is the angular momen-
tum. The parameters and energies of this set are listed in
Table I.

This set contains the exact atomic states through n=3
and therefore may be used to discuss elastic scattering and
transitions among these states. It is evident from the en-

The calculations described below are based on the 18-
state basis described in the previous section. In these cal-
culations, the P space consisted of the exact atomic eigen-
states through n=3; hence we have six-state close cou-
pling (with exchange) supplemented by an optical poten-
tial approximately representing higher bound and continu-
um states. The present calculations are similar to those
reported by Bransden and collaborators (BSSR), Ref. 2;
the most significant differences being our use of a larger
six-state basis in I' space, and also a larger 12-state basis
in Q space. We shall first consider elastic scattering from
ground-state atoms.
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o.(Qp) cr( VAR)

TABLE II. Integrated cross section for elastic scattering
from the ground state (units m.a0) at selected energies: OP,
present calculation; VAR, Ref. 9.

IO, O
gQl
8.0—
7.0—
60- q
5.0—

0.91
1.10
1.44
1.96
2.25
2.57
4.00
5.00
7.35

5.841
4.692
3.408
2.394
2.034
1.708
0.963
0.701
0.441

5.749
4.694
3.429
2.337
1.960
1.643
0.920

40—

3.0-

2.0
EQ

I.Q-
0.9—
0.8—
0.7—

A. 1s elastic integrated cross sections

Our results for the integrated elastic scattering cross
sections are listed in Table II at nine energies. Numerical
results from a recent variational pseudostate calculation,
using an 11-state basis are presented for comparison. The
agreement is quite good, especially in the lower part of the
energy range. At higher energies, there are discrepancies
of the order of 4%. Elastic scattering amplitudes through
1.=5 are presented in Table III so that others interested
in optical-potential calculations will have specific num-
bers for comparison purposes. These amplitudes are prob-
ably not as accurate in a fundamental sense as those of
Ref. 9 (the latter also agree more satisfactorily for L=0
with the complex energy extrapolation of McDonald and
Nuttall). '

Our elastic cross sections are also shown in Fig. 1 in or-
der to facilitate comparison with the results of other
groups who have reported calculations using related
methods. Specifically, these include three-state close cou-
pling a two-channel calculation including the 1s state
and a single p pseudostate, an R-matrix calculation with
several pseudostates, ' and two previous optical-potential
calculations. ' In a qualitative sense, the agreement is
quite good. The three-state close-coupling cross sections
are roughly 15—20% lower than those obtained from
more sophisticated calculations. Calculations including
only a single polarization pseudostate make a significant

0.6—
0.5—

0.4—

0.2—

OI
I.O 5.0 5.0

k (a.u. )

FIG. 1. Integrated cross section for elastic scattering from
ground-state hydrogen {units ma0). Present results, solid line;
Ref. 9, dashed line. Other symbols are the following: open
squares, Ref. 19; solid circles, Ref. 20; open circles, Ref. 21;
open triangles, Ref. 1; solid triangles, Ref. 7.

increase. The present results are in rather good agreement
with the most recent R-matrix calculations of Fon et al. '
Some optical-potential calculations previously reported'
tend to yield larger cross sections. This is a fairly signifi-
cant effect (-20%%uo) near 20 eV in regard to the work of
Scott and Bransden. ' The agreement with the calculation
of BSSR is within 5% (ours are lower) at 54 and 100 eV.

Unfortunately, there are no experimental measurements
of the integrated elastic cross section of sufficient accura-

i

TABLE III. 1s elastic scattering amplitudes at five energies (R denotes seal part; I, imaginary part).

1S

S
1P

P
1D
3D
1F
F

jG
36
'a
H

R
0.370
0.164
0.028
0.371
0.094
0.109
0.048
0.044
0.023
0.023
0.013
0.013

1.10

I
0.431
0.963
0.050
0.204
0.075
0.020
0.011
0.011
0.002
0.003
0.001
0.001

R
0.344
0.266
0.047
0.359

. 0.061
0.125
0.054
0.052
0.030
0.029
0.017
0.017

1.44

I
0.384
0.902
0.074
0.198
0.094
0.031
0.026
0.01S
0.008
0.007
0.003
0.003

R
0.367
0.379
0.072
0.345
0.054
0.150
0.044
0.067
0.032
0.035
0.022
0.022

2.25

I
0.369
0.766
0.095
0.191
0.077
0.058
0.045
0.025
0.023
0.016
0.012
0.010

R
0.368
0.433
0.130
0.308
0.059
0.149
0.039
0.076
0.027
0.041
0.021
0.025

4.00

I
0.350
0.585
0.092
0.168
0.069
0.040
0.047
0.040
0.032
0.026
0.022
0.018

R
0.393
0.442
0.182
0.276
0.085
0.147
0.046
0.080
0.028
0.046
0.019
0.028

7.35

I
0.304
0.418
0.088
0.134
0.050
0.060
0.038
0.038
0.029
0.027
0.023
0.021
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cy to distinguish between these theories. Calculations us-
ing coupled-state expansions have tended to produce
larger cross sections as the basis set is improved. This
tendency is clearly apparent in Fig. 1. There may be
reason to believe that this process has converged to within
2%%uo or 3%%uo of the correct values below, say, 30 eV. If so,
the optical-potential study of Ref. 1 has definitely pro-
duced too large cross sections.

S. Elastic differential cross section

Rather high-quality experimental differential cross sec-
tions for elastic scattering are available. Figure 2 shows
the comparison between our results at k =0.91, 1.44, and
1.96 (corresponding to 12.4, 19.6, and 26.7 eV) and experi-
mental values reported in Ref. 13. (In the case k =0.91,
our results are compared with measurements at 12.0 eV
incident energy. ) We have not shown here differential
cross sections at higher energies (50 and 100 eV), because
we have not yet included enough partial waves to obtain
converged results at large angles. Numerical values for
these differential cross sections are given in Table IV. In
general, the agreement between theory and experiment is
quite good, and in fact is superior to that obtained in the
calculations reported in Ref. 13.

Angle
(deg)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

0.91

10.00
7.47
5.42
3.90
2.82
2.07
1.56
1.21
0.981
0.829
0.739
0.695
0.685
0.699
0.730
0.769
0.809
0.838
0.848

k2

1.44

9.74
6.67
4.30
2.73
1.76
1.19
0.845
0.626
0.482
0.388
0.328
0.288
0.262
0.245
0.236
0.230
0.225
0.221
0.219

1.96

9.53
6.06
3.56
2.06
1.23
0.786
0.538
0.385
0.284
0.218
0.178
0.153
0.135
0.122
0.111
0.105
0.101
0.100
0.100

TABLE IV. 1s elastic differential cross section (units
aosr '~

where

1+3r ' (5.1)

(5 2)

C. Spin asymmetry in elastic scattering

Fletcher et al. ' have reported values for the spin
asymmetry in elastic scattering at the (single) angle of 90'
at energies up to 30 eV. The specific quantity they con-
s&der cs

and f, and f, are the singlet and triplet scattering ampli-
tudes. They reported that a discrepancy existed between
their experiments and results of variational pseudostate
calculations. ' However, in their determination of the
value of A attributed to the pseudostate calculations, they
included only the partial waves of L =0 and 2 (odd L par-
tial waves do not contribute at a scattering angle of 90').
Our values for A include larger values of L as discussed
at the end of Sec. III.

Our results for A are presented in Fig. 3 where they are
compared with the experimental values. The discrepancy
reported in Ref. 14 has been removed. Numerical values
for A, and additional discussion of this quantity may be
found in Ref. 22.
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FIG. 2. 1s elastic differential cross sections (units aosr ').
Curves are labeled by the value of k . Experimental values are
from Ref. 13.

FIG. 3. Spin asymmetry parameter A for 1s elastic scatter-
ing. The experimental results are from Ref. 14.
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D. Excitation of n =2 states

Gur results for the integrated cross sections for excita-
tion of the 2s and 2p states are shown graphically in Figs.
4 and 5, where they are compared with the variational
pseudostate results of Ref. 9, and with three-state close-
coupling results. ' ' The present results in the case of
elastic scattering were in quite good agreement with those
of the most elaborate pseudostate calculations but this is
not the situation for excitation, where the disagreements
are quite significant, and exceed the estimated error
( —10%) of the results of Ref. 9. It will be observed, how-
ever, that the present results are much closer to those of
Ref. 9 than to those obtained from three-state close cou-
pling. The latter disagree with the variational results by
more than a factor of 2 near 20 eV for 2s excitation, and
by just under a factor of 2 for 2p excitation.

The optical-potential procedure, as we have implement-
ed it, is certainly approximate. Second-order exchange is
neglected, as are all terms in the optical potential of
higher than second order. Evidently the omitted terms
have little effect on elastic scattering but a significant ef-
fect on excitation. But there has certainly been a substan-
tial improvement over three-state close coupling.
Limited-basis-set close-coupling calculations represent the
"state of the art" for atoms and ions more complex than
hydrogen. Although results from an optical-potential cal-
culation cannot be expected to be exact, we believe that
the use of optical-potential methods would lead to im-
proved results for excitation for other systems.
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0.20-
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t

\
1
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1
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1
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i
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I
'I

I
I
I
I
l

t
i
\
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0. 10—

I

1.0
I

3,0 7.0

FIG. 4. Integrated cross section for 2s excitation: long-
dashed line, present results; solid line, variational pseudostate
calculation; short-dashed line, three-state close coupling.

E. Total cross section

or ——
2 g (2L +1)(2S+1)lm(fL„s) i

1

L,S
(5.3)

We can determine the total cross section from the imag-
inary part of the elastic scattering amplitude with the use
of the optical theorem

1.20—

I.oo—

I
i

I ~ I'

I

I
i
I

I
I
I
I
I
I
I
I

. I
i

where fL s is the scattering amplitude for total angular
momentum L and spin S. The factors (2L+1)(2S+1)
lead to relatively slow convergence of the sum at higher
energies where many partial waves contribute. The UBX
(unitarized Born with exchange) which has been used for
rapid but rough estimation of the higher-partial-wave
contributions of excitation is numerically unreliable in
this case because it neglects ionization. For this reason,
we give here our values for the total cross section only at
k =0.91, 1.10, and 144 where a reasonable degree of
convergence is attained. The maximum value of I. in-
cluded in (5.3) is listed in Table V. Results obtained simi-
larly from the variational calculation of Ref. 10 are in-
cluded for comparison. A very rough estimate based on
assuming that the rate of convergence of UBX calcula-
tions with I. may also apply in the present situation sug-
gest that the higher I. contribution is probably almost
negligible ( -0.01) at k =0.91 but may Pe as much as 5%
( -0.2) at k = 1.44. The agreement between the present
optical-model calculations and the previous variational re-
sults is quite reasonably good (within about 5%), suggest-
ing we are probably able to obtain reasonable values for

0.80—

CU p
A$

0.60-
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Cd
t

0.40—

0.20—
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1.0 3.0 5.0
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FIG. 5. Similar to Fig. 4 for 2p excitation.
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o.(OP)Lmax

0.91
1.10
1.44

6.48
5.86
4.85

6.41
5.56
4.74

or from the optical model. Our value for err near 20 eV
is roughly 25%%uo smaller than that obtained by Scott and
Bransden, ' which we believe to be an overestimate.

TABLE V. Total cross section (units mao) as obtained from
this calculation and from the variational pseudostate calculation
of Ref. 10: OP, present calculation; VAR, Ref. 9. L,„ is the
largest value of the total angular momentum included.

k o.( VAR)

electron-hydrogen scattering. In this context, our present
work can be viewed as six-state close-coupling with ex-
change, supplemented by an optical potential derived
from twelve additional states. Our results for elastic
scattering from the ground state appear to be quite accu-

'rate and resolve a discrepancy between theory and experi-
ment in regard to the spin asymmetry in elastic scattering
at 90'. The results for excitation do not appear to be as
accurate as those for elastic scattering, but do offer a sub-
stantial improvement over conventional close coupling.
Good values for the total cross section are obtained. %'e
contemplate future calculations involving scattering from
excited states of hydrogen and hydrogenic ions, and the
application of this method to more complex atoms and
lons.

VI. CONCLUSIONS

%'e have developed and tested a procedure by which a
pseudostate expansion is used to determine an optical-
potential matrix, which is then used in close-coupling cal-
culations of scattering. The present application concerns
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