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For the first time, a theory has been developed for the structure of the 2 P state of He which is
consistent with all experimental data. Using our effective Hamiltonian, containing both spin-
symmetric and -antisymmetric operators, we have obtained new values for several important hyper-
fine parameters. The three most accurate of these are the spin-symmetric constants C, D, and E
corresponding, respectively, to the contact, orbital, and tensor interactions. We find
C=4283. 84+0'Ol MHz, D= —28. 14S(21) MHz, and D/E= —3.9445(21). We have also obtained
improved values for other hyperfine parameters and for the orbital g factor. Our results are shown
to be in agreement with ab initio calculations after making some plausible corrections for isotope
and relativistic shifts. We believe that this state is now well understood at the level of 20 kHz in the
interaction constants.

I. INTRODUCTION

In this paper we describe a theory of the 2 I' structure
in He. We have adopted a phenomenological Hamiltoni-
an in which the fine-structure interactions are deduced
from the experimental data for He with theoretical
mass-dependent corrections and the hyperfine interactions
are expressed by an effective Hamiltonian with coupling
constants to be determined by experiment. The fine and
hyperfine mixing of 2'I' into 2 I' have been taken into ac-
count. This approach gives the first consistent interpreta-
tion of all the experimental results. ' In addition, the in-
teraction constants are in excellent agreement with
ab initio theoretical estimates.

This work has led to improved values both for the hy-
perfine parameters and for the electron orbital g factor. It
has also provided new tests of the mass-dependent interac-
tions in helium fine structure, the validity of the varia-
tional wave functions for helium, and in, particular the
calculated configuration mixing.

In Sec. II we describe the effective Hamiltonian used
for analysis of the experiments. Section III contains a.
comparison with ab initio calculations of the hyperfine
parameters. Numerical results are summarized in Sec. IV.

II. EFFECTIVE HAMILTONIAN
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which is known to within 20 kHz. The computation of
these intervals, based on the Breit interaction, has reached
a similar level of accuracy. The Breit Hamiltonian
Hs(ct } is of order a Ry and describes the motion of two
electrons in an external potential (A,P}. It may be writ-
ten

A. Fine structure

Our starting point is the fine structure in the 2 I' state
of He which has no hyperfine structure (see Fig. I}. This
state has been the subject of intense investigation, both ex-
perimental and theoretical, from the early years of quan-
tum mechanics to the present time. A brief historical re-
view has been given by Lewis. All the fine-structure in-
tervals have been measured to high accuracy, the most re-
cent measurement being that on the J=O—2 interval,

-2000—
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FIG. 1. Energy levels of the 2 P states of ~He and He. The
intervals are taken from Refs. 4 and 11. The intervals indicated
for 3He are a result of this work and are reliable to the accuracy
given.
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1
H~ ——H) +H2+ +B,

~i2

where

TABLE I. Effective fine-structure Hamiltonian for He in
the pure spin representation

~
(SL)J). The values of the pa-

rameters are 6=6.1431X10 MHz, Ep=31908.742(23) MHz„
E j =2296.898(9) MHZ E2 =Os E~= —17.037 MHZ.

and

H~ ——P; —P(r;)+a;.[p;+A(r;)] (i =1,2)

—1 (ai r12)(a2 r12)B= (ai a2)+
2p' )2 P' )2

2'P)
2 Po
2 Pi
2 P2

2'P, 2 Po

Eo

2'P, 2 P2

Here the standard notation for electron coordinates
(r;,r~ ), momentum (p; ), and Dirac operators (a;,P;) has
been used.

This Hamiltonian is an approximation to the exact
Bethe-Salpeter equation and is valid only as a first-order
operator. When the Breit Hamiltonian is used in second
order, to obtain accuracy at the level a Ry, a further
correction HD&(a ) must be evaluated in first order, as
discussed by Douglas and Kroll (DK). Furthermore, a
term Hz(a ) is required to account for the anomalous
magnetic moment of the electron. Of course, measure-
ments of the helium fine structure are made in the center
of mass frame and the transformation to that frame yields
additional terms in the effective Hamiltonian. These are
the mass polarization (MP) operator,

HMP(m/M) M Pi p2 (2)

and the nuclear motion (NM) operator, derived by Doug-
las, "

2 m st '(ri &&p~)
HNM(a~m/M) = —Za

M )2 y;.
(3)

where p~ is the momentum of the nucleus, and m, M are,
respectively, the electronic and nuclear masses. For a cal-
culation of the fine-structure intervals, only the spin-
dependent terms need be retained and the effective Hamil-
tonian may be formally written, following Lewis and
Serafino, as

H,fr= II~(a )~Hg(a )+HNM a
M

+Hg(a ))r,E~(Hg(a )

+HDK(a )+HB(a ) )hE~ (HMP M (4)

f((),1)= —0.841+0.010 MHz,

f(1,2) =2.984+0.024 MHz,
(5)

The second-order terms are summed over all intermediate
states with appropriate energy denominators. Using this
approach, Lewis and Serafino calculated the fine structure
intervals in He and obtained results consistent with ex-
periment but slightly less accurate.

For our purpose, only the mass-dependent terms are
relevant in Eq. (4); these are the nuclear motion HNM and
the second-order mass polarization involving H& and
HMp. The total theoretical mass-dependent contributions
f(J,J') to the He fine-structure intervals F(J,J') are

and the measured intervals are

F= F+(M4/M3 —1)f,
whence, using M4/M3 ——1.327 23,

F(0, 1)=29 616.569+0.021 MHz,

F(1,2) =2292. 173+0.009 MHz .

(7)

(8)

We define the eigenvalues of the fine-structure matrix

b, =6.143 1)&10 MHz (2'Pi),

Eo —31908.742(23) MHz (2 Po),

E, =2292. 173(9) MHz (2 P&),

E2 ——0 (2 P2),

(9)

A derivation of the 2 I'& energy, 6, is given in the Appen-
dix. The eigenstates 2 Pi and 2'P& noted in Eq. (9) are
not pure spin states and since it is useful to express this
effective Hamiltonian in the pure representation

~
S,L;J), we need to know the matrix element EM of the

Breit interaction between j0, 1;1) and
~
l, l;1). This has

been calculated by Araki et al. ' and more recently by
Drake' who gives the value E~———0.003 039o, Z atom-
ic units or —17037 MHz. Using Drake's value, we find
the effective Hamiltonian given in Table I which, when
diagonalized, reproduces the results given in Eq. (9).

B. Hyperfine structure

The structure of He(2 P) is shown in Fig. 1. For the
hyperfine interactions we take the phenomenological form

H„„=CI.S+O'I.K+DI L+2v 10EI ISC"'I'"
+2~10E I IKC"'I"', (10)

where I is the nuclear spin, S and L are the total spin and
orbital angular momenta, and K is the antisymmetric
spin operator si —sz. C' ' and C' ' are the exchange
symmetric and antisymmetric tensors C'I '+C2 ' where
C '=(4ir/5)'~~X; (e,g). The curly brackets indicate
the contractions of S with C' ' and K with C' ' to form

F(0, 1)=29616.844+0.021 MHz (Ref. 4),

F(1,2)=2291.196+0.005 MHz (Ref. 11) .

In the absence of hyperfine structure the He fine-
structure splittings F(J,J') are given by
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vectors. This is the most general form the single-particle
nonrelativistic hyperfine Hamiltonian can have. The
spin- —,

' He nucleus can only have a dipole interaction and
the overall electronic tensor operator must therefore have
rank 1. Angular momentum coupling theory permits only
the following combinations for the ranks kq, kl. for the
spin, orbital parts of the tensor:

ks=l~kl =0: I S and I K,
k = l, k =2: I.

I SC( 'I(" and I I
KC' 'I('),

ks=O, k~=1: I I. .

Hhr, is therefore an appropriate effective Hamiltonian
whose matrix elements can be evaluated using nonrela-
tivistic wave functions. Higher-order relativistic correc-
tions can be embodied in appropriate adjustments of the
coupling constants C, O', D, E, and E' as shown by San-
dars and Beck.'

The spin-antisymmetric terms characterized by C' and
E' have no matrix elements diagonal in S and therefore
make no first-order contribution to the 2 I' structure. The
second-order terms involving C' are large enough to be in-
cluded in the analysis of existing data but the E' terms are
negligible and we do not consider them further.

TABLE II. Effective Hamiltonian for the 2 P states of He including the relevant 2'P interactions. The values of the fine-
structure parameters 5, Eo, E~, and E~ are given in Table I. The hyperfine parameters C, O', D, and E are discussed in the text
and e is an abbreviation for E/5.
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We have found it most convenient to compute the ma-
trix of IIhts in the ~I,MI;S,Mz, L,MI. ) representation.
To this we have added the effective fine-structure Hamil-
tonian of Table I after transforming it to the same repre-
sentation. The result, given in Table II, is the Hamiltoni-
an used in our analysis of experimental data with C, C',
D, and E treated as fitting parameters.

III. THEORETICAL ESTIMATES
OF HYPERFINE PARAMETERS

A. Introduction

%'e take as our starting point the single-particle hyper-
fine Hamiltonian FIht„given to order (m/M)a Ry by
Bethe and Salpeter,

relativistic and radiative effects and for the nuclear mass
and volume, we consider the ground state of He+. There
the simple Schrodinger theory gives a hyperfine splitting
of 8661.260 MHz, while the interval measured by Fort-
son, Major, and Dehmelt' [8665.649 90(50) MHz] is
larger by 507 ppm. We use the argument, due originally
to Hambro, ' that the contact interaction in the 2 P state
of neutral helium is dominated by the same ls electron
and must be subject to essentially the same correction fac-
tor. Of course this correction can only possibly be valid
to the extent that C for He+ is the same as C for the 2 P
state of He, namely to about l%%uo. Thus our best theoreti-
cal estimate is

C= —4283.890(20) MHz .

Hht, ———2PO g
i =1,2

1+ 8 P—r3
3(s; r;)(p.r;)

r;

8m lI 'P
(s; )M )5(r;)—

3 r.

C. Estimate of C'

The sophisticated wave functions of Schiff et al. ' and
Accad et al. ' have not been used to calculate the in-
tegral (2'P

~
5(ri) j 2 P) and we therefore turn to the rela-

tively simple wave functions of Araki, Ohta, and Mano, '

who give

where pp is the Bohr magneton and p is the nuclear-
magnetic moment. The first term corresponds to the C
and C' terms of our phenomenological Hamiltonian [Eq.
(10)] while the second and third terms correspond to the
phenomenological D and E terms, respectively. These
operators will be used to estimate the hyperfine parame-
ters. The leading electrodynamic corrections are of rela-
tive order a, due to the anomalous magnetic moment of
the electron, and (Za) from a variety of relativistic ef-
fects. There are also corrections due to nuclear size and
structure, which are important in the contact terms, and
to the finite nuclear mass, which leads to the usual re-
duced mass and mass polarization corrections of order
m /M.

In estimating the hyperfine parameters below we will
neglect either (Za) terms or m/M terms, both of which
are approximately 200 ppm. The associated uncertainties
will be of order 900, 6, and 1 kHz in C, D, and E, respec-
tively. A phenomenological argument based on the
known hyperfine structure of He+ will be used to reduce
the uncertainty in the contact terms.

B. Estimate of C

The first term in Eq. (12) with the substitution
p= —grpoI yields

C= — globo(2 P
~
5(ri)+5(r2)

~

2 P), (13)
3

gipQ(2 P
~
5(ri ) 5(r2)

~

2 P ) ~ (14)
3

The radial integral (2 P
~
5(ri)

~

2 P) has been calculated
by Schiff, Lifson, Pekeris, and Rabinowitz' using varia-
tional methods to solve the nonrelativistic Schrodinger
equation with infinitely heavy nucleus. Their result was
confirmed by Accad, Pekeris, and Schiff' who give the
value 1.258 860 atomic units. Using %'illiams's value, '

gt ——[2.3174824(7)]X10, we arrive at a first estimate
C= —4281.723 MHz. In a crude attempt to account for

~

2P(O, ri)) =
' 1/2

[aoN(K, p)e
8m

~a2N(K, p2)e ' ']r2 I"
(16)

where

v 3N(K,p)=4+K p

and

( C )2 [(2'P(O, rz)
~
2 P(O, r2) ) ]

CCip (2 P(O, rz)
~

2'P(O, r2) ) (2 P(O, r2)
~

2 P(O, r2) )
(17)

%=1.991 186,

p =0.554 575,

p2 ——1.975000 for 2 P,
ap =0.990 273

a2 ——0.013 874,

IC =2.003 024,

9=0.482 363,

pq ——1.437000 for 2'P,

ap ——1.000 566,

a2 ———0.000407 .

These wave functions give C'/C=1. 004. In order to
investigate the accuracy of this result we calculated the di-
agonal integrals C and Cip (the same parameter in the
2'P state) using Eq. (16) and found that they were in
agreement with those quoted by Schiff et aI within 1%..
We also found it useful to consider the ratio
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According to the Schwartz inequality, this ratio is less
than or equal to unity and hence

CI

C
&+Cip/C =1.006, (18)

where C&p/C is taken from Schiff et al. Our conclusion
is therefore that

CI
& 004+o.~2 (19)

in which higher-order corrections are expected to be negli-
gible.

D. Estimate of D

To order (m /M)a Ry, the second term in Eq. (12) cor-
responds to the term DI.L in Eq. (10), with

(Il )z (4)zD= —2grpo 2 P +
~z

(g0)

D= —28. 128(8) MHz (300 ppm) . (21)

E. Estimate of E

To order (I /M)a Ry the last term in Eq. (12) corre-
sponds to the E and E' terms in Eq. (10). In particular,
the value of E is given by

evaluated for Ml ——+1. This integral has been calculated
by Schwartz using a 439-term variational solution to the
Schrodinger equation and his result, which was confirmed
by Hambro, gives D= —28. 1430 MHz. A transforma-
tion to the center-of-mass frame yields the simple two-
body reduced mass correction6 (1—3m/M) plus an addi-
tional mass polarization correction of relative order m /M
due to the electron correlation. The latter has not been
calculated and neither has the order (Za) correction.
Thus we estimate that

E=7.130(20) MHz, (23)

in which the uncertainty is associated with the extrapola-
tion of a series and not with the physical approximations
discussed in Sec. III A.

It is interesting to note that to lowest order, the config-
uration (s,p) in a purely central potential has D/E= —4,
whereas Eqs. (21) and (23) give

D!E= —3.945(11) . (24)

Only 10% of the deviation from —4 is due to the
anomalous moment of the electron. The rest is due to po-
larization of the ls and 2p orbitals by the noncentral part
of the electron-electron interaction.

IV. NUMERICAL RESULTS

Prior to this work there were three publications on the
measurement of the He(2 P) hyperfine structure. The
first was a preliminary report on level crossing data by
German, who was subsequently unable to find an internal-
ly consistent interpretation of the results. -The second
was by Johnson and Pichanick ' giving preliminary values
for the hyperfine parameters based on atomic-beam rnag-
netic resonance (ABMR) data. These parameters were in-
consistent with theory. Next, Freeman et al. reported
hyperfine parameters obtained from laser spectroscopic
measurements. These were much less accurate than ear-
lier results but were consistent with theory. However, the
energy levels were inconsistent with the parameters given
in the same article and with the intervals given in Ref. 2.

From the available data it should have been possible to

(Ci )0" (C2)()"E= ——2glpo 2P 3 + 3 2P
Tp

I

with ML ——+1, which has been calculated by Hambro'
using Schwartz's wave function. After correcting for the
two-body reduced mass with the factor (1—3m/M) and
for the anomalous magnetic moment of the electron with
the factor (1+a/2m ), he finds

TABLE III. Summary of data on the 2'P states of 'He.

Experiment
Parameter

C
C'/C
D
D/E
gs
gz,

ABMR

—4283.84+ o.02 NIHz~

—28.060(60) MHz'
—3.950(10)'

2.002 243 2(22)b
0.999 825 0{90)"

Level crossing

1.010(16)'
—28.145(21)'
—3.944 5(21)'

0.999 828 6(20)'
0.999 826 5(30)

Theory

—4283.89{2) MHz'
004+0.002 f

—28.128{8) MHz
—3.945(11)~

2.002 239 9"

0.999 833 0(4)"

'Reference 1.
Reference 11.

'Reference 2.
dReference 23.
'Equation (15) and Ref. 19.
Equations (19) and (21).

~Equation (24) and Ref. 19.
"Reference 24, where gL, has been mass corrected for He.
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obtain values of the hyperfine parameters accurate to or-
der 10 kHz, and yet there were discrepancies of order 1

MHz. As a result of this work we know now that the
main difficulty lay in the treatment of the fine-structure
interactions including the 'P, - P, off-diagonal interac-
tion. Also, German did not have the correct value for the
orbital g factor of the 2 P state.

Recently we published accurate values for C, D, and E
based on the earlier measurements of Johnson and Pichan-
ick combined with new data. ' The analysis we have
described here was used to deduce those parameters from
the data and to resolve the apparent disagreement with
theory. Since then we have analyzed the level crossing
data. We find that the Am =2 level crossing results are
internally consistent and our analysis has yielded new in-
formation on the Zeeman g factors as well as the hyper-
fine parameters. We have also calculated the energy levels
in zero field and the results are shown in Fig. 1.

The overall consistency between different experiments
provides confirmation that our phenomenological Hamil-
tonian is correct at the 20 kHz level and that we now have
reliable values for the hyperfine parameters. It is there-
fore interesting to compare them with ab initio estimates.

A convenient set of hyperfine parameters for compar-
ison with theory is C, C'/C, D, and D/E. In the Yale
atomic-beam magnetic resonance (ABMR) experiments'
on He, four transitions were observed giving enough de-
grees of freedom for independent determinations of C, D,
and D/E. The results of that fit are given in Table III
under "ABMR." The two g factors shown in the same
column are the results of an earlier Yale ABMR experi-
ment" on He. An isotope correction has been made to
gL and is negligible for g&. In the level crossing experi-
ments of German and Sands, 13 Am =2 level crossings
were measured, providing enough degrees of freedom for
independent determination of all six parameters. We have
made such a fit and find values for the parameters that
are all consistent with the ABMR results but with rela-
tively large error bars. The best results are obtained by
taking the values of C and gs from the ABMR data and
using the level crossing data to determine C'/C, D, D/E,
and gI. These results are shown in Table III under
"level-crossing" and all four are more accurate than any
previously published numbers. We also show the best pre-
vious value for gI, obtained by Lhuillier et al. from lev-
el crossing measurements on He and mass corrected for
He.

This analysis has shown that the experiments are con-
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APPENDIX: 2 P ]-2 P2 SPLITTING
IN He

Recent spectroscopic information on He has been sum-
marized by Martin. He quotes experimental values for
the ionization energies

r(2'P, ) =27 175.775 cm

I(2 Pi )=29 223.829 cm

and theoretical values for the specific mass shifts

e (2'Pi)=1.385 cm

e~(2 Pi)= —1.943 cm

(Al)

(A2)

On the basis of these values we separate out the normal
and specific mass shifts; thus,

I(2 P i ) =27 180.886—3.726—l.385 cm

I(2 P, ) =29 225. 892—4.007+1.943 cm
(A3)

using the electron- to alpha-particle mass ratio
m, /Ma = 1.3709337)& 10

After scaling both mass shifts by M4/M3, we obtain
the value 2049.050 cm ' for the 2'P~-2 P& interval in
He. This result is then added to the 2 P~-2 P2 interval
F(1,2) given in Eq; (8) to yield a value b. for the

2 P]-2 P2 splitting in He.

6=6.1431X10' MHz . (A4)

sistent internally and with each other. In addition, we
find agreement with theory at a high level of accuracy
which tests many subtle aspects of the wave functions in-
cluding the core polarization, the mass dependence, and a
variety of radial integrals. One of the more remarkable
conclusions is that the large relativistic correction of C,
based on the model of a weakly perturbed hydrogenic ls
electron, appears to be valid to l%%uo. We conclude that the
many confusing aspects of this subject have been resolved
and that at the level of accuracy indicated, the 2 P hyper-
fine interactions are now well understood.
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