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Quantum-mechanical sum rules and gauge invariance: A study of the HF molecule
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The perturbed Hamiltonian for magnetic dipole transitions is rewritten in terms of the torque
operator, instead of the angular momentum operator, which, owing to its nondifferential form, per-
mits tactical advantages in actual calculations of magnetic susceptibility. The translational gauge
invariance of the magnetic properties is used to obtain a large series of sum rules involving linear
and angular momenta and torque, force, and position operators. These are found to be very general
quantum-mechanical relations, restating in a synthetic and unitary form the Thomas-Reiche-Kuhn
sum rule, the basic operator commutation properties, the hypervirial theorem, and the conservation
of the current-density-vector, which are reduced to the same theoretical framework. Accurate calcu-
lations of the magnetic properties of the HF molecule, based on the equation-of-motion approach,
reveal that the gauge-invariant sum rules can be used for rigorous tests of the quality of approxi-
mate molecular wave functions.

I. INTRODUCTION

The quality of approximate electronic wave functions
for atoms and molecules can be assessed a priori, by exam-
ining the degree up to which certain suan rules are ful-
filled. ' These sum rules are usually derived as very gen-
eral quantum-mechanical relations, holding for exact
wave functions. It has been recently established, however,
that also approximate methods, namely the random-phase
approximation (RPA), which is the same as the time-
dependent Hartree-Fock (TDHF), or coupled Hartree-
Fock ' " (CHF) scheme, satisfy the Thomas-Reiche-
Kuhn (TRK) sum rule' and the Arrighini-Maestro-
Moccia (AMM) gauge-invariant constraints exactly, pro-
vided that complete sets of expansion are retained in actu-
al calculations. '

Accordingly, it has been found that the quantum-
mechanical constraints' are virtually obeyed (up to 99%)
in extended calculations, allowing for large basis sets of
contracted Gaussian-type orbitals (CGTO). Precise CHF
and RPA estimates of the TRK and AMM sum rules are
usually accompanied by accurate theoretical determina-
tion of second-order properties (magnetizability and nu-
clear magnetic shielding in particular "' ') which are in
close agreement with corresponding experimental data.
Therefore, it can be reasonably stated that the proper use
of a large set of sum rules can give essential indications, in
order to establish the reliability of approximate calcula-
tions of second-order properties, especially when experi-
mental data are not available for corn.parison.

The present paper sets out to obtain a series of transla-
tional gauge-invariant constraints for the magnetizability
and the nuclear magnetic shielding. A new form of the
perturbed Hamiltonian for the magnetic dipole radiation
is given in Sec. II, introdu'cing the torque operator. The
relative torque formalism is used in Sec. III to obtain the
equations for the magnetic susceptibility and the nuclear
magnetic shielding. Gauge transformations are examined
in Sec. IV. Conditions for gauge invariance and their

physical meaning are discussed in Sec. V. Section VI is
dedicated to a computational test for the hydrogen
fluoride molecule.

II. THE TORQUE FGRMAI. ISM
FOR MAGNETIC DIPOLE TRANSITIONS

The Hamiltonian for one particle of mass I and charge
g 1S

p ——A +V+qP .
1

2' C

%'ithin the Coulomb gauge

V A=0=(b .

The vector potential is expanded in MacLaurin series

A(r, t) = A(O, t)+ [(r.V) A],+
where V operates only on A and the result is to be
evaluated at the origin. From a straightforward manipu-
lation we work out the first-order Hamiltonian

M = —(q/2mc)BO l,
Bo——(Vx A)0,

/=r~p .

The form (4) is usually assumed in the general treatment
of magnetic dipole transitions. " However, in practical
applications, some difficulties can be found in handling
Hamiltonian (4), because of the differential form of the
angular momentum operator 1.

We derive hereafter an alternative Hamiltonian contain-
ing the torque operator, which is merely multiplicative in
the coordinate representation. Its matrix elements are
easy to evaluate when Slater-type orbitals (STO's) or
CGTO's are retained.

The total Hamiltonian is defined, through first order in
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a function G, to within a total time derivative, provided
that r, p, and A p are not changed. Within quantum
mechanics this follows by making the unitary transforma-
tion

A ~A '=exp[(i/A)G]A exp[ —(i/fi)G] — G
Bt

(15) amounts to performing an infinitesimal canonical
transformation of the Hamiltonian. ' ' Owing to (14) the
matrix elements of (15) are related to those of the total
electronic angular momentum about rp,

and expanding through first order in G. Classically we
can argue that one is always free to change the Lagrang-
ian I.~1.+dG/dt, and through first order in G this im-
plies A '=A dG—/dt, where

L(ro) = g 1;(ro) 1;(ro)=(r.—ro) Xp;

by the equation

(17)

dG i=—[A p, G]+ BG
(7) (a

~
K„~ b) = (E,—E—q)(a

~

L
~
b),

fi
(18)

where, in our case,

1
Ap —— P +P'.

2m

The form of G is properly chosen, so that

(8)

where E„Eb are the energies of the stationary states
4, 'kb.

III. MAGNETIC PROPERTIES
WITHIN THE TORQUE FORMALISM

Introducing the Hertz vector' Z=Z(r, t), so defined that

&= —(1/c) (V XZ),a
Bt

and choosing, in the Coulomb gauge (2),

(10)
In the presence of a spatially uniform, static magnetic

field B and an intrinsic magnetic dipole moment pl on
nucleus I, the operators entering the total electronic
Born-Oppenheimer Hamiltonian are

(19)

, (V XZ), .1,
2mc

we obtain the new Hamiltonian

(12)

A ' =pih' 8
(21)

(22)

(VXZ)p k,
2@1c

(13) where the reduced operators on the right-hand side are de-
fined as

where k is the torque on the particle with respect to the
origin of coordinates

k= =—[A p 1],dI i (14)
dt A'

h (ro) =(e/Zmc)L(rp), (23)

h (ro)=(1/8mc ) g I [m;(ro)] I —m;(rp)m;(ro) I,

These equations are immediately generalized to the case of
a closed-shell molecule with n electrons and X nuclei,
with coordinates r; and RI and charges —e and Zie,
respectively, in the form

(15a)

h = —Bt ——(e/mc)Mt,

(24)

(25)

h(vxz)o e

2mc

where

I=li =1

(15b)

(r Rt ) X (Rt —ro)—

n

h ' (rp)= —(1/2mc ) g [m;(ro)'EtI —mt(ro)Etl .

(26)

The electric field on nucleus I, due to electron i, is in
operator form

(27)

(16) and

is the torque about the origin rp, exerted by the nuclei on
the electrons, in the absence of magnetic perturbations.

We point out that the procedure we adopted tg obtain

m;(rp) = —e (r; —ro) (28)

is the dipole moment operator for electron i with respect
to the origin. The diamagnetic susceptibility is defined
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2 n

X (ro)= —2(0))P (ro)
I
0) = —

o
0 g [(r;—ro) I —(r; —ro)(r; —ro)] 0)4%le

(29)

X'(ro) = —2+' &0
I
h'(ro)

I j&(j I
h'(r, )

I
0&(E,—E, )-'=

J

(L,L),=2+'(0IL(ro) IJ&(J IZ.(r, ) Io&(E,. E,)-'.

and the paramagnetic susceptibility within the angular momentum L,L formalism is

e
q ~ (L,L)

4m 2c
(30)

(31)

The diamagnetic shielding tensor of nucleus I is

2 7f
r

(ro)=(0)h"' (ro) )D)= D g (r; —ro) ', I —(r; —ro), 0)2mc; i lr RI I—

and the paramagnetic shielding tensor in the L formalism
1S

M (rp) =2 +' (0
I
h '

I j&(j I
h

I
0&(E EJ)—

o (rp)= —(e /2m c )(MI, K)

(M, ,K),= —»~g-(0IM, IJ &&J IK„(;)lo&

(40)

2

~ ~ (MI, L)2' c
(33)

X(E,—Ep)

(MI L) i=2+ (0I MI
I j&(j I

L(ro) Io&(EJ —Ep)-' .

8'(Pl)B)=PI O B . (35)

Allowing for Eq. (18) the paramagnetic susceptibility can
be given alternative forms.

(i) The mixed torque —angular-momentum K,L formal-
ism is

g~(rp)=(e /4m c )(K,L) z
——(e /4m c )(L,K) z,

(36)

(K,L),=2ix g'(E, —E,)-'(0
I
K"„(r.)

I J &

(34)
')

A set of real orthonormal states.
I j & is assumed

throughout this paper and the convention for the cr tensor
indices is such that the interaction energy is written

A'; ~A;"=A(r; —r"), f(r;)=(1 A,'),
A)"= A,' +V;(d. AI ),

(43)

(44)

the molecular reduced Hamiltonians defined via Eqs.
(15b), (22), (23), and (25) transform

ha(r")=ha(rr)+ha&& hdxa= —(e/2mc)dxp, (45)
2

hBa(r") = h (r') — [21.R(r')1 —1R(r') —R(r')d]
Smc

IV. GAUGE TRANSFORMATIONS

The vector potential in Eq. (1) is defined to within the
gradient of an arbitrary scalar function' Vf(r). Consider
a change of origin

(42)

If the vector potential on the ith electron undergoes the
gauge transformation

X (j I
L(rp)

I
0&,

(L K)—2= —2i&g' «, —Eo) '«
I
L(ro)

I j &

J

X (J I
K~(rp)

I
0 & .

(37a)

(37b)

2
n (d I —dd),

8mc

h"' (r")=h"' (r') —
~ (1 Eil —dEI),

2&le

hvxz(r")=hv~ (r')+(e/2mc )F„X1,

(46)

(47)

(48)

(ii) The full torque K,K formalism is
where the electronic contribution to the dipole moment is

X~(rp)=(e /4m c )(K,K)

(K,K) 3 ——2' g'(E~ —Ep) (0
I
K„(rp)

I j &

X&j IK„"(rp) I0& .

(38)

(39)

—e R(rp) =$ m;(rp) = —e $ (r; —rp) .

The total canonical momentum of electrons is

dR
m =p=gp; .

(49)

(50)

The X paramagnetic shielding is The operator for the electric field exerted by the electrons
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on nucleus I is [see Eq. (27)]

EI= g E'I (51)

and the operator expressing the force of the nuclei on the
electrons is

=Fn= e g QZI Ir~ —RI
I

(r; —RI) .
I=]i=I

(52)

Owing to (45) and (47), in a translation of gauge origin,
the magnetic susceptibilities (29), (30), (36), and (38)
transform to

X (r")=X" (r')+

X~ (r")=X~ (r')—

X~ (r")=X~ (r')—

2

z (2(Rp)dp+2(Ry )dy ndp—ndy—),
4mc

2

4 2 2 [2(Py L~) )dp 2(L~ Pp) (dy (Py Py) (dp (Pp Pp) )dy] for L L

2

I f(Py, K ) g+(Fy, L ) g]dp [(L,—Fp) p+(K, Pp) pjdy
4m c

(Fp, pp—) zd (F,P—) zdpI for K,L

(53)

(54)

(55)

X~~~(r")=X~~~(r')—

X p(r")=X p(r')—

X~p(r" ) =X~p(r')+

X~p(r" ) =X~p(r')+

X~p(r") =X~p(r')+

4m c
[2(Fy,K ) 3dp 2(K Fp) 3dy (Fy Fy) 3d p (Fp Fp) —3dy]

2

, ((R )dp+ (Rp)d nd d p), —
4mc

2

[(L,p ) &d (P,Lp) &dp—(P,P ) &d —dp] for L,L
4m c

2

[(K,p ) zd (F',Lp) zdp —(Fy, Py) zd d—p] for K,L
4m c

2

[(K,F ) 3d (F,Kp) —3dp (F,F ) 3—d dp] for K,K .
4m c

(56)

(57)

(58)

(59)

(60)

2

o (r")=o (r')+
~ [ (MI, Py ) gdp

2m c

(61)

(MI~,Pp), dy —] for L,

The nuclear magnetic shielding transforms to

', («,",&d, +«,",&d, ),
2mc

e
a p(r")=o p(r') — (MI~, Fy) zd for K .

2m c

In (53) the quantities (P,L ) =(L,P) and (P,P) are defined
analogously to (31), the quantities (K,P) =(P,K),
(F,P)=(P,F), and (F,L)=(L,F) are defined analogously
to (37), and (F,F) is defined analogously to (39). The ten-
sor (MI,P) is defined analogously to (34).

Exploiting the definition of time derivative for a vector
operator T, which does not contain the time explicitly,

2

o ~(r")=o~~(r') + [ (MI,Fy ) ~d p2m c

(62) 6 T=T=—[A O, T]
dt

we can also introduce the tensors

(67)

(MI~,Fp) qdy ] —for K,

(63)

(P,R)0——(Zim/A') g' (0
I
P Ig ) (J I

R
I
0),

J

R,P)0———(2i~/A) g' &0I R
I 1 & &j I

P
I
0&,

(68)

(69)

o"p(r")=o p(r')+
~ (EI"p)d

2mc
2

a p(r")=a p(r') (M—I,Py) &d for L,
2m c

(64)

(65)

and the tensors (L,R)0——(R,L)0 and (MI, R)0——(R,MI)0
are similarly defined. Other tensors are similarly defined,
for instance,

(R R)i=(2~/&') 2' &o
I
R

I j&&j I
R

I 0&«i —Eo) .
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V. SUM RULES FOR GAUGE INVARIANCE

Owing to gauge invariance

g = ——gd'Ak= — dXB R(r')
k 2C

(74)

X(r")=X (r")+X~(r")=X(r') =X (r')+X~(r') . (70)
so that, to first order in B,

From Eqs. (53)—(60) and (67)—(69) we obtain sum rules
for the translational invariance of the magnetizability:

%~%'exp —g =%o+B 4' — dXB R(r')4o+l l8

2'
m(Rp&(l —Bay)=(Py, L ) i

—— (P,—Ly)

(K—y, P ) 2 (K——,Py)

(Ky,F—a ) 3 ——(Ka,Fy )

=(Fy,L.),= -(F.,Ly),
=(Ry&La)o= (Ly&Ra)o

= —(Ky, R ) i ——(K,Ry)

mn5 p (P,Pp——) i=(P,Fp) 2=(F,Fp)

(71)

i eA ~exp —g A exp ——g =4 + 6XB.P+ ' ' '
2mc

One can compare (75) with the perturbation expansion

(76)

V=fo+B 4 +dXB.%' + +P '~I (75')

written so as to match the perturbed Hamiltonians (23),
(25), and (45). From perturbation theory'

=(R,Pp)o (R,Fp——) i ——(R,Rp)+i .

(72)
[
e"&= —(e/2mc) g'

I j&(j IL(r')
I 0&«J —&o) '

From Eqs. (61)—(67) and an equation analogous to (70) we
obtain the sum rules for the translational invariance of the
magnetic shielding:

(E" &(1—5 )=(M,P ),= (M,P )—
e

(e/m—c)g'
) j&(j ] Mi ] 0&(EJ—Eo)

(77)

(78)

(Mia Fy ) 2 (Miy Fa )
I

+'"'&=—(e/2mc) g'
1 j&(a IP10&«J —&o) '

=(My, Ry)o —(M iRy——)o . (73)
R(r')0'o, (79)

It is immediately recognized that the gauge-invariant con-
straints (72) are the TRK sum rule written in length, velo-
city, acceleration, and mixed formalisms. '~' In addition,
by straightforward manipulation,

(P,Rp) +(R,P ) = (Oi [P,Rp] io&=2 5a

(72')

i.e., the same equations are a restatement of the basic
commutation rule between P and R. Analogously

where the last identity holds because of (75) and (76). One
can introduce these quantities into the definition of the
tensors (, ) so that, for instance,

(P,L) i
——(0)P

)
4 &=(0[L(r')

)
e " &, (8O)

4mc

(M,P),= (0 (
M

~

%'~"a
& = (0

~

P
~

W'
& . (8 l)

2plC

Both the probability density '

P(r;s)=n J de . . dr„%'(r, rz, . . . , r„)%'(s rg . . . 1' ),
(L,Py) i+(Py, L ) i (2im/A')(0( ——[L,Ry] ~0&

=2m(0 ~Rp ~0&(1—5 „), (71')

(Mi,P„) +i(P,M )ii ——(2im/iyi)(0
~
[Mi,R ] ~

0&

(0 is,"p
i
0&(i —s.„) .

(23')

P(r;r) —=P(r)

and the n-electron current density ' '

J= —(e /m )Re jn [P(r;s) ]],
r —ae =p+(e/2c)B X (r—ro)+(e/c)pr X

fr —R~ /3

(82a)

(83a)

(83b)

Equations (71)—(73) are very general quantum-mechanical
relationships, synthesize various aspects, and possess a
deep physical meaning. In the following we prove that
they embody the conservation theorem for the current
density. ' ' To this end consider the gauge translation
[(42) and (43)] as inducing an infinitesimal canonical
transformation. The generating function is Jz ——(e /2mc)roXBPo(r),

&0XB
(85)

can be expanded perturbatively according to (75'). We can
isolate diamagnetic and paramagnetic terms of the current
densities induced by the magnetic field and the nuclear di-
pole moment,

Jg = —(e /2mc)B XrPo(r), (84)
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STA

0.828 86
0.941 34
0.486 40
1.183 58

TDA

0.867 13
0.961 30
0.142 01
0.423 41

RPA

0.962 57
0.956 05
0.903 17
0.898 24
0.975 23

(I'„,Mpy)
(F„,MFy)

0.511 53
—19.537 4

1.996 85
—21.353 1

0.233 73
—0.609 91

0.325 20

TABLE I. Sum rules. Values are in atomic units; gauge ori-

gin is the fluorine nucleus. Coordinates: F (0,0,0); H
{0,0,1.7328), also in a.u.

STA
TDA
RPA

L,L

7.829
9.209
9.170

6.542
8.834
9.043

6.035
8.617
8.935

TABLE II. Perpendicular components of the paramagnetic
susceptibility in a.u. ppm, per molecule, gauge on fluorine. The
conversion factor to usual cgs emu ppm is 8.923 94)& 10 crn'
per mole. The speed of light in a.u. is 137.036. The theoretical
diamagnetic susceptibilities are gi ———127.499, gi i

= —112.441,
g,„=—122.480. The average susceptibility is —116.366.
Reference 23 reports —115.4+1, —116.

(P„,M„y),
(F„,MHy)
&&H, )

—2.596 00
—2.383 60

—2.611 30
—1.770 27

—2.902 01
—2.828 56
—3.014 24 =(e /m c) pl (MI,P),— @~X(E~) =0 (73")

C
I

r—RI
Jd = —(e /mc)pl X , ~o«»

ir —RIi~

J~= (e/—m)n Re f I 2+o(s, rz, . . . , r„)

Xp[B.%' (r, r2, . . . , r„)]

Xdrp
' ' ' drn Is=r i

Jp —— (e/m)n R—e f I 2+o(s, r2, . . . , r, )

(86)
In addition we note that

(90)

is a restatement of the hypervirial theorem for the opera-
tor R in the form of a momentum theorem. ' Equations
(71)—(73) establish the well-known connection between
gauge invariance and current conservation. ' ' Finally,
we note that the mixed length-acceleration TRK sum rule
(72) can be written

Xp[roXB 4' " (r, r2, . . . , r„)]
(R,F) i

——Q ZIy (0) )

Xdr2 ' ' ' drn Is=r ~ (88) (72"')

J '= —(e/m)n Re f I 2+o(s, r2, . . . , r„)

(89)

Then the integral condition for the conservation of the
current density' f drJ=0 can be written, to first order
in 8,

w Jg+Jp

=(e /2m c)[B (L,P) $
—mBX(R)]=0, (71")

f de(Jd +J
=(e /2m c)roXB [(P,P)

&

—mnI]=0, (72")

where (R) = (0
~

R(0)
i
0).

To first order in pl

y (0)=(2e/A'Zl ) g' (0
i E„ i j) (j i

R
i 0)m,—,',

J

where the definition of static electric shielding of nucleus
I, y (0), in the length gauge [see Eqs. (5) and (9) of Ref.
9(b)] has been used. This is an interesting connection be-
tween electric and magnetic properties in terms of a.
gauge-invariant condition.

VI. APPLICATION TO THE HF MOLECUI. E

The sum rules reported in Sec. V are rigorously valid
for exact wave functions. However, owing to the results
obtained by others in different contexts, they are also
vahd within the RPA-CHF methods ' ' (provided that a
complete set of expansion is adopted in the Hartree-Fock
space), which makes these computational approaches very
appealing. In actual calculations the sum rules (71)—(73)
can be used to examine the degree of completeness of the

TABLE III. Perpendicular components of the paramagnetic shielding in ppm.

STA
TDA
RPA

(2c~) '(MF, L)
—53.299

—101.419
—102.760

(2c') '(MF, &) 2

—63;929
—74.389
—99.211

(2c ) '(MH, L)

14.603
17.081
17.672

(2c ) '(MH, K)

13.103
16.772
17.535



32 QUANTUM-MECHANICAL SUM RULES AND GAUGE. . . 2613

TABLE IV. Nuclear magnetic shielding in HF molecule. Angular momentum formalism. The en-
tries within the parentheses specify the gauge origin. Experimental values from Refs. 20 and 22:
oav=29. 2+0'5& o'av=410+6' oav=28. 8+0.5 from Ref. 24.

F

o"(F)

482.469
481.808
482.249

o~(F)

—102.760
0.0

—68.507

o.(F)

379.709
481.808
413.742

467.465
481.808
472.246

—91.976
0.0

—61.317

375.489
481.808
410.929

H

av

1.629
44.064
15.774

17.672
0.0

11.781

19.301
44.064
27 555

140.697
44.064

108.486

—116.218
0.0

—77.489

24.479
44.064
31.007

basis set with respect to various operators and to test the
, quality of approximate molecular wave functions.

We report here an extended study on the magnetic
properties of the HF molecule, based on three different
approximations to the Rowe's equations of motion
(EOM), namely, the single-transition approximation
(STA), Tamm-Dancoff approximation (TDA), and RPA.
A detailed description of the computational scheme
adopted by us to solve the EOM equations, and informa-
tion concerning the large CGTO basis of expansion (also
retained in the present investigation) are available from a
previous paper. ' ' In particular the excellent overall
characteristics of our reference state for the HF molecule
(an accurate SCF wave function) can be evinced by near-
Hartree-Fock energy, polarizability, and nuclear electric
shieldings in close agreement with experiment. The TRK
sum rules obtained through the EOM calculations have
already been reported to assess the high quality of the
theoretical y in Eq. (72"'): in RPA this is fulfilled to
various degrees (from 96%%uo to 99%%uo).

' ' In the present
context this is a first indication of the, quality of the
theoretical magnetic susceptibility reported in Table II.

The quantities entering the sum rules (71) and (73) are
shown in Table I. As found previously, ' ' we can see that
the STA and TDA estimates are usually poor. Good re-
sults are obtained in the RPA calculations, with the no-
ticeable exception of the sum rule (73) for fluorine, as

(MF~,F„) 2 is 2 times larger than (EF, ) and of wrong
sign. As a matter of fact, properties and sum rules in-

volving any operator T are obeyed, provided that
~ j) and

~
Tj) are both included in a truncated basis set IjI.'

This sufficient condition is easily satisfied, adopting a
CGTO basis of expansion, in length and linear and angu-
lar momentum gauges. The operators M, F, and K are
more difficult to represent because of the obvious difficul-
ties to mimic their r dependence using CGTO's, i.e.,
functions whose algebraic part contains only positive
powers of r. Accordingly, the apparent failure observed
in Table I indicates the deficiencies of our wave function
in the environment of the heavy atom, evidenced by the
severe test (73) in the torque formalism. This conclusion

is also confirmed by the trend of sum rule (71), which
deteriorates when force and torque operators are con-
sidered: (K,F) 3 is, in fact, the less accurate one.

The theoretical paramagnetic susceptibilities are
displayed in Table II. Within the RPA the three different
formalisms give results that are in good agreement, which
is a further indication of the accuracy of the calculation,
and in excellent agreement with the best previous theoreti-
cal estimates. ' The total theoretical rnagnetizability is—116.4 ppm a.u. , matching with —116 quoted in Ref. 23.
The equation for the average theoretical susceptibility as
a function of the distance from the fluorine atom, i.e., the
origin of the gauge, is (all quantities in a.u. )

g,„(r)= —116.366+0.224 579z

—1.839523(x +y ) —2.098635z

This indicates a high degree of gauge invariance.
The theoretical paramagnetic shieldings are reported in

Table III. Both for fluorine and hydrogen the RPA re-
sults obtained in the E and I. formalisms are virtually
coincident with previous near-Hartree-Fock results. '

As in the case of the electric properties, ' ' STA and TDA
yield very poor paramagnetic properties (see Tables II and
III) and must be considered unreliable theoretical tools in
general. The theoretical magnetic shieldings within the I.
formalism are also reported in Table IV, corresponding to
H and F as gauge origins The tota.l values, obtained for
the different gauges, are very close in the case of fluorine,
whereas a larger gauge variation, 4 ppm, is found for the
hydrogen shielding. At any rate, a gratifying agreement
with the experimental data has been found.
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