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Some novel characteristics of atomic information entropies

Shridhar R. Cadre
Department of Chemistry, Uniuersity ofPoona, Pune 411007, India

and Department of Chemistry, University ofNorth Carolina at Chapel Hill, Chapel Hill, North Carolina 27514

Stephen B. Sears~
Molecular Spectroscopy Division, National Bureau of Standards, Washington, D.C.

Subhas J. Chakravorty and Rajeev D. Bendale
Department of Chemistry, Uniuersity ofPoona, Pune 411007, India
(Received 7 June 1984; revised manuscript received 11 April 1985)

Near —Hartree-Fock information entropies Se= —fp(r)lnp(r)dr and Sr ———f y(p)lny(p)dp,
where p(r) and y(p) are one-electron densities in coordinate and momentum space, respectively,
have been computed for atoms in their ground and excited states. The information entropies for the
harmonic oscillator and hydrogen atom as prototype systems are also discussed. The result of this
exercise is a numerical discovery that for the ground state, S~+S~ shows its minimum value. This
study for atoms in their ground states, using wave functions of single-zeta, double-zeta, and
near —Hartree-Fock quality, also unearths a startling feature that the entropy sum, S~+S~, in-

creases with an enhancement in the ground-state wave-function quality.

I. INTRODUCTION

Information-theoretical concepts have been used' in
the recent years for synthesis and analysis of electron den-
sities in momentum' ' and coordinate ' ' spaces. Sears
and Gadre' employed the technique of entropy extremi-
zation subject to the constraints of various &p") values
for constructing Compton profiles of atoms and mole-
cules. They found that the simultaneous knowledge of
two moments (e.g., &p ) and &p )) leads to Compton pro-
files fairly close to experimental or theoretical ones. Sears
et al. ' derived the information-theoretical justification
for the kinetic energy functional, T[p] in the density-
functional formalism. Maroulis et al. suggested the use
of information-theoretic concepts for evaluating basis-set
quality in terms of various expectation values and pro-
posed a new method for improving the quality of a wave
function. This approach, however, demands the exact ex-
pectation values for analysis. Simas et al. tested the
quality of various orbital basis sets for a specific case,
viz. , helium atom, employing the above formalism.

An interesting uncertainty-type rigorous inequality has
recently been derived by Biakynicki-Birula and Mycielski.
For wave functions normalized to unity

—&» I 4(r) I') —&»
I
y(p)'~ »n(1+»~), (1)

where P(r) and P(p) are wave functions in n dimensional
coordinate and momentum space, respectively. On simpli-
fication and substitution of n =3N, N being the number
of electrons, one obtains

San+Sr & 3N(1+Inn. )—2N lnN . (2)

Here, S& and S& are the Shannon information entropies
in the coordinate and momentum space, respectively,

and

S = — p r leap r dr

S& ——— y p lny p dp . (4)

has been derived by Biakynicki-Birula.
Gadre' recently computed S& and Sz for neutral

atoms within Thomas-Fermi (TF) theory. This result is
particularly interesting since TF theory is exact in the
high-Z limit. The sum of entropies for the TF theory
turns out to be

San+Sr —N(6. 65 lnN) . —

Motivated by the studies in Refs. 1—10, it was felt
worthwhile by the authors to embark upon a project to
systematically compute and analyze S~ and Sz for a wide
variety of systems including atoms and molecules. In Sec.
III, the ground and excited states of two exactly solvable

The densities p(r) and y(p) are normalized to N, the
number of electrons in the system under consideration.
The bound (2) stresses the reciprocity between the coordi-
nate and momentum spaces: A highly localized p(r) is as-
sociated with a diffuse y(p), leading to low Sz and high

S& and vice versa. As pointed out by Biakynicki-Birula
and Mycielski, the sum S&+S& cannot be decreased
beyond a limit as expressed by the inequality (2) above.
Recent years have witnessed a growing interest in the ap-
plication of information entropies to fundamental prob-
lems of quantum mechanics. A particularly interesting
bound, viz. ,

lb' Ap
S&+S&& 1 —ln2 —ln

32 2602 1985 The American Physical Society



32 SOME NOVEL CHARACTERISTICS OF ATOMIC INFORMATION ENTROPIES 2603

systems, viz. , the one-dimensional harmonic oscillator and
the hydrogen atom will be examined for the sake of orien-
tation. Orbital Sp Sp+Sy

TABLE II. Information entropies Sz and Sz for hydrogenic
orbitals. All values are in atomic units. (m =A'=e = 1).

II. INFORMATION ENTROPIES
FOR MODEL SYSTEMS

A. Harmonic oscillator

Uniform scaling of the coordinates of a particle in a
one-dimensional case gives rise to a scaled wave function

P (x)=k'~ P(Ax) .

1s
2$
3s
4s
2p

3p
3d

4.1447
8.1109

10.4265
12.0748
7.6968

(7.2649)
10.2378
9.8355

2.4218
—0.7576
—2.1883
—3.1457

0.4744
(0.042 41)

—1.4570
—0.7428

6.5665
7.3533
8.2383
8.9291
8.1712

(7.3073)
8.7808
9.0927

The entropies for the scaled wave function turn out to be

Sp ——Sp —ink

and

B. Hydrogen atom

The coordinate and momentum space wave functions
for the hydrogen atom are

P,(~(r) =&,i(r )~P(&,p)

and

P„i (p) =&„i(p)&P(&i„qi,)

The corresponding entropies are then given by

Sz ———f IR„i(r)
I

Inly„i(r)
I

r dr

—f I Yi I2»l &i

TABLE I. Information entropies S~ and Sz of the one-
dimensional harmonic oscillator for co=0.5. All values are in
atomic units. (m =A= 1).

-n=0
n=1
n=2
n=3
n=4
n=5

Sp

1.418
1.689
1.845
1.956
2.043
2.115

0.726
0.996
1.152
1.263
1.350
1.422

Sp+Sy

2.145
2.686
2.997
3.220
3.393
3.537

Sy ——Sy+lnA, .

Thus, it is sufficient to examine Sp and Sy for only one
value of co, the frequency of the harmonic oscillator. The
results of S~ and Sr for the first six states for co=0.5 are
presented in Table I. It may be noticed that the entropies
in both the spaces, and hence their sum, increase with n.
It may also be readily verified that the inequality (1) be-
comes an equality for n =0 as has earlier been pointed out
by Biakynick-Birula and Mycielski. The entropies may
be computed for any arbitrary value of co by employing (7)
and (8), and exhibit similar trends. The most interesting
observation is that Sp+Sy increases with n. Also note
that the uncertainty product M hp for a one-
dimensional harmonic oscillator, being (n+ —,), increases
with n.

'Parenthesized numbers are the information entropies for the pz
orbital employing the nonspherically averaged electron densities.

and

s, = —f I
&.i(p) I

'»
I
&.i(p) I

'p'dp

—f II'i I'»I &z I'«. (10)

III. NEAR —HARTREE-POCK
ATOMIC INFORMATION ENTROPIES

The highly accurate analytic near —Hartree-Fock
(NHF) wave functions reported by Clementi and Roetti"
were employed for computing the entropies. It was veri-
fied that the corrections to Sz and Sr values due to non-
sphericity of densities are rather small. Let us consider,
for example, the helium atom. The spherically averaged
densities [computed from a configuration interaction (CI)
wave function, due to Taylor and Parr from Ref. 12] yield
4.06836, 6.45513, and 10.52349 a.u. for Sp& Sy& and

Sp+Sy,' the nonspherical counterparts being 4.06835,
6.455 11, and 10.52346 a.u. It may also be noted that the
use of nonspherically averaged p(r) and y(p) renders the
entropy computations rather cumbersome. Thus the in-

Thus, the entropies from the spherically nonaveraged den-
sities are simply related to the entropies computed from
the corresponding spherically averaged ones. The entro-
pies for the hydrogen atom in the ground and a few excit-
ed states are displayed in Table II. Consider first the
coordinate-space information entropy S&. This entity is
minimum for the most compact distribution, viz. , the ls
orbital. The Sr value is maximum for this orbital, as may
be heuristically expected. However, as noted above, the
information-entropy sum San+Sr is indeed minimum for
the ground state. Consider now the orbitals Is, 2s, 3s,
and 4s. The Sp values enhance with the principal quan-
tum number n. The respective Sy values show a mono-
tonic decrease with n. Similar trends are seen for the case
of p orbitals. The nonspherically averaged Sz and S&
values for the 2p, orbital are shown in Table II for a com-
parison. These values are smaller by 0.4319 than their
spherically averaged counterparts. It may thus be noted
that the corrections to Sz and Sr due to nonsphericity of
p and y would be rather small for the many-electron
atoms. In Sec. III, we present and discuss our results on
information entropies for atoms helium through xenon
employing spherically averaged densities.
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TABLE III. Informational entropies S~ and S~ for the ground and excited states of some randomly
selected atoms' evaluated from NHF wave functions of Ref. 14. All values are in atomic units
(m =A'=e =1).

Atom

Carbon

State

3p
1D
's

Sp

7.8357
8.0846
8.4166

S
20.1886
20.0402
19.8099

Sp+Sy

28.0743
28.1248
28.2265

37.69
37.63
37.55

Phosphorous 4S
2D
2p

—5.2385
—5.0156
—4.8611

62.1095
61.9629
61.8645

56.8710
56.9473
57.0034

34.072
34.065
34.060

Titanium 3Q

ID
3p
16
's

—19.1919
—19.1035
—19.0892
—19.0516
—18.8070

95.3865
95.3414
95.3342
95 ~ 3159
95.2040

76.1946
76.2379
76.2450
76.2643
76.3970

848.41
848.36
848.35
848.33
848.23

formation entropies S& and Sz for all the atoms in their
ground and excited states (reported in Ref. 11) were com-
puted employing spherically averaged densities. These en-
tropies and their sum, S&+S& are reported in Table III
for a few randomly selected atoms.

Let us first investigate Sz and Sz for atoms in their
ground states shown pictorially in Fig. 1. The S& values
generally decrease with Z, though there are some notable
exceptions around fully filled shells, such as Ne and Ar
atoms. This physically means that p(r) for these atoms is
the most compact one when compared to the neighboring
atoms. The Sz values as well as the sum S&+S&, howev-
er, show a strictly monotonic increase with Z. The least-

-200

squares fits of these ground-state NHF values to the form
suggested in Ref. 10 along with the respective correlation
coefficients X are given by

Sp N(4. 171———1.715 lnN ), X= —0.988 (1 la)

Sr =X(2.086+0.7841nN), +=0.976,

leading to

San+Sr ——X(6.257 —0.933 lnN), +=0.993 .

(1 lb)

(1 lc)

The fit (1 lc) is in reasonably good agreement with its TF
counterpart (5), though the individual entropies, S and
S& values do not match with the respective TF ones that
well.

TABLE IV. Informational entropies Sp and Sy for atoms
and ions in some isoelectronic series. All values are in atomic
units (m =R=e =1).

-50— —150

Isoelectronic
series

Atom/Ion Sp+Sy

-100—

-150—

-200
0

j
/

/

/r

/

/

5 10 15 20 25 30 35 40 45 50 55
N

-50

FIG. 1. Plot of near —Hartree-Fock information entropies for
atoms with 2(N (54. , Sp,' ———,Sp+S~; ———,S.

Be('S)
Li
Be
B+
C2+
N3+
04+
F5+
Ne+
B 31+

32+

Ne{'S)
F
Ne
Na+
Mg +
Al'+
B 25+

r26+

15.8266
8.9511
5.0138
2.1267

—0.1757
—2.0959
—3.7460
—5.1933

—21.2986
—21.6470

3.9611
—2.4730
—7.4893

—11.6859
—15.3214
—52.3953
—53.3410

4.6326
11.2157
15.0808
17.9329
20.2143
22.1207
23.7610
25.2010
41.2683
41.6163

35.7618
41.3447
45.9201
49.8319
53.2619
89.2960
90.2291

20.4592
20.1668
20.0946
20.0596
20.0386
20.0248
20.0150
20.0077
19.9697
19.9693

39.7229
38.8717
38.4303
38.1460
37.9405
36.9007
36.8881
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Now consider the information entropies for atoms in
their excited states. Three such cases are presented in
Table III. It may be noted that Sz is the lowest for the
ground state of an atom, in accordance with the intuitive
notion that the ground state corresponds to the most com-
pact electron density. The S& values are reciprocally ex-
pected to be the largest for the ground state. These trends
are borne out fully by the present study. Thus, for all
atoms reported in Ref. 11, the sum S&+Sr is indeed a
minimum for the ground state. Furthermore, the order-
ing of states is exactly identical with respect to entropy
sum and electronic energy.

The TF expression for S&+S& suggests that the infor-
mation entropy sum is a function of N and hence the
dependence on the external potential may not be large. To
test this conjecture, we have computed S& and Sr for
some isoelectronic series. Some typical results are
displayed in Table IV. It may be noted that Sz values di-
minish with increasing Z and the S& values are enhanced.
Their sum, Sz+S&, is a rather slowly varying function of
Z.

Having examined the ground and excited state informa-
tion entropies, let us now study the effect of the ground-
state wave function quality on the entropies.

IV. INFORMATION-ENTROPY SUM
AS A MEASURE OF ATOMIC
WAVE-FUNCTION QUALITY

In exploring the use of the sum S&+S& as a measure of
wave-function quality, basis sets of single-zeta (SZ),
double-zeta (DZ), and near —Hartree-Fock (NHF) types
were employed. The entropies S& and Sz were computed
numerically ensuring the normalizations in r and p spaces
and (p ) value correct to at least five significant places.
The resulting values of the entropies and their sum, for
some atoms selected at random, are shown in Table V.
The trends exhibited by Sz, S&, and their sum are identi-
cal for all the basis sets employed: the Sz and San+Sr
values enhance, and S& values decrease, with increasing
Z. This is in qualitative agreement with the prototype
Thomas-Fermi results.

Now consider the effect of enhancement of basis-set
quality on information entropies. For any atom, the fol-
lowing three general trends may be noted. (i) The Sz
values increase on passing from SZ to NHF wave func-
tions. (ii) The corresponding Sr values decrease. (iii)

However, the sum S&+S& is a maximum for the NHF
wave function and minimum for SZ ones. There is,
indeed, not a single exception to the above observations.

The information-entropy sum has another attractive at-
tribute, viz. , invariance to scaling. Thus, generalizing the
scaling arguments in Sec. IIA, it can be readily proven
that for an N-electron system

Sp ——Sp —3N ink, (12)

and

Sr =Sr+3%ink, (13)

leading to the result that the entropy sum is inUariant to
scale transformations Thi.s result is indeed physically ap-
pealing, since the net information content San+Sr obtain-
able from a trial wave function is unaltered by uniform
stretching or compression of the atom. In conclusion, the
startling numerical discovery that the entropy sum strictly
enhances with the atomic wave-function quality coupled
with its invariance to scaling, justifies its use as a poten-
tial measure of wave-function quality.

V. CONCLUDING REMARKS

(i) Their overlap with the exact ground-state wave func-
tion (or, the lower bound to it as determined by the Eckart
criterion) is fairly large, say S=0.95.

(ii) The electron densities satisfy Kato s theorem, viz. ,
(dpldr )„0 —2Zp(0), reas——onably well.

(iii) The r space wave functions show a proper exponen-
tial "tail" and the p space wave functions die out asymp-
totically as -p

The first part of the present work (Secs. II and III)
dealt with the variation of entropies for a given system
with the state of excitation. These studies reveal that the
entropy sum S&+Sr is a minimum for the ground state
of the system under consideration. We have, as yet, found
not a single exception to this remarkable general observa-
tion. The rigorous proof of this result, however, does not
seem to be straightforward and needs further attention.
In the second part (Sec. IV), we advocated the use of the
scale-invariant net information content Sz+S& for assess-
ing the quality of atomic wave functions. The trial wave
functions analyzed here are of reasonably good quality.
By this, it is meant that

TABLE V. Shannon entropies S~, S~, and their sum S~+S~ for neutral atoms in their ground state, computed from Hartree-Fock
wave functions. '

Atom

B
N
Ne
K
Cu
Br
Ru
Xe

Sp

8.980
5.99

—2.473
—12.213
—52.316
—71.567

—103.587
—143.274

15.482
25.224
41.345
80.336

141.613
173.045
224.024
279.233

Sp+Sy

24.462
31.241
38.872
68.123
89.297

101.479
120.437
135.959

8.961
5.937

—2.622
—12.239
—53.052
—71.644

—103.814
—143.332

DZ'
s&

15.489
25.240
41.375
80.348

141.661
173.089
224.046
279.247

Sp+Sy

24.450
31.177
38.752
68.109
88.609

101.445
120,232
135.915

Sp

8.685
5.125

—4.669
—13.354
—58.261
—75.110

—104.999
—146.360

15.696
25.767
42.426
81.238

143.614
175.264
224.819
281.536

24.380
30.892
37.758
67.884
85.352

100.154
119.320
135.166

'All values in a.u. Near —Hartree-Fock (NHF), double-zeta (DZ), and single-zeta (SZ) wave functions taken from Ref. 10.
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For these "good" atomic wave functions, the entropy sum
indeed is a good measure of the wave-function quality.
We have, as yet found no rigorous proof of this fact.

The sum San+Sr is indeed an appealing measure of the
net information content of a bound quantal system. It
emphasizes the fundamental role played by the electron
densities in the density-functional formalism. It reflects
a delicate balance between the coordinate and momentum
spaces as may be seen from the bound by Bialynicki-
Birula and Mycielski. The sum S&+S& is also invariant
to scaling. Thus, the sum of the entropies in coordinate
and momentum spaces (rather than the individual entro-
pies Sz and Sr) qualifies to be a measure of information
content. This indeed has significant repercussions in the
maximum entropy principle when employed for synthesiz-
ing atomic electron densities. '

The enhancement of San+Sr with wave-function quali-
ty for "reasonably good" wave functions deserves further

studies. It would be worthwhile to study extremely good
correlated wave functions in this light. The variation of
the entropy sum during molecule formation is worth in-
vestigating. Thus, the information entropies seem to be a
hidden treasure, which, as yet remains mostly unexplored.
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