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Semiclassical atom
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Semiclassical quantization is incorporated into the average potential approach to atomic physics.
The stationary energy functional is shown to be the sum of the Thomas-Fermi functional and a
mainly oscillatory part. The latter turns out to be a small correction for sufficiently large atomic
numbers, allowing perturbative treatment. Further, a detailed study of semiclassical spectra, with

emphasis on energy degeneracy, is performed.

INTRODUCTION

In theoretical atomic physics two main approaches have
been pursued. One is the Hartree-Fock (HF) method and
its refinements; it can be viewed as a generalization of
Schrodinger s description of the hydrogen atom to many-
electron systems. It is, by construction, more reliable the
smaller the number of electrons. The other one is the sta-
tistical Thomas-Fermi (TF) treatment and its improve-
ments. This one uses the picture of an electronic atmo-
sphere surrounding the nucleus; it is better the larger the
number of electrons. Somewhere between the HF and TF
treatments is the semiclassical approach that we want to
study here. It borrows the idea of a common average po-
tential for all electrons from the TF method while using
the concept of angular and radial quantum numbers much
as the HF method does.

The present paper is devoted to developing the general
scheme of such a semiclassical theory. We demonstrate
that it contains the TF approximation as the limit of very
large quantum numbers. Then we study general proper-
ties of semiclassical spectra. Finally, a qualitative discus-
sion of oscillatory contributions, that supplement the TF
approximation, is presented. Subsequent papers will use
this information in addressing more detailed problems of
particular interest.

ENERGY FUNCTIONAL

gives rise to the total one-particle energy

E,p
——tr[Hg( H —g) ], —

where Heaviside's unit step function g selects those states
with eigenvalue H' less than —g. The count of those oc-
cupied states equals N, the -number of electrons,

N= tr[g( —H —g)] . (3)

The basic approximation replaces the complicated
many-particle problem by a one-particle treatment. The
electrons are regarded as moving independently in a corn-
mon local average potential V. The one-particle Hamilton
operator (atomic units: e =m =Pi= I )

H= —,p +V

E=E)—gN —f (dr) V
1 Z

8~ r

2

This energy functional is particularly advantageous be-
cause, for given Z and N, it is stationary under infini-
tesimal variations of both g and V,

gE= —N 6(+ f (dr) n+ V V+-az, Z
a 4m r

=0.

The latter equality is a consequence of Eq. (5) and
Poisson's equation

We combine Eqs. (2) and (3) into

E)„——tr[(H+g)ri( —H —g)] gN =E—, gN

and recognize the relation

a
Bg

E) ——tr[ri( —H —g)] =N .

Another differential statement expresses the fact that the
response of the one-particle energy to infinitesimal varia-
tions of the potential exhibits the particle density n:

&vEip=6vEi= f (dr)n5V. (6)

Since E~ of Eq. (4) contains g and V only as the sum
V+(, we conclude from Eqs. (5) and (6) that the total
number of electrons is equal to the integrated density

N= 1 (dr)n, (7)

as it should.
The one-particle energy E&~ counts the interaction ener-

gy of each electron pair twice. In order to obtain the total
energy of the system we must therefore subtract this in-
teraction energy once. If we disregard exchange, ' as we
shall do throughout this paper, this is simply accom-
plished by subtracting the electrostatic energy of the elec-
tron cloud, here written in terms of the integrated square
of the electric field:
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1 2 Z
V V+ —=n .

4m r
(10)

represents a very good approximation. Small quantum
numbers belong to the strongly bound electrons; for these
the potential is essentially Coulombic,

In the extreme semiclassical limit of very large quan-
tum numbers, the trace in E& [Eq. (4)] is evaluated as the
phase-space integral covering the classical domain (the
factor of 2 is the spin multiplicity),

E1-2
3

2S'+V+ ~ —2p' —V—
(2n. )

After carrying out the momentum integration, this repro-
duces the familiar TF expressions for E, and n [Eq. (6)]:

V- ——+ const+0(r ) as r~0,Z 2 (17)

and Eq. (14) supplies the exact answer.

For the sake of completeness, we report the semiclassi-
cal density associated with (15). First note that an infini-
tesimal change of the potential causes E( „ to be modified

according to

f dr 5V(p(, n, )

&EI „——
dr(p( „)

«()TF= f («) —,[—2(V+0)]'",
15%.2

(12)
Therefore, the contribution of any individual quantum
number pair (I,n„) to the density

(13)
n = g n(„g( E„(——g)

l, n

(19)

(1+—, )'

2r
nr+ 2

=— dr 2 EI „—V—1

r

=1—=—f drp(„(r) . (14)

The domain of radial integration covers the classically al-
lowed region, where the argument of the square root is
positive.

With E( „given implicitly by Eq. (14), E& is now [note

the 2(21+ 1)-fold spin and angular momentum multiplici-
ty]

The combination of Eqs. (10) and (13) is the TF differen-
tial equation for the potential V.

A significant improvement over the TF method, and to-
wards the HF method, is achieved by- evaluating E] as a
sum over discrete eigenvalues of the one-particle Hamil-
ton operator H. These eigenvalues EI „are labeled by the

angular quantum number I and the radial quantum num-
ber n„, both being integers 0, 1,2, . . . . We relate the
spherically symmetric potential V(r ) to these energy
values by means of the semiclassical quantization condi-
tion (usually derived from the WKB approximation)

1/2

is given by

2(21+1) dr
n( „(r)= p( „(r)

4mr' '""
p(, „(r') (20)

which accounts for 2(21+1) electrons,

f (d r )n( „=2(21+ 1), (21)

The sums over quantum numbers in (15) and (16),
which have their range defined implicitly by g and,
through (14), by V, are not well suited for further use.
We therefore rewrite (15), in a few steps. First, instead of
summing over l and n„we equivalently integrate over k
and v, given by

and the correct total number N [Eqs. (16) and (7)].
At the boundaries of the classically allowed regions, the

densities (20) display the typical WKB infinities associat-
ed with the vanishing of p( „(r). This deficiency can be
removed by introducing quantum corrections that provide
a smooth transition into the classically' forbidden re-
gions. More about this on another occasion.

FOURIER FORMULATION

E& ——2 g (21+1)(E(~ +0)g( E(,n„
l, n =0

and, as expected,

oo

=2 g (21+1)g( E( „—g), —
(.,=0

(15)

(16)

k—=l+ —,', v:—n, + —, ,

and introduce

&~,
—=Ei,n„

which is related to v and X by [Eq. (14)]

(22)

(23)

where the step function removes Ei „values larger than v= —f [2r (Eg„—V) —((, ]'
'lT

(24)

There is ample justification for using the semiclassical
quantization rule (14). For large quantum numbers it

Through the introduction of 5 functions to select the
discrete quantum numbers, Eq. (15) now reads

E, =4 f dA, A. g 5(!+—,
' —k) f dv g &(n„+—,

' —v)(rq, ,+g)r(( —E(„, —g) .
I= —~ n = —oor

(25)
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Then the twofold application of the Poisson identity where i(,, denotes the maximal A, , such that v, (X,) =0; it is
given by

g(i+ & g) g ( 1)ke2nikk,
E= —oo k= —oo

5(n„+ ,' -v—)= g ( —1)je""
(26)

A,,= max t [2r (E—V)]'i2j .

The v integration in (30) is immediate and produces

(31)

produces

J =—oo
Oo

N(g= —E)=4 y ( —1)'+J f 'dgge2
k,j=—oo

0

4 g ( 1)k+j dg g 2nikk
0

k,j=—oo

2mij v, (,A, )

X
e

27TlJ
(32)

dve2~'Jv
0 ISOLATING THE TF PART

X (Ek +g)rt( —Ek,—g) .

(27)

The count of electrons is similarly expressed by

The j=k =0 term in (30) [and (32)] gives the result of
integrating over A, and v, without reference to the 5 func-
tions that enforce the integral nature of A, ——,

' and v ——,'.
We therefore expect it to reproduce the TF version.
Indeed, it does, when v, (A, ) [Eq. (24)] is introduced,

aE,N=

( 1)k+j dg ge2vrikk
0

k,j=—~

6 2 dr E

4 f 'dA, A.v, (A, )=—f f 'd(A, )[2r (E—V) —X2]' 2
0 r

= f (dr) [2(E—V)]'i'1

3%2

y, dve' ""q(—ek,.—4)
0

=NrF(g= —E), (33)

(28)

We shall find it easier to concentrate on N rather than on
E» the relation

E, ( g ) = —f d g'N(g') (29)

oo

( —1)"+J
0k,j=—oo

will turn information about N into knowledge of E&.
So far we have been reading Eq. (24) [and likewise Eq.

(14) before] as implicitly defining Ek, for given A, and v.
However, another view is more useful. It understands v
as a function of A, and E, v=v, (A, ), which for each e(0
defines a "line of degeneracy" in a i(,-v diagram. The term
degeneracy is appropriate here because such lines connect
(A, , v) values belonging to the same energy E. If it should
happen that several (l, n„) pairs of (integer) quantum num-
bers refer to (A, , v)'s on the same line of degeneracy, then
there is more than one state with the corresponding ener-

gy; these states are degenerate. This is certainly possible
among the lines of degeneracy that are straight, but it can
also occur for bent ones.

The domain of integration in (28) consists of all A, , v
below the line of degeneracy v, (A, ) with E= —g. Thus

and the integration (29) yields (12). This observation im-
plies the decomposition of N [Eq. (32)] into NTF and a
supplement that represents quantum corrections,

N(g) =NTF(g)+Nq„(g), (34)

SEMICLASSICAL SPECTRA

We are going to use the word "spectrum" somewhat
loosely, for the entirety of the lines of degeneracy, since
knowledge of the latter is tantamount to knowing all

The distance r„at which the maximum of Eq. (31) is
located, obeys

d[r, V(r, )]
V(r, )+ (35)

thus

with Nq„equal to the right-hand side of Eq. (32) without
the j=k=0 term. Quite analogously, E& is split into the
TF expression plus a quantum correction. We shall see
that this correction is usually small compared to the TF
part, allowing its perturbative evaluation. But first we
have to study the semiclassical spectrum.

v (A, )

d ~ e 2''l Jv
0

(30)
A,,—=2r, [s—V(r, )]=r,

dr~

1 [r, V(r, )] . (36)
r~
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The immediate implication of the maximum property of
r~~

k~ =2r~
dc

(37)

shows that if we were given A,, for some range of s, we
could calculate r, and then employ the definition of k, in
(36) to find V(r) for r in the corresponding range of r,
(This can easily be demonstrated for the Coulomb poten-
tial for which A,,=Z/v' —2c.. )

For A, s close to A,„the domain of integration in (24) is a
small neighborhood of r, . There we can approximate the
argument of the square root by a quadratic polynomial in
r —r„

together with (38), to derive (42). Let us now employ (45)
to find Bv, /BA, for A, ~O. No, the answer is not zero, for
in this limit the integration reaches down to r =0 from
which neighborhood a finite contribution arises. We iso-
late that part of the integral by introducing an upper limit
r, independent of A, and so small that V—= —Z/r already
is a good approximation. At this stage we have

Bv,(A, ) 1 gr
BA, 2 0

m' & /~2z) r (2Zr —A, ) g 0

(46)

Now the substitution 2Zr =A, (1+x ) yields

2r2(s —V) —A, =A,,—k ——,~,(r —r, )

with

(38) Bv,(A. )
dx

0 1+x2 (47)

d2
co, = [2r (V—s)]

dl

=2 r,
dr dr~

1 [r, V(r, )] .
r~

(39)

Note the relations

4r, d(A, , )/dc,

dr, /ds d (k )/ds
(40)

v, (A, )=V2 (A,,—k) .
Q)~r~

This is exact in the limit A, ~A,„implying

av, (X)

(41)

(42)

again, knowledge of just A., is sufficient.
Upon inserting Eq. (38) into Eq. (24) we obtain, for

A, (k~,

This statement holds for all c., except E=O, where there
is the possibility of an additional contribution from the
upper limit of the integral. This is the situation if
V- —r™for r —+oo, with m &2. Potentials with I &2
are long-range potentials, of which the important example
is (Z —X)/—r In su. ch a long-range potential there is n'o

limit to the quantum numbers. Consequently, a finite line
of degeneracy does not exist for c.=O. On the other hand,
for m ~2, we have a short-range potential with a limit to
the possible quantum numbers.

Again we isolate this upper part of the integral, now by
a A,-independent lower limit r (V= clr™,m &2—):

(2c /A 2]1/(m —2) 1
dr

(2Cr 2 —m g2) I /2
X~O

1 2 ~ 1
dx (48)

o

where the substitution 2cr =A, (1+x ) has been made.
Thus, for potentials with V(rico)- —1/r, m ~2 we
have

Bv, (A, )

aA,

V V1+
(r/r ) VV r=r,

(43)

Equations (36) and (39) are utilized in writing this in the
form

—1/2
Bv, (A, )

BA I=o 1

or c(0
1

for c.=O.I —2

(49)

av, (X) (—1 (44)
aA A=A,

The limit of —1 is approached for large binding energies
—c belonging to strongly bound electrons, where
V= Z/r-

One can also use the general expression

Bv, (A, )

[2r (E—V) —2, ]'/ (45)

Since the force on the electrons is towards the nucleus,
V V(r, ) points outwards, so that the denominator in (43) is
positive. Also, V obeys the Poisson equation (10), causing
V V(r, )= 4mn(r, ) to be negative—. Consequently, the
contents of the large parentheses in (43) are less than l.
This implies

Bv,(A) I r
dr

[2r (E—V) —A, ]'/

for A, =O, performed analogously to Eq. (48), produces

(50)

(jv (g —0) c 1/m

Bs VKr

1

2I 1

1
)(2+m )/2m

I
for c(0 . (51)

A consequence thereof is

The sudden increase of the initial slope at c.=O for
short-range potentials is accompanied by a rapid change
of v, (A, =O) as e approaches zero. An evaluation of
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C
1/m

v, (A, =O) =vo(0)+ 2'

3
t

2
i(rn —2)/2m

&
—~J

1 dx 2 F(x) E

x
2(ax )

ax Z4/'

2 1/2

Z 1/3

for 8&0 . (52)

Please note that, because m & 2, the numerical coefficient
in (51) is positive, whereas it is negative in (52), and that
the exponent of ( —E) in (52) is a positive number less than

Indeed, v, (A, =O) grows rapidly as E~O. Equations
(51) and (52) are illustrations of the fact that v, (A, =O) for
c(0 tests the outer reaches of the potential. However,
v, (0) as a function of E is not as easily converted into
knowledge about V as is A,, [recall the remark after Eq
(37)].

Equations (44) and (49) together indicate that, at least
for c & 0, the lines of degeneracy are steeper at X=X, than
at A, =O. Since they can be expected to have very little
structure for reasonable potentials, one can picture them
as gradually getting steeper for increasing A, . In other
words, the second derivative 0 v, /BA, will generally be
negative. Unfortunately, a direct investigation of
8 v,'/BA, 2 is hindered by the circumstance that Eq. (45)
cannot be formally differentiated due to the k dependence
of the integration limits. It is, however, possible to cir-
cumvent this obstacle when higher derivatives of v, (A, ) at
A, =A,, are asked for. A general method for producing ex-
plicit expressions for these, such as (42) for the first
derivative, is developed in the Appendix.

%'e now turn to the TF potential for neutral atoms. It
satisfies the TF differential equation [Eqs. (10) and (13)
for /=0]

This way of writing it makes explicit that v, (A, )/Z' is a
Z-independent function of both 1,/Z'~ and E/Z ~ . We
present a plot of such lines of degeneracy in Fig. 1. It il-
lustrates the remarks made above. Note that v, (A, ) be-
comes steeper for larger A, , and that for large binding en-
ergies ( —E/Z & 1) the degeneracy is the linear Coulom-
bic one,

v, (A, )

Z 1/3

2(Eo—s)

z 4/3 Z1/3 Z 1/3 (59)

Here are some important numbers referring to E=O.
The function xF(x) has its maximum at xo ——2. 10403
where

1.4

where Eo ——Z ~ [—F'(0)/a] is the constant of Eq. (17).
Further, note that for c &0 the initial slope is always —1;
that for E=O it is ——, because F(x)-144/x as x~ oo,
that is, m =4 in Eq. (49); and that v, (A, =O) changes rap-
idly as v~0.

SIGNIFICANT NUMBERS

1 2V VTF+ —=, ( —2VTF)
Z 1

4m. 3m
(53)

and is subject to [Eqs. (7) and (13)]

X=Z= f (dr) ( —2VT„)
3~2 TF (54)

As usual, we introduce TF variables according to 08

V= — F(x), x =Z'~—r/a,
I"

2/3
=1 3~a=

2 4
=0.8853 .

0.4

The differential equation for F(x ) is then

d 2 [F( ) ]3/2
2 F(x)=

dx x
(56)

with boundary conditions

F(0)=1, F(~)=0.
The lines of degeneracy are given by

(57)
0 0.6 1.0

FIG. 1. Lines of degeneracy for the Thomas-Fermi potentia1.
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F(xp ) =0.231 151,
F(xp)F'(x p ) = — = —0. 109 862,

Xp

[F(xo)]'"
F"(xp)= =0.0766160 .

From that we get

r =x a/Z'/ =1.86278Z

Ap +2a——xpF(xp)Z'/ =0.927992Z'

~o= F(xo) xoF —{xo)
a

(61)

C)

1.8

1.4

1.0

0.6
0

I

0.1

I

0,2
I

0,3
I

0.4 0,5

2 2—F(xp)
a Xp

—+xoF(xo)
1/2

Z 2/3

1 /2

F'(xo )—+
F(xo)

Z 2/3

Xp v, (O)/Z' as a function of ( —g/Z ) for the
Thomas-Fermi potential (thicker top curve), approximation (63)
(bottom curve), and approximation (63) plus (66) (central curve).

=0.363 593Z 5+y

8vp

x=o

—1/2xpF"(xp)
1+

2F'(xp)

P a
1/4

1/4

V'2' 3+7
4

~ Z —y/3( &)(1+y)/4

0.443 000
= —[1——,

' xo+xoF(xp) ] =0.331 72Z '/
Z 4/3 (66)

= —1.93768 .

A.iso interesting is the maximum value of v, namely,

vo(g=0) =—v'2a Z'/ I dx [F(x )/x]'
0

=1.658 65Z'" (62)

The quality of the successive approximations (63), and
(63) plus (66), is illustrated in Fig. 2.

Also for illustrative purposes, we present, in Fig. 3,
various quantities as a function of z/Z"/s. Note that for
large binding energies, i.e., —e))Z4/~, v, (0) equals g [cf
Eq. (59)]. This is typical for Coulombic potentials,
V= —Z/r+ const, for which these relations hold:

2, 5

(the numerical value of the integral is 3.91593).
coefficient in (52) is —1.705 28 (I=4 ~ = 144a
=81~2/8), so that, for E(0,

1/4

v (g=0) =1.658 65Z'/' —1.705 28Z'/'
Z 4/3

2.0

(63)

&f desired this can be improved by taking into account the
next term in the asymptotic form of F(x ),

1,0

F(x)= 1 — +144
x xy

fOr X~oo, (64)
0.5

wherein

P= 13.27097, y = —,(v 73 —7) =0.772002 . (65)
0
-3

I

-2

We do not report the details of this calculation which is
analogous to the one that produced Eqs. (51) and (52); it
results in an addition to the right-hand side of Eq. (63)
given by

FI& 3. Various quantities Q as a function of e/Z~/' for the
Thomas-Fermi potential. a, Q =r, /Z '/~; b, Q=&, /Z '/';
Q=v, (0)/Z'; d, Q=~ /Z /
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v,(O)/Z'"=X /Z'"
/z —i/3 (g /z I/3)2

~, /Z'"=v Z/(X, /Z'") .

(67)

Of course, Coulombic degeneracy for strongly bound elec-
trons was anticipated; see the remarks preceding Eq. (17)
and the discussion of Fig. 1, after Eq. (58).

QSCILLATORY TERMS

%'e are now prepared to examine the quantum correc-
tions added to the TF contribution in Eq. (34). To do so,
let us first ask the question, how many states are available
in the TF potential for a given Z? In other words, what is
X(/=0) for V= VTF? Of course, we know already that
KTF(/=0) =Z. Thus we are now concerned with Kq„.

A detailed answer is somewhat elaborate, and we decid-
ed to present it in a separate publication. However, some
general qualitative features of Xq„can be demonstrated
without great effort. This is our objective here.

Consider the sequence of states 1s,3p, 5d, . . . , or
(I,n„)=(0,0),(1,1),(2,2), . . . , which are characterized by
a common value for the ratio v/A, , namely, one. As Z in-

creases, these states become available at certain values of
Z Z 1s&

Z 3p &
Z 5d p . Now recall the essential Z '

dependence of the line of degeneracy vo(A, ). It implies

Z Z Z 4 ~ ~1/3 1 1/3 1 1/3
1s 3 3p 5 5d (68)

0 for

2 1 & (Z/Zi, )'/ & 3

2+6 for 3 & (Z/Z„)'/' & 5

2+6+ 10 for 5 & (Z/Z„)'/ & 7

2m for 2m —1 & (Z/Zi, )'/ & 2m+ 1,

fol

&(is)(» =.

because the respective A, 's (or v's) of these states are in

proportions of 1:3:5:.. . . Consequently, the contribution
to the number of available states made by said sequence of
states is given by

(A, , v) values of any sequence consist of all odd multiples
of the initial one (recall that the physical values of A, are
I+ —,

'
), and the analog of (68) holds, therefore, for any se-

quence of states. There is nothing special about the one
starting with the 1s state; we just se1ected it in order to
have a concrete example. For any other sequence, charac-
terized by its initial state (lo, n„), Zi, in (70) is replaced

by the respective minimal Z value, while the factor in
front of ~ is the multiplicity of the initial state, i.e.,
2(2lo+ I). For illustration, Table I lists the essential
numbers for the first 15 sequences of states.

It is technically impossible to sum Eq. (70) over all such
sequences of states. But we can nevertheless learn an im-
portant lesson from the structure of ~((z/Z;„)'/ }.
Note that it consists of a smooth part, with a leading term
of order Z /, and an oscillatory one with the periodicity

+2Z';„, which has a leading term of order
Z' . Inasmuch as summing all sequences must produce
X(Z) we infer that the sum of all leading smooth terms
results in XTF(z) =Z. As far as the Z dependence is con-
cerned, the smooth terms therefore effectively gain a fac-
tor of Z'/ . This will not be equally true for the oscillato-
ry terms. While they all have a (leading) amplitude of or-
der Z'/3 and are periodic functions of Z'/, they have
what looks like randomly assigned periods. Consequently,
these many oscillations will not interfere constructively.
We conclude that X„„(Z)contains somewhat irregular os-
cillations, reminiscent of a periodic function of Z' but
with additional structure. Thereby the leading term is ex-
pected to possess an amplitude of an order between Z'
and Z / . (The random character of the various periodi-
cities suggests that the amplitude is enhanced not by a
factor of Z'/ but by its square root. In this case the am-
plitude of the leading oscillation would be of order Z '/ . )

These observations are confirmed by the plots of X(z)

Initial state

1$

v/A, Multiplicity 1/3
min

0.822

TABLE I. Initial state, characterizing ratio v/A, , multiplicity
of initial state, and minimal Z' ' of initial state, for the first 15
sequences of states (ordered by increasing Z ' „).

(69)

where I is an integer. The difference between
—,[(Z/Zi, )' +1] and its integer part m can be expressed

by an elementary Fourier series, so that a compact way of
writing the staircase-type dependence on Z'/ in Eq. (69)
1S

1 ZX )(Z)=2 ~—'2 Z,

2$

2p

3s

4s

3d

4p

5s

4d

1

3

1

5

5
3

3
5

2

2

10

2

10

1.41

2.00
2.60

2.97

3.05

3.19

3.54

( —1)J . . Z
sin ~j

7TJ 1s

1/3 t 2
7
3

1

7

2

14

3.63

3.79

4.05
=~(Z/Z„)'"] .

The function ~(z) thus defined is universal, which is
to say that it is the same for each such sequence of states.
This observation is based upon the fact that the successive

7$

5f
6d

13
3
7

7
5

2

14

4.39
4.61

4.69



SEMICLASSICAL ATOM 33

500

=2ZN(Z) =— +2
3 Zo Zo,g . »n[2wj(Z/Zo)'~']

150

0
0 150 &00

FIG. 4~ Number of states &(Z)
Fermi potential

avai able in the Thomas-
ia, as a function of Z. T

XTF(z)=Z.
he straight line is

N(Z)= ~ 2m' =—m = —,(m+ —,)' ——,'(m+ —,
'

)

and N (Z)/Z'~&,~Z, presented in Figs. 4 and 5 res

for the oscillatio b w~a
, no a straight, line. This w

h t random. The s t'ons eing somew~a
is i erent for linear degenerac . Fo

a whole Bohr sh
om ic egenerac, i.e. vy, ', ~o(~) =~o —A, . Here

o r s ell becomes available w

th th o fll
is appens at Z=Z f

have
e is i ed at Z=m Zo. Consequently, we

We shall say more about linear de ener
paper co tcon aining a systematic treatm

inear egeneracy in a separate

slope Bv /BA, . N
c reatment for arbitrary

the leadi
vo . ot surprisin 1 one

' '
g y, can demonstrate that

ea ing osci atory term in Xq„always is of order
i vo is a straight line.
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m (E) )TF
7
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Z 7/32 7 8
0

(75)

with

(73)

Indeed, th{ leadin g oscillatory term is here of order Z~

Z 2 . . q' ' Equation ('73) also imph

0 3 ~ his is consistent, with g =(Z/Z o) and

AI0

Z=NrF=4 J dxx, ,(g)
~0

dA, A,(ko —g) —2 g3

(71)

Pl + 1

2

1/3

Z0

QO

+ g . sin[2m j(z/Zo)' ]0 (72)

and the leading terms of N(Z) are
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periodicities). Indeed, as promised, this is small compared
to the leading TF energy term (-Z ~

) if only Z is suffi-
ciently large. A perturbative treatment of these oscilla-
tions is fully justified; we report details thereof elsewhere.

Finally, we note that Eq„——E—ETF is not entirely os-
cillatory. It also contains nonoscillatory contributions.
For example, since the semiclassical spectral sum (15)
handles the strongly bound electrons correctly, whereas
they are misrepresented in

is the slope of v, (A, ) at A, =A, Equation (80) now reads

y' —~3y'+~4y'—

t:—(1—A, /A, , )'~ sin8.
(83)

(For simplicity, we suppress the E index on y, c, and t. )

The numerical coefficients c3, c4, etc. , are simply obtain-
able as derivatives of the potential at r =r, :

ETF —————z ~ for x=z,3 B
7 Q

(78) ( —1) 2, d
~

(v', r, ) [r,V(r, )],
the known correction to E (an additive term —,Z ) must

be part of Eq„. Accordingly, Nq„possesses a related
smooth term. The slight asymmetry in Fig. 5, somewhat
larger negative peaks than positive ones, is consistent with
the presence of such a term.
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r+ 2 c3t +( 8 c3 Tc4)t +5 2 (85)

After these preparations we return to Eq. (45) and note
that

m =3,4, . . . . (84)

Equation (83) expresses t as a power series of y. We in-
vert it and write

One of us (B.-G. E.) gratefully acknowledges the gen-

erous support by the Alexander von Humboldt Founda-
tion.

APPENDIX

I

«[2 z( V) &2] ~~2 ~ d8 dy
r ~E l+z'y dt

so that

(86)

2r [e—V(r )]—A, = (A,,—A, ) cos 8, (79)

or

Here we return to the problem of calculating higher
derivatives of v, (A, ) at k=7, . While the method to be
presented now is quite general, we shall only use it expli-
citly for deriving the analog of Eq. (42) for the second
derivative.

The range of integration in Eq. (45) is given by those
values of r about r, for which the argument of the square
root is positive. Accordingly, as r increases from its
lower limit to its upper one, 2r (E—V) changes from A, to
the maximum value A,„reached at r =r„and then back
to A, . We exploit this symmetry by introducing a new in-
tegration variable 8, related to r by

BVE(k) g m'/2 1 1 dy
V dg-—m/2

After employing (85) to produce

(87)

1 dy =1+(c3—v,')t$+z'y dt

(88)

the 0 integration is immediate, whereby the terms odd in
t, i.e., odd in sinO, do not contribute. We have now ar-
rived at

1 —2r [E V(r)]/A, ,—=(1—A, /A, , ) sin 8 . (80)
Bv,(k)

=v,' I 1+—,[—,c3 2 c4 2 v c3+(v,') ]

If we insist upon 8 and r r, having the same sig—n, then
this relation is unique. In particular, 0=0 corresponds to
r =r„while 0= —m. /2 and m/2 belong to the lower and

upper limits of the r integration, respectively.
When expanding the left-hand side of (80) into powers

of r —r„ it is fitting to use the dimensionless variable y,
defined by

X(1—&'/A, ,')+ . I, (89)

where the ellipsis indicates the presence of higher powers
of 1 —k /k, . Setting A, equal to 1,, in (89) reproduces (82),
as it should. Additionally, we learn

r —r E

r =r, (1+v,'y),
where [cf. Eq. (42)]

v,
' = — v, (A, )

a

j r —r,

(81)

(82)

v, (A, )
ak2

=v', [1—(v', ) + —,v,'c3
8 c3+ 2 c4], (90)

and higher derivatives of v, (A, ) at A, =A,, can be calculated
by keeping track of the subsequent terms in (89).

For Coulombic potentials, v, ( A, ) is a straight line.
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Indeed, Eq. (90) gives the correct null result, because
v,'=1 and all c vanish for V= —Z/r+ const. Another
application concerns the TF potential for E=o. Here we
have vp given in (61), whereas

2 3X0
cs ———,(vo)

&
[xoF(xp)]

F(xo) dxp

= —,
'

(vo) xp+xpF(xo)

3 4
, 4 &0 d

c4 ———,4 (vo) 4 [xoF(xo)]

,.(v—p)'xpV'x pF(x. )[
"
, —x,—+x,F(x,)]

~~ [(vp) —1][2(vp) +3]=2.412 38

Consequently, for the TF potential, s

(92)

= —,
' vo[(vp)~ —1]=1.779 17, (91)

=
24 &o[(vo) —1][—5(vo) +23(vo) —15]

=0.193647 . (93)

Exchange effects can be included in the manner described in

B.-G. Englert and J. Schwinger, Phys. Rev. A 29, 2339 (1984).
2Reference 1 contains the description of a systematic treatment

of such quantum corrections, not on the level of the semiclas-

sical theory, though, but for the statistical atom.
N. H. March and J. S. Plaskett, Proc. R. Soc. London, Ser. A

235, 419 (1956) already noticed that the semiclassical sum

contains the TF approximation in the continuum limit. How-

ever, their method is very different from ours and they did

not develop a systematic way of analyzing the quantum

correction to the TF method.
4Presumably due to too crude an approximation for F(x ), Fermi

reported 3.2 for this number in his classical paper on the sys-

tematics of the Periodic Table [E. Fermi, Rend. Lincei 7, 342

(1928)].

~B.-G. Englert and J. Schwinger, this issue, Phys. Rev. A 32, 47
(1985).

6B.-G. Englert and J. Schwinger, following paper, Phys. Rev. A

32, 36 (1985).
B.-G. Englert and J. Schwinger, Phys. Rev. A 29, 2331 (1984)

contains a recent derivation of this term based on the scaling
behavior of the TF method. Let us use this occasion for re-

porting three misprints in this paper: The number in Eq. (63)'
should be 1.5880710. . . , the right-hand side of Eq. (102)
should be ~ Z ', and the last number in the first row of
Table I should be ( —0.04).

In view of the fact that 5(vo) +15 and 23(vo) differ only by
about 1%, we had to use more than the six decimals, given

for vo in (61), to find six significant figures for the number in

(93).


