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In this investigation term values for high-angular-momentum states in sodium are calculated by
numerical integration of Schrodinger's wave equation. It is assumed that a single valence electron
(Rydberg electron) interacts with the atom's nucleus and a core of electrons. Polarization and
penetration are taken into account and effective polarizabilities determined by fitting calculations to
observed splittings between l=3, 4, and 5 states of sodium. The effective dipole and quadrupole po-
larizabilities are found to be 0.9965(100) and 0.376(150) a.u. , respectively, and an improvement over
a previous comparison of ab initio theory and experiment is made for the quadrupole polarizability.

I. INTRODUCTION

Highly excited (Rydberg) atoms of sodium can be
described by a simple model in which a single valence
electron interacts with a nucleus containing 11 protons
and a core of 10 electrons. Experiments' show the
energy-level schemes of such atoms to be almost hydro-
genic in character. The small differences between the
sodium and hydrogen energy-level schemes are due for the
most part to the penetration and polarization of the elec-
tron core by the valence electron. These effects also split
levels corresponding to the same principal quantum num-
ber n and different angular-momentum quantum number
I. The d f, d-g, and -d-h splittings have been measured in
the region 11(n ( 17 by Gallagher, Hill, and Edelstein. '

Freeman and Kleppner have used these splittings to
theoretically determine effective dipole and quadrupole
polarizabilities, two parameters that describe the core po-
larization by the valence electron. Their calculations uti-
lized a polarization potential which follows from a model
that assumes the electron core to be static. Actually the
valence electron dynamically affects the core of electrons.
These nonadiabatic effects have been investigated by Eissa
and Opik.

Freeman and Kleppner used first-order perturbation
theory to determine the effects of penetration and polari-
zation. The present investigation is similar to theirs ex-
cept calculations were also carried out by a method in-
volving the numerical integration of Schrodinger's wave
equation. The purposes of this investigation were (1) to
determine the effective dipole and quadrupole polarizabil-
ities in sodium by a numerical method which, in principle,
is superior to the perturbation theory used by Freeman

and Kleppner, and (2) to compare the results found by nu-
merical integration of Schrodinger's wave equation with
the results found by first-order perturbation theory.

II. DISCUSSION AND RESULTS

A. The Hamiltonikn

The Hamiltonian for this situation contains a po-
tential-energy function which can be expressed as a sum
of Coulombic, penetration, and polarization terms. In the
present work, as in the Freeman and Kleppner investiga-
tion, the effect of penetration was calculated by using
Hartree wave functions for the core of electrons. The
potential-energy function used to describe the effect of po-
larization is

r 4 —(r/Wp)4
~~, = ——,~d(1/r )[1—e 1

—&a, (1/r )[1—e ],
where ad and a& are the effective dipole and quadrupole
polarizabilities in atomic units. The terms in the square
brackets of Eq. (1) are cutoff factors which keep the po-
tential finite at r =0. These factors were not included in
the polarization potential used by Freeman and Kleppner
since their perturbation calculations did not require the
potential to be finite at r =0. As long as the value of Wp
in Eq. (1) is less than about 1 a.u. , calculated results are
found to be independent of Wp for nonpenetrating orbits.
Therefore 8'0 was arbitrarily set at O.6 a.u. The resulting
polarization potential is similar to one used by Dalgarno
et al.

32 2569 1985 The American Physical Society



2570 JAMES C. LOMBARDI 32

TABLE I. Calculated and observed energy-level splittings.

Levels

13f-13g
14f-14g
15f-15g
16f-16g
17f-17g
13g-13h
14g-14h
15g-15h

Expt. '

3501.0(1.1)
2803.7(1.2)
2291.8(0.9)
1890.6(0.7)
1576.4(0.6)
802.7(2.9)
655.4(3.0)
534.7(2.3)

3499.6
2809.5
2289.2
1889.5
1577.5
809.7
650.9
530.9

Splittings (MHz)
PT1

3499.5
2809.5
2289.2
1889.6
1577.6
809.7
650.9
530.9

PT(FK)

3501.9
2810.7
2289.8
1889.8
1577.5
813.6
654.1

533.5

PT2

3500.2
2809.9
2289.4
1889.8
1577.8
813.6
654.1

533.5

a~
I

a~
0.9965
0.376

0.9947
0.633

1.0015
0.48

1.0015
0.48

'Derived from results in Refs. 2 and 3 by the method described in Ref. 4.
Perturbation-theory results from Ref. 4. NI, PT1, and PT2 values were calculated in the present inves-

tigation. The values of ad and ag used in each of the calculations are also given.

B. Numerical integration calculations

In the work of Freeman and Kleppner, the fine-
structure and relativity effects were subtracted from the
experimental f gand g-h s-plittings. ' The effective di-
pole and quadrupole polarizabilities were then adjusted to
fit calculated splittings to these derived experimental
splittings. In the present investigation the derived experi-
mental splittings were recalculated and found to be in
disagreement with the derived experimental splittings that
Freeman and Kleppner used. The discrepancy was most
evident for the 13g-13h splitting. Therefore term values
were determined by numerical integration (NI) of
Schrodinger's equation and splittings were adjusted to fit
the newly derived splittings given in Table I. The numeri-
cal integration procedure will be discussed in Sec. III.

Table I presents a comparison of experimental theoreti-
cal splittings. The theoretical splittings of Freeman and
Kleppner [PT(FK)] are not explicitly given in their paper
but can be calculated from other quantities which they re-
port. To obtain these splittings, they adjusted ad and a~
to be 1.0015(15) and 0.48(15) a.u. , respectively. The NI
values were determined by the numerical integration tech-
nique. These splittings were obtained by adjusting nd and
ag to be 0.9965(100) and 0.376(150) a.u. , respectively.

C. Perturbation-theory calculations

First-order perturbation theory (PT) was used for three
sets of calculations in this investigation. In the first set
(PT1) the effective polarizabilities were adjusted so that
calculated splittings fitted the derived experimental split-
tings given in Table I. ad and a~ were found to be 0.9947
and 0.633 a.u. , respectively, for this fit. These calcula-
tions were made so that perturbation-theory and NI polar-
izabilities could be compared. The PT(FK) polarizabili-
ties are not as suitable for this comparison as are the PT1
polarizabilities since Freeman and Kleppner did not fit
their calculations to the same derived splittings as were
used for the NI calculations. The value of a~ found from
the PT1 calculations (0.633 a.u. ) is significantly different
from the value of u~ found from the NI calculations

(0.376 a.u.).
In the second set of perturbation calculations, the Free-

man and Kleppner effective polarizabilities (1.0015 and
0.48 a.u. ) were used in the polarization potential given by
Eq. (1). This produced the PT2 splittings given in Table
I. It can be seen that there is close agreement between the
PT2 and PT(FK) values. This agreement shows that the
calculated results are independent of the magnitude of We
used in Eq. (1). (In the PT2 calculations Wo ——0.6 a.u.
and in the Freeman-Kleppner calculations 8'0 ——0.)

In the third set of perturbation-theory calculations
(PT3), the effective polarizabilities 0.9965 and 0.376 a.u.
were used. In Table II, term values found in this way are
compared to term values found by numerical integration
of Schrodinger's equation. Since the same polarizabilities
were used for the NI and PT3 calculations, the differences
in the term values indicate the error which is introduced
into the calculation by using first-order perturbation
theory. For n =13—17 and l =3 this error ranges from
32.8 to 14.9 MHz, which is appreciably larger than the
uncertainty in the experimental splittings. ' In this table
V,~ is the sum of the contributions of polarization ( V~,t)
and penetration ( V~,„).

The PT1, PT2, and PT3 calculations yield the same
values for V~,„since the penetration potential is the same
for each. These V~,„values are listed in Table II and are
in agreement with the perturbation calculations of Free-
man and Kleppner and Theodosiou. However, Table II
shows the NI values for V&,„ to be larger than the
perturbation-theory calculations by an amount ranging
from about 6 to 3 MHz for n =13—17 and I =3.

D. The correction of polarizabilities
for nonadiabatic effects

Freeman and Kleppner have used the theory of Eissa
and Opik to correct their effect polarizabilities for nona-
diabatic effects. The effective parameters determined
from the NI and PT1 calculations were corrected in the
same way. Table III gives the corrected results (ad and
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TABLE II. Comparison of term values found by the numerical integration and perturbation
methods.

Method'

NI
PT3
Diff.

NI
PT3
Diff.

NI
PT3
Diff.

NI
PT3
Diff.

NI
PT3
Diff.

NI
PT3
Diff.

NI
PT3
Diff.

NI
PT3
Diff.

NI
PT3
Diff.

NI
PT3
Diff.

13
13

14
14

15
15

16
16

17
17

13
13

14
14

15
15

16
16

17
17

19470 804.0
19470 771.2

32.8

16788 322.3
16788 295.8

26.5

14 624 281.3
14 624 259.7

21.6

12 853 207.3
12 853 189.4

17.9 .

11 385 410.2
11 385 395.3

14.9

19467 304.4
19467 303.1

1.3

16785 512.8
16785 511.8

1.0

14 621 992.1

14621 991.3
0.8

12 851 317.8
12 851 317.1

0.7

11 383 832.7
11 383 832.1

0.6

4745.7
4684.0

61.7

3812.7
3763.1

49.6

3108.4
3067.9

40.5

2567.0
2533.5

33.5

2144.1

2116.1
28.0

1247.9
1245.3

2.6

1004.8
1002.8

2.0

820.7
819.0

1.7

678.7
677.3

1.4

567.6
566.4

1.2

35.6
29.4

6.2

28.9
23.8

5.1

23.7
19.6
4.1

19.7
16.2
3.5

16.5
13.6
2.9

0.115
0.109
0.006

0.094
0.089
0.005

0.078
0.074
0.004

0.066
0.062
0.004

0.055
0.053
0.002

4781.3
4713.4

67.9

3841.6
3786.9

54.7

3132.1
3087.5

44.6

2586.7
2549.7

37.0

2160.6
2129.7

30.9

1248.0
1245.4

2.6

1004.9
1002.9

2.0

820.8
819.1

1.7

678.8
677.4

1.4

567.7
566.5

1.2

'ad ——0.9965 and a~ ——0.376 a.u. for both sets of calculations. The values of V~~ and V~,„are the con-
tributions of polarization and penetration. V,„ is the sum of these contributions. The "Diff." values
are the differences in the calculations. All energies are in MHz.

aQ ) and compares them to polarizabilities determined
from spectroscopic data and ab initio theory. ' '" There
is fairly good agreement among the different values of ad.
Freeman and Kleppner have pointed out the less satisfac-
tory agreement between their value of a~ and the value of
ag found in Ref. 10. They attributed the discrepancy to
the low reliability of the parameters in the theory they
used to correct their effective polarizabilities for nonadia-
batic effects. There is even less agreement between the
value of ag found from the PT1 fit and the values calcu-

lated in Refs. 10 and 11. However, the value of ag found
from the NI calculations agrees more closely with the re-
sults from Refs. 10 and 11 than do the results of perturba-
tion calculations. This indicates that part of the
discrepancy between the results of the perturbation calcu-
lations and the results of Refs. 10 and 11 should be attri-
buted to the fact that first-order perturbation theory does
not predict term values for states with l =3 to a degree of
accuracy comparable to the accuracy of the experimental
data.

TABLE III. Comparison of polarizabilities in sodium. The NI and PT1 results are from the present
investigation and the PT(FK} results are from Ref.4. The value from Ref. 9 was derived from spectro-
scopic data and those from Refs. 10 and 11 are calculations made ab initio.

ag
a~

NI

0.993
1.84

PT1

0.991
2.11

PT(FK)

0.998
1.91

Ref. 9

0.978

Ref. 10

0.9459
1.53

Ref. 11

0.9457
1.521
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III. COMMENTS ON THE NUMERICAL
INTEGRATION S

All calculations for this investigation were carried out
in double precision on an IBM 4341 computer. Two
methods of numerical integration were used and they pro-
duced term values that agreed to one-tenth of a MHz.
The first was the Runge-Kutta method. ' For these in-
tegrations the radial wave equation for the eigenfunction
R (r) was first transformed with the equation

R (r) =r 'w (r) .

This transformation produced the following differential
equation:

+2[E + V(r)]w,

step size and the calculated term value. It was therefore
possible to make extrapolations to find term values that
would occur at zero step size. The extrapolated Numerov
values were always equal to the values determined by the
Runge-Kutta method. It may be that the Runge-Kutta
calculations were made more efficient through the use of
the transformation given in Eq. (2). This transformation
cannot be used in conjunction with the Numerov method
since it leaves a first derivative term in Schrodinger's
equation. For the Numerov method to be used, such a
term must be eliminated by a different transformation.

A test of the Runge-Kutta method was made by using
it to calculate energy levels in hydrogen with n =13—17
and I =3, 4, and 5. Energies calculated in this way were
found to agree to within one-tenth of a MHz with the
known energy levels in hydrogen.

where w =w (r) is the function which was determined by
numerical integration. The function V(r) includes the
Coulombic, penetration, and polarization potentials.
From the work of Fano and Theodosiou' it follows that
the starting values (at r =0) for the numerical integration
are w =0, w'=1, and w"= —2Z/(I +1). The second set
of numerical integrations was carried out by the Numerov
method. '

Even though the results were essentially the same for
both the Runge-Kutta and Numerov methods, the
Runge-Kutta calculations proved to be more efficient.
For both procedures the dependence of calculated term
values on the radial step size was investigated. For the
Runge-Kutta method, step sizes less than 0.1 a.u. all pro-
duced the same term values. For the Numerov method it
was found that radial step sizes of 0.04, 0.02, and 0.01 a.u.
all produced different term values. Fortunately in this
case a linear relationship was found to exist between the

IV. SUMMARY

It has been shown that the NI calculations yield a value
for e~ which is in better agreement with the ab initio re-
sults given in Refs. 10 and 11 than is the value determined
by perturbation theory. This investigation also indicates
that first-order perturbation theory cannot describe I =3
states in sodium with a degree of accuracy comparable to
the accuracy of experimental data.
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