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By employing space-time dilatation invariance of the Hopf equation for the characteristic functional, it is
shown that statistical-dynamical self-similarity must be featured in the free decay of inertia-dominated in-
compressible fluid turbulence. The experimentally established decay law w2« t=6/5 and integral scale depen-
dence Lo t¥5 follow deductively and without any additive assumption from a Gaussian normal
probability distribution over velocity fields at the initial instant ¢t =0.

The self-similarity hypothesis for freely decaying in-
compressible fluid turbulence was first proposed in 1938 by
von Karman and Howarth.! In terms of the probability
measure dP[u(x);t] assigned to the velocity field u(x) at
any t = 0, self-similarity requires

dP[A*u(Ax);A"Pt]=dP[u(x);t] (¢8)

for all real A > 0 with « and B certain fixed constant indices.
Since (1) applies to the larger-scale as well as the fine-scale
eddy structure of the turbulent flow, self-similarity is a
statistical-dynamical symmetry distinct from a possible Kol-
mogorov invariance’ in the fine scale (inertial subrange) at
high Reynolds numbers.

In theoretical and experimental applications authors have
generally required one or more additional physical assump-
tions in combination with a self-similarity hypothesis. For
example, Saffman® postulated self-similarity and made the
additional assumption of Reynolds-number independence,
which is basically equivalent to assuming that an inertial
subrange exists, to deduce the decay law u?cc =95 and in-
tegral scale dependence L« 15 associated with experimen-
tal* turbulence at high Reynolds numbers. My purpose in
the present Rapid Communication is to show that the self-
similar character of freely decaying inertia-dominated tur-
bulence and the associated decay law w2« r~%° and integral
scale dependence L « r¥* follow deductively and without any
additive assumption from a Gaussian normal probability dis-
tribution at the initial instant ¢t =0. Expressed in the func-
tional calculus terminology first proposed by Hopf,® my
analysis incorporates the important finding of Deissler® that

_J

all u(x) [

oly(x);el= f

expli f y(x)- u(x)d3x”dP[u(x);t]

viscous decay effects become negligible compared with iner-
tial decay effects at high Reynolds numbers; hence the Hopf
equation (6) for the characteristic functional is the v=0
(zero viscosity) specialization of the more general form re-
quired at low or moderate Reynolds numbers.’

Let u=(u(x,1),u(x,t),u3(x,t)) denote the velocity
field of an incompressible fluid flow governed by the Euler
equation

du/dtr=—u-Vu—p~'Vp 2)

in which p is a positive constant. For boundary-free flow
with x= (x,x2,x3) in Rj, the incompressibility condition
V -u=0 can be used to eliminate the pressure term from
(2); the resulting integro-differential equation

du/dt=—(u: Vu) 3)

features the transverse (solenoidal) part of the inertial term,
where for any vector field in Rj,

vi(x)=v(x) — V(V 2V :v(x))

V'-v(x')

—dx' . 4)
|x—x'|

=vx)+-v
47

With dominating inertial and negligible viscous effects, free-
ly decaying incompressible fluid turbulence in Rj; is
described by a Gibbs ensemble of solenoidal velocity fields
that evolve dynamically according to (3). All equal-time
multipoint velocity correlation tensors are contained in the
complex-valued Fourier transform of the probability mea-
sure (1), the Hopf characteristic functional®

=1+ f (u (x", 1))y, (X" )dPx" — % f Cup (X, ) e (X7,0)) y (XD e (X)) dBx " dPx”

—Zlf (uy (X, O we (X7, D) u (X", 0)) y; (XD (X (XD %' dPx " dBx" 4 - - )

In (5) the spatial integrals are over unbounded R3, and the
real parameter field y= (y,(x),y2(x),y3(x)) is required to
be continuous, infinitely differentiable, and of compact sup-
port (i.e., a vector test function) but is otherwise unrestrict-
ed. Since the correlation tensors inherit the solenoidal qual-
ity of u, the characteristic functional depends exclusively on

the transverse part of y: ®[y;s]1=®[y";r]. The reality and -

nonnegativity of the normalized probability measure implies

32

r

that (®[y;t]1)*=®[—y;t] and |®[y;s]| =<1. Furthermore,
since all u satisfy (3), it follows that ® satisfies the time-
evolution equation®

3D/3t + QO =0 , ~(6)

= tr 3 [ 3
=iy TR R )
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in which 8/8y;(x) denotes the Volterra functional derivative
with respect to y;(x). The parameter field y is not required
to be solenoidal in order for the three functional derivative
operators 8/8y;(x), j=1, 2,3, to be unconstrained and mu-
tually independent in (7).

By transforming the functional integration variable
u(x)— r*u(ax) and making the  replacements
y(x) — A3~2y(Ax) and t— A "#7 in the definition part of
(5), it follows that self-similarity of the probability measure
(1) is expressed equivalently as

DA Ty(Ax) A Bl =D [y(x);¢] (8)

for all A > 0. Because it relates the form of the characteris-
tic functional for all + > 0 in terms of its form at one instant
of time (say t=1), the self-similarity relation (8) must be
compatible with the Hopf equation (6), and this imposes the
index relation

B=a+1 . 9

Equation (9) is derived from the following steps. Since the
functional derivative operators transform as’

8 e 5
Sy,(x) 8yj()\x)

under y(x) — A3~ ?y(ax) , (10)

a change of the integration variable x— A~ !x in the time-
evolution operator (7) shows that

an

Thus (9) is obtained as a consequence of (8) by making the
replacements y(x) — A3~ 2y(Ax) and ¢t — A "Brin (6).

Associated with the thorough randomization of the flow
from three to five mesh distances downstream from a
turbulence-generating grid, the initial statistical state at r=20
is represented approximately by a Gaussian normal form for
the characteristic functional

Q — A**1Q under y(x) — A~ 2y(Ax) .

®d[y(x);0]=exp

2
-—%fy,-"(x)yj(x)d%] , (12)

in which ¢? is a positive constant associated with the level of
turbulent fluctuations. By comparing (12) with (5), one ob-
tains the associated initial values for the correlation tensors,
e.g.,
(4,(x,0)) =0 (13)
(uy(x', 0 (x7,0)) =2 (x' —x") (14)
with zero correlation distance manifest at ¢ =0. It is impor-

tant to observe that the initial value for the characteristic
functional (12) features the invariance symmetry

O[22y (Ax);0]1 =D [y(x);0], forall A >0 , (15)

which is compatible with the self-similarity condition (8) at
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t =0 if and only if®
a=7% . (16)

Hence the index values {a, 8} = (3,3} are fixed by (16) and
(9), and the self-similarity condition (8) becomes

SN2y (Ax);A "2 ] =d[y(x);t] an

for all A > 0 by virtue of the Hopf equation (6) and initial
condition (12).

Deviating rapidly from the Gaussian initial value (12), the
functional form of (17) is non-Gaussian and complicated
for + > 0 because of inertial distortion and skewness pro-
duced in the time evolution governed by (6).° However,
the dilatation scaling invariance of (6) and (12) gurantees
that the (unique) ® prescribed by the latter equations has
the self-similarity property shown in (17): Necessary and
sufficient conditions for the self-similarity expressed by (17)
are given by (6) with (7) and (15).!° Therefore, statistical-
dynamical self-similarity is a rigorous consequence of the
Hopf time-evolution equation and the Gaussian initial con-
dition.

If the disposable parameter A (which may assume any
positive value) is set equal to r¥/° in (17), the characteristic
functional is given for all # > 0 in terms of its form at ¢t =1:

Oly(x);t]1 = [y (#°x);1] . (18)

All equal-time velocity correlation tensors are then related
to their values at =1 by expressing both sides of (18) ac-
cording to the expansion shown in (5) and making a change
of the integration variables x— ¢~ %5x on the right-hand
side of the resulting equation. In particular, one obtains

Qo (X750 g (X758) ) = 1795 Cuy (= 3% D g (17 25%751))

a9

which gives
Wi =65
tion.

In summary, the statistical-dynamical self-similarity prop-
erty of the characteristic functional (17) follows without any
additional assumption from the Hopf equation (6) for in-
compressible fluid turbulence dominated by inertial effects
and the Gaussian initial condition (12), the analysis being
based on dilatation-transformation considerations.!! The
initial-value invariance (15) in combination with (6) is
necessary and sufficient for a characteristic functional ex-
pressible for all + > 0 according to (18), with associated
self-similar correlation tensors such as (19).
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"The dilatation-transformation formula for the functional derivative
operators follow from the basic commutation relation

[8/8y; (x), 3 (x'") 1= 8,83 (x"—x"") ,

where 5 is the three-dimensional Dirac distribution.
8The value a=% also reflects dual-space dilatation symmetry, in the
sense that (1) becomes

dP[\¥2u(rx);0]1=dP[u(x);0]

for. t =0 with a=%.

Thus the relevant dilatation-transformation
formulas for the velocity field and its dual are identical:
u(x) — A¥2u(Ax) and y(x) — A¥2y(Ax). '

9By substituting (18) into (6), performing the time differentiation
via the chain rule, and introducing the similarity variable
L(a) =15y (1/5x), one obtains a functional differential equation

which prescribes the form of self-similar ®, viz.,

Ba+Q'|0lg(a);1]=0,

3 2 . 3
[f[g{(a)+?a Va{(a)] 57(a)

— r ) 9 ) 3
@'= Ifgj (a) 8§k(a) aak 8§j(a)d @

10This is the functional differential extension of Morgan’s theorem
[A. J. A. Morgan, Q. J. Math. (Oxford) 2, 250 (1952)], common-
ly applied to obtain self-similar solutions to partial differential
equations invariant under one-parameter groups of transforma-
tions.

111t follows that the essentially correct analyses of nonlinear inertial
transfer [R. H. Kraichnan, J. Fluid Mech. 47, 525 (1971); 83, 349
(1977); S. A. Orszag, ibid. 41, 363 (1970); R. G. Deissler, Phys.
Fluids 22, 185 (1979); 22, 1852 (1979)] maintain the dilatation
invariance symmetry which underlies self-similarity.



