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Two-photon free-free transitions in a Coulomb potential
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We report a perturbative calculation of the cross sections for two-photon free-free transitions (absorption

and emission) in a Coulomb potential within the nonrelativistic dipole approximation. The matrix element

was integrated analytically by the Green's-function method, and then computed numerically with great ac-

curacy. Limiting cases are discussed (Born approximation, low and high photon-electron energy ratios).
Results are presented for two-photon absorption, in the case when the initial electron momentum is perpen-

dicular to the photon polarization vector.

Free-free transitions (FFT's) of electrbns colliding with
neutrals or ions play an important role in the absorption and
stimulated emission of radiation from hot gases and plas-
mas. For the low-intensity laboratory sources used in the
past, and for those of astrophysical origin, one-photon
FFT's are the only ones relevant (for a review see Ref. 1).
They have been extensively studied theoretically since the
basic result of Sommerfeld2 for the Coulomb potential (see
also Ref. 3).

At the higher intensities now available from laser sources,
multiphoton FFT's become relevant. For moderate intensi-
ties, perturbation theory to lowest nonvanishing order is still
the appropriate approach for calculating the cross sections.
Its results are expected to be valid over the whole range of
photon energies ~, except for the limiting case of small co

(soft photons), where the well-known infrared divergences
of quantum electrodynamics are bound to show up. Non-
perturbative approaches, valid under limitations of their
own, have also been applied to multiphoton FFT's (e.g. , see
Ref. 4). Thus, the theory of Kroll and Watson5 applies pre-
cisely to the case of small co, which cannot be encompassed
by perturbation theory.

We present here the perturbative calculation of the stimu-
lated two-photon FFT's (absorption and emission) in a
Coulomb potential V(r) = —Z/r, within the nonrelativistic
dipole approximation. This is the first perturbative FFT cal-
culation to be done for more than one photon, which is
rather surprising in view of the number of calculations ex-
isting for the related problem of two-photon ionization (e.g. ,
see Ref. 6). Our result parallels that of Sommerfeld for
one-photon bremsstrahlung. We have carried out the calcu-
lation analytically and exactly as far as possible, following a
method developed earlier by one of us, and have then
resorted to a very accurate numerical computation.

We mention that attempts were made in the past to
describe (relativistically) the closely related process of spon-
taneous two-photon bremsstrahlung in the Born approxima-
tion, with conflicting outcome (e.g. , see Smirnov, and the
references therein). Also, very recently, an experiment was
reported for this process. 9 On the other hand, no detailed
experimental study exists for the two-photon FFT beyond
the mere proof of its existence, due to Weingartshofer,
Holmes, Sabbagh, and Chin. '

The differential cross section for the scattering of an elec-
tron with the absorption (+ ) or emission ( —) of two pho-
tons from a single mode laser field can be written

= pf (ft+&~2
dQ p;

where, in the nonrelativistic dipole approximation, perturba-
tion theory yields

(2)

Here, pI and pf are the initial and final momenta of the
electron, I is the intensity of the laser with frequency cu. e
is the polarization vector of the photons (we assume for
simplicity linear polarization, i.e. , e is real), P is the electron
momentum operator, u~" and u~"' are continuum Coulomb

states corresponding to the indicated asymptotic momenta
with incoming- or outgoing-spherical-wave behavior, and
G+ (0) is the Coulomb Green's operator for energy param-
eter 0 + i e. Conservation of energy requires

Eg=E; + 2o)

where E =p /2. Further,

0+ =E(+o)

(3)

(4)

where n =1/ip, W is a normalization constant, ri & 0 is an
infinitesimal quantity, and the contour encircles the points
)= 0 and g= 1 in the counterclockwise sense. Further, as
known, u~" (q) = [u~"' (q) ]'. For the Coulomb Green's

Our formulas are written in Z-scaled atomic units, i.e., mo-
menta are measured in Z xa.u. , energies in Z XRy, and
the (time-averaged) intensity I in Z x a.u. , where the a.u.
of intensity is 3.51 x 10 W/cm .

The matrix element f t +—' was integrated in momentum
space. Integral representations were used for the Coulomb
states u~,

"' (q), uP (q). Thus,

'n
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function we have used the Schwinger" integral representation

1- 2

2 2 2 2 2dP.2 sin(trr) " ' dp p [X'(p) —p2)2+ (p)' + X') (p22 + X ) (1—p)'/4p]'
I

Here v = X ', L'= —20, ReX ) 0.
By inserting Eqs. (5) and (6) into Eq. (2), we get a six-

fold integral in momentum space, followed by three param-
eter integrals. The momentum-space integrations were car-
ried out using formulas derived earlier, and one of the
parameter integrals was done by applying the residue
theorem. Of the two integrals left, one can be expressed in
terms of Gauss hypergeometric functions 2Fi, so that finally
we are left with a single integration over a linear combina-
tion of such functions.

The matrix element f ( —) can be written as(+)

f(+) I[P(+)+Q(+)(e.v )2

+R'~'(e v, )(e vf)+S'+-'(e vf)'], (7)

where v = p /p (u =i,f ). We give here only the ampli-
tude P, which is typical:

1 8 ~ +By 2 —n,. —1
P = C p '+'(1 —xop) ' ~ (I —x(p)

0

I

only in the auxiliary conditions Eqs. (3) and (4) connecting
E;, Ef, and Q.

The dependence of f — on its variables (E; or Ef, g., and
the orientation of v; and vy with respect to e) is quite intri-
cate. It simplifies considerably, however, in three limiting
cases.

(I) The Born approximation, i.e., E, and Er large, such that
~n; ~, (nj ~

&& 1. The integrands in Eq. (8) and similar ones
simplify to the extent that one obtains a closed, albeit rather
complicated, formula for f ( +—) in terms of elementary func-
tions. '

(2) High photon-electron energy ratio, (»/E; » 1 (applicable
to absorption only). In this limit the amplitudes P, Q, etc.
become E;- and 8-independent functions of ~, and all the
angular dependence of f'( —) is contained in the scalar prod-
ucts of Eq. (7).

(3) Low photon electron e-nergy ratio, (»/E; « 1, r»/E&« I (r» itself need not be small). For nonforward scatter-
ing one obtains the dominant contribution

where

x (I —x2p) 2FI(l + ntr 1+nf ,2;x)dp'

16pp,AX' sin'(I)/2)
(p'+X') (p'+X') (I —x)p) (1 —x,p)

f +— = 2I(» "(e 5)'f, (p, 4)
where Lk=pf —p;, and

' —i —n
1 I'(I+ n )

2p' I'(I —n) 4p'

(10)

8 is the scattering angle between p; and pf, and C, xo, xi,
and X2 are functions of p;, pf, and 0, but independent of 8
or p. In the expressions of P, Q, etc. , entering Eq. (7) the
difference between absorption (+ ) and emission ( —) lies

is the Coulomb scattering amplitude for the momentum
magnitude p =p; =pf, and momentum transfer A. This
result is an extension to the two-photon case of the low-
energy theorem of Low'3 (see also Ref. 1). This states that,
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sorption for the special geometry v; e=0. The Oz axis was
set along v;, the Ox axis along e, and the polar angles 0 and

of v~ were defined in the usual way. For symmetry
reasons it is sufficient to consider the cross section for
0~ @~ m/2. Thus

f t+' = P +'(0) + S +'(0) sin 0 cos P (12)

The differential cross section Eq. (1) is displayed for a
number of cases in Figs. 1-3 as function of 0 at given co, E;
and @. As is apparent, the cross section can change by
many orders of magnitude depending mainly on the value
of co. Roughly speaking the smaller co is, the larger the
cross section. For given co and E;, all curves for different @
start from the same value at 8=0, and end at the same
value for 8=180', which is a consequence of Eq. (12). The
curve for @= 90' represents the 8 dependence of
~Pt+'(8)~2. In most cases the 8 dependence of the cross
section has a maximum for an angle smaller than 90 .

Some of the cases considered can be understood in terms
of the low-energy approximation Eq. (10). This is particu-
larly true for Fig. 1(b), where cu/E; = 0.01 « 1, and to a
lesser extent for Figs. 1(a) and 2(b). The agreement with

Eq. (10) extends over the whole range of angles 8, except
close to tl = 0' and 0= 180', or for values of @ close to 90'.
The latter are cases in which Eq. (10) gives a vanishing
result, whereas the exact expression Eq. (12) does not. The
large forward-backward asymmetry with respect to 0 is due
to the Coulomb scattering amplitude f, in Eq. (10).

On the other hand, Figs. 2(a), 3(a), and 3(b) represent
situations lying entirely out of the realm of the approximate
analytical formulas derived for the limiting cases (1)—(3)
mentioned above, and in which only the numerical compu-
tation can yield an adequate description.
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