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The experiments of Gibson and Jeffries on ferromagnetic resonance at very high signal powers are simu-
lated with a model involving coupling of only one spin wave to the uniform mode. Bifurcation sequences
and chaos similar to the ones observed are found in the computation.

In a recent series of experiments Gibson and Jeffries'
(GJ) have performed ferromagnetic resonance at a signal
power well in excess of the second-order Suhl-instability
threshold. As the signal power was increased, the response
went through a succession of events beginning with a limit
cycle, then period doubling, chaos, and several periodic win-
dows. Earlier, Nakamura, ohta, and Kawasaki3 4 worked
out (in the case of parallel pumping) a similar period-
doubling route to chaos by coupling two nonuniform spin-
wave modes. Here we consider the case of transverse
pumping used in GJ's experiment. In that case similar
phenomena occur but are now due to the coupling of the
uniform mode to nonuniform ones on the manifold5 of the
spin-wave spectrum degenerate with uniform mode. If the
dominant one of these is singled out, then above a certain
signal power, we find a limit cycle, the frequency of which is
of an order higher than that observed by GJ. As the power
is increased further, we also find period doublings, onset of
chaos, and two periodic windows, periods 3 and 5, respec-
tively, as observed in GJ's experiment.

The equation of motion for the magnetization is

dm = —ymx H —amx (mx H)
dt

Here, we employed Landau-Lifshitz damping. The field H
consists of three parts: the applied field, the dipolar field,
and the exchange field. I is expanded in spin waves in the
usual manner. 5 Equating the Fourier coefficients of both
sides and keeping the secular terms only, 2 we have, in re-
duced units,

dBk =/8, 8 „+rI/818„—&8„,
d7

dBo =iBk Bp —io), —qBp

where 80 and Bk are the amplitudes (with a phase factor) of
the spin waves, q is the damping constant, d7. =0.5' dt, I
is a constant proportional to cu, 01 is the magnetization (in
frequency units), and co, is the strength of driving field. We
assume Bk= B k and throughout the numerical calculations

assign q=0.005 and I'=0.5. Equations (2) and their com-
plex conjugates form a set of four differential equations,
whose fixed points are

I Bol ~, in,

+ 1/2/ ( I I 2) 1/4

I Bk I
= —~ (I —r') "'+

(3a)

(3b)
i/2. l/2

(1 r2)1/2 2r2

—(1801 + IBkf') = —2~. 1m80 —2n(IBkI'+ IBol )
dt

(5)

18kI and IBoI can be interpreted as magnon numbers.
W'ithout damping and driving, i.e. , cu, =q=0, the magnon
numbers are conserved, which is expected in a Hamiltonian
system. In a steady state, the driving excites the system in
such a way as just to compensate for the damping. Natural-
ly, the right-hand side of Eq. (5) is zero if (3b) is used.
This steady state becomes unstable when an increase (de-
crease) of total magnons makes the response of the system
to the driving stronger (weaker). With this consideration
and the fact that ReBp —0, we find that when
01, & 4q IIm801, the fixed point (3b) becomes unstable. Us-

When cu, & q (q /can ) '/' (Suhl threshold), (3a) is stable.
When cu, & (7'/ 01)'/2, (3a) becomes unstable and (3b)
becomes stable. For IBkI « 1801 we worked out the stabil-
ity conditions for the fixed point (3b). We find

() + q)' (/ + ~) [—(I —r') Ip, 14+ 4r 18„1'18,1'

—818„1218,12 l —4r 22118„1'18,1' = 0

(4)

where )1. is the Lyapunov exponent. Up to 18„1 ~ 0.118OI
all )1.'s are negative. For 18kl —1801 the calculation be-
comes extremely tedious. So we approach it in a less pre-
cise way but with a clearer physical pic'ture.

It can be shown easily by using Eq. (1) that
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window which does not bifurcate further. The symmetric
pattern is due to the fact that changing the signs of both
ImBk and ReBk leaves the equations unchanged. This
causes the system to have more than one attractor. The
route to chaos shown in Figs. 1 and 2 suggests a simple
underlying iterative map. A set of two coupled logistic

maps would be a possible candidate.
In many experimental situations, surface imperfection

scattering is important. The process involved is a two-
magnon process' that conserves the total number of mag-
nons. The argument following Eq. (5) shows that adding a
term that conserves magnons will not change the picture
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qualitatively, at least at the beginning of the instability.
This is indeed true. The modified equations are"

dBk = iBo B k
—qBk+ ) I Bo I Bk+ v koBo2

d7
dB

=iBk Bp —i~, —QBp+ V pkBkd7.

where only one spin wave has been retained in the scatter-
ing term also. Assume vko=vok=0. 01 [linewidth —1 G
(Ref. 7)]. Figure 3 shows the first few limit cycles. Their
frequencies are lowered and positions shifted compared to
those in Fig. 1.

We conclude with a comment on the remarkably slow de-
cay of the excitation of 16-KHZ oscillations observed by GJ
when the rf power is turned off.

Although the Suhl threshold is lowest for one particular
spin wave (k along i and cod=co) there are an infinite
number of neighboring ones with arbitrary close thresholds.
Nonetheless, as we have seen, restriction of the theory to
only one such wave seems to simulate the observed bifurca-
tion sequence quite well. This suggests that by some as yet

unexplained mechanism, the affected waves concentrate
into one or at most a very few waves. Suppose that a
scattering mechanism is responsible for the bulk of the reso-
nance linewidth at low signal powers, with only a small con-
tribution coming from slow relaxation to the lattice. Then
the total magnon number declines slowly; the linewidth is
mainly due to the scattering from the uniform mode to the
degenerate spin-wave manifold, with essentially infinite time
required for backflow into the uniform mode. If for some
reason there is at high signal power a sharp concentration of
spin waves into a single one, then the excitation will rapidly
alternate between that wave and the uniform mode, and the
decay would be dominated by the weak coupling to the lat-
tice. Thjs would continue until the excitation level sinks
below threshold; from then on the decay should be rapid.

Upon completion of most of this work, we learned of
similar calculations with similar results. '

We are grateful to Professor C. Jeffries for several helpful
discussions. We also thank Dr. R. Kariotis and W. Q. Liu
for many suggestions on computational procedures.

'G. Gibson and C. Jeffries, Phys. Rev. A 29, 811 (1984).
H. Suhl, J. Phys. Chem. Solids 1, 209 (1957).
K. Nakamura, S. Ohta, and K. Kawasaki, J. Phys. C 15, L143

(1982).
S. Ohtar and K. Nakamura, J. Phys. C 16, L605 (1983).

5A. M. Clogston, H. Suhl, L. R. Walker, and P. W. Anderson, J.
Phys. Chem. Solids 1, 129 (1957).

The coefficient of the first term in Eq. (2) has a minimum value of
0 50)~ at kz ky 0. This is the mode that couples to the uni-
form mode most strongly and k = k, is the reason whp there is no
detuning in the second equation I.Ref. 2 and R. W. Damon, in
Magnetic Ions in Insulators, their Interactions, Resonances, and Opti-
cal Properties, Magnetism: A Treatise on Modern Theory and
Materials, Vol. 1, edited by G. Rado and H. Suhl (Academic,

New York, 1963)].
7C. Jeffries (private communication).
Hitoshi Yamazaki, J. Phys. Soc. Jpn. 53, 1155 (1984).
Robert Van Buskirk and Carson Jeffriqs, Phys. Rev. A 31, 3332

(1985).
C. Warren Haas and Herbert B. Callen, in Magnetic Ions in Insula-
tors, Their Interactions, Resonances, and Optical Properties, Magne-
tism: A Treatise on Modern Theory and Materials, Vol. 1, edited
by G. Rado and H. Suhl (Academic, New York, 1963).
H. Suhl, J. Appl. Phys. 30, 1961 (1959).
S. M. Rezende, F. M. deAguiar, and O. F. deAlcantara Bonfim, in
Proceedings of the International Coqference on Magnetism, San Fran-
cisco, 1985 [J. Magn. Magn. Mater. (to be published) j.


