Comments

Comments are short papers which comment on papers of other authors previously published in the **Physical Review**. Each Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Fizeau effect for neutrons

V. F. Sears Atomic Energy of Canada Limited, Chalk River, Ontario, Canada K0J 1J0 (Received 30 April 1985)

It is shown that local-field effects in the neutron optical potential produce a nonvanishing Fizeau effect and that the magnitude of the effect is particularly large for cold neutrons with wavelengths $\lambda \ge 13$ Å.

In a recent article Arif *et al.*¹ have attempted to measure the Fizeau effect for thermal neutrons transmitted through a moving slab using a perfect-crystal neutron interferometer. When the slab is moving in a direction parallel to its boundaries (so that there is no motion of the boundaries themselves) the phase shift due to the motion of the slab is¹ proportional to dV/dE, where V is the optical potential that describes the effective interaction of the neutrons with the slab and E is the incident-neutron energy. In the elementary theory^{2,3} V is given by the mean value of the Fermi pseudopotential,

$$V = \left(\frac{2\pi\hbar^2}{m}\right)\rho b \quad , \tag{1}$$

where *m* is the neutron mass, ρ the number of nuclei per unit volume, and *b* the average bound coherent scattering length per nucleus. If *b* is independent of *E*, then dV/dE = 0 and the Fizeau phase shift vanishes.⁴⁻⁷ This was found¹ to be consistent with the experimental results for a fused-quartz slab and an incident-neutron wavelength $\lambda = 1.268$ Å, which gave an upper bound

$$\left|\frac{dV}{dE}\right| \le 2.1 \times 10^{-8} \quad . \tag{2}$$

It has been suggested^{5,6} that a nonvanishing Fizeau effect will occur near a neutron resonance, where b has a significant energy dependence. The purpose of the present paper is to call attention to the fact that V also becomes energy dependent when one takes into account the local-field effects that are neglected in the approximate result (1). In this case one finds⁸⁻¹⁰ that the real part of the optical potential is given by

$$V = \left(\frac{2\pi\hbar^2}{m}\right)\rho b\left(1+J\right) \quad , \tag{3}$$

in which the local-field correction is given for an isotropic medium by

$$J = \frac{2\pi\rho b}{k} \int_0^\infty \left[1 - g(r)\right] \sin(2kr) dr \quad , \tag{4}$$

where k is the incident-neutron wave vector and g(r) the pair-correlation function for the atoms that comprise the medium. Since $E = (\pi k)^2/2m$, we see that

$$\frac{dV}{dE} = \left(\frac{2\pi\rho b}{k}\right)\frac{dJ}{dk} \quad . \tag{5}$$

The qualitative behavior of J is dominated by the repulsive core of the interatomic potential so that a rough estimate can be obtained by putting

$$g(r) = \begin{cases} 0, & r < a, \\ 1, & r > a, \end{cases}$$
(6)

in which case9

$$J = J_0 \sin^2(ka) / (ka)^2,$$
 (7)

where

32

$$J_0 = 2\pi\rho ba^2 \quad . \tag{8}$$

FIG. 1. Energy derivative of the neutron optical potential as a function of the neutron wave vector as calculated from (9) for fused quartz.

2524 © 1985 The American Physical Society

Hence, it follows from (5) that

$$\frac{dV}{dE} = 2[J_0^2/(ka)^4]\sin(ka)[ka\cos(ka) - \sin(ka)] \quad . \tag{9}$$

For fused quartz (amorphous SiO₂) $\rho = 0.022$ molecules/Å³, b = 15.76 fm/molecule, and a = 2.5 Å, so that $J_0 = 1.3 \times 10^{-4}$. The corresponding results for dV/dE calculated from (9) are shown in Fig. 1. It is seen that dV/dEhas a pronounced negative peak at k = 0 and an oscillating tail for $k \ge 1$ Å⁻¹. These features are qualitatively consistent with our earlier results⁹ calculated directly from (4) for various monatomic liquids using experimentally determined pair-correlation functions. The value of dV/dE at k = 0 in Fig. 1 is -1.2×10^{-8} , which is of the same order of magnitude as the experimental upper bound (2). However, for the wave vector $k = 2\pi/\lambda = 4.955$ Å⁻¹, at which this upper bound was measured,¹ the expression (9) gives $dV/dE = -3.3 \times 10^{-12}$.

In conclusion, the above analysis shows that the Fizeau effect provides a direct method for the experimental investigation of local-field effects in the neutron optical potential and that these effects will be most easily observed using cold neutrons with $k \leq 0.5 \text{ Å}^{-1}$ and $\lambda = 2\pi/k \geq 13 \text{ Å}$. Such measurements would be of particular importance, since it has recently been shown¹¹ that local-field effects often produce a significant correction to the values of *b* measured by neutron gravity refractometry.

- ¹M. Arif, H. Kaiser, S. A. Werner, A. Cimmino, W. A. Hamilton, A. G. Klein, and G. I. Opat, Phys. Rev. A **31**, 1203 (1985).
- ²E. Fermi, Nuovo Cimento 11, 157 (1934), reprinted in *Enrico Fermi, Collected Papers*, edited by E. Segrè (University of Chicago Press, Chicago, 1962), Vol. I, p. 706.
- ³V. F. Sears, Can. J. Phys. 56, 1261 (1978).
- ⁴M. A. Horne and A. Zeilinger, in *Neutron Interferometry*, edited by U. Bonse and H. Rauch (Clarendon, Oxford, 1979), p. 350.
- ⁵A. G. Klein, G. I. Opat, A. Cimmino, A. Zeilinger, W. Treimer,

and R. Gähler, Phys. Rev. Lett. 46, 1551 (1981).

- ⁶M. A. Horne, A. Zeilinger, A. G. Klein, and G. I. Opat, Phys. Rev. A **28**, 1 (1983).
- ⁷A. Peres, Am. J. Phys. 51, 947 (1983).
- ⁸M. Lax, Phys. Rev. 85, 621 (1952).
- ⁹V. F. Sears, Phys. Rep. 82, 1 (1982).
- ¹⁰M. Warner and J. E. Gubernatis (unpublished).
- ¹¹V. F. Sears, Z. Phys. A **321**, 443 (1985).