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Dynamics of the smectic-C to -A transition in freely suspended thin films
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We consider the critical dynamics of the smectic-C to -A transition in freely suspended thin films. Close
to the transition the films can be considered literally two-dimensional, and at sufficiently long wavelengths,
the system should be equivalent to a two-dimensional LY model. The dynamics of this system are very
similar to those of the hexatic-to-isotropic melting previously studied by Zippelius, Halperin, and Nelson
[Phys. Rev. B 22, 2514 (1980)]. However, the order parameter in the smectic films is considerably easier
to probe experimentally, We discuss the experimental predictions of the present theory and suggest possible
experiments.

Freely suspended thin liquid-crystal films have proven to
be very valuable experimental systems in which two-
dimensional phase transitions are studied. These films can
be made as thin as two molecular layers, making them
literally two dimensional, and as thick as hundreds of layers
to allow the study of dimensionality crossover effects.
Furthermore, the absence of an underlying substrate leads
one to hope that the experimental systems will be described
by the isotropic theories of two-dimensional phase transi-
tions, including those of Kosterlitz and Thouless' and of
Halperin, Nelson, and Young. 2

The films exhibit a variety of smectic phases and associat-
ed phase transitions. In this paper, we consider the dynam-
ics of the smectic-C to -A transition. We have in mind the
films made of p-(n-decyloxybenzlidene)-p'-amino-(2-
methylbutylcinnamate (abbreviated as DOBAMBC, with the
chemical formula C3tH44NO3), which have been studied by
severa1 groups. . In the smectic-C phase, the rodlike
molecules are tilted at an average tilt angle (8), with the tilt
direction in the plane of the layers specified by a polar angle

In the A phase (8) =0, or, alternatively, (8) w0, but
the polar angles @ are uncorrelated over long distances.
The order parameter for this transition can be chosen as a
two-dimensional vector c lying in the plane of the layers
with components

c„=sin8 cosP, (Ia)
c~ = sin8 sin@ . (lb)

For a film of infinite extent in the x-y plane (c) =0, even
in the C phase, because of the Mermin-Wagner-Hohenberg
theorem. ' '" However, in the finite-size experimental sam-
ples, and in the presence of an externa1 uniform electric
field, (c) aO in the C phase.

As discussed by Pelcovits and Halperin, ' fluctuations in
the tilt ang1e can be neglected at long wavelengths in the C
phase. Fluctuations in the orientational order are then
described solely by @. The remaining hydrodynamic vari-
ables are Sn (r) = n (r) —np, the fluctuation of the molecu-
lar number density n(r) about its equilibrium value np, and
the momentum density g(r). The free energy can be ex-
panded in terms of the small fluctuations of these variables:

I' =~ Jr d2r Kb(8)(6„$) 2+K, ( )8(8~$) +8 + g +—Jt d r J~d2r', [B„P(r)l[(8 $(r')]
np mnp 2

i r —r'i X
\

/

(2)

The first two terms are the elastic energies associated with
bend and splay deformations, respectively. We have as-
sumed that the local tilt is in the x direction, and have ex-
panded the energies to second order in @. The elastic con-
stants Eb and E, are both proportional to sin'HMF, where
8MF is the mean-field value of the tilt angle. '2 (Near Tcq,
the C-A phase transition temperatures Kb and K, acquire
small additive terms which are not proportional to sin HMF

and are due to the presence of bound pairs. of disclinations).
The third and fourth terms in (2) describe the compression-
al and kinetic energies, respectively. The quantity m is the
molecular mass. The last term in (2) represents the dipolar

interaction present in ferroelectric liquid crystals, 6'2 which
we have expanded to lowest order in $. We have neglected
the lowest-order coupling between $ and 5n, first intro-
duced in Ref. 13, since the hydrodynamic mode structure is
unaffected by this term. Aside from the absence of this
term and the presence of the dipolar interaction, (2) is
identical to the nematic free energy of Ref. 13 and hexatic
free energy of Ref. 14.

The equations of motion for the hydrodynamic variables
appropriate for the free energy (2) can be readily adapted
from Refs. 13 or 14 with the results

6, (sn) = ——v g,1

m

V(sn ) —
2 (zx V) KqQ„/+K, B»$ —G J d r'

no

Q2
4(r ) + 8 V g+ ~ V(V. g),

Bx Bx' ir r'i mnp-mno

(3a)

82
8,$= — Brg„+ B„g„+I KqB„@+K,B~@—G Jt d r', , @(r')

2mno " "
2mno Bx Bx' r —r' (3c)
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where q and ( are shear and bulk viscosities, z is the normal
to the film, and I is a relaxation rate for (t( flucttiations. In
writing (3) we have made several simplifying assumptions
which will not affect the critica) dynamics. %e have set the
molecular shape parameter P (see Refs. 13 and 15) equal to
zero, and we have used an isotropic dissipative stress tensor
characterized by g and (. Given the uniaxial symmetry of
the system, a more general dissipative stress tensor with
four independent components is allowed. '

There are four modes associated with (3). (We have
neglected local temperature fluctuations and the correspond-
ing heat diffusion mode). Two modes are longitudinal (i.e.,
g parallel to the wave vector q) and correspond to ordinary
sound waves with frequencies'

co(- (q) = + c(q — D(q—
2

where

, &/2

CI =
mno

(4)

(5)

and

D(= (q+ g)/(nno . (6)

r

+rK(q)+ 4 —a,
2 mn0

(

(7)

Relaxation of our assumption of the isotropy of the dissipa-
tive stress tensor would introduce anisotropy into the damp-
ing constant D(. '3 The two transverse modes (g perpendicu-
lar to q) involve the transverse momentum and the field @.
These modes can be either diffusive or propagating. Experi-
mentally, 6 it appears that these modes are diffusive, and we
display only that possibility

ness. In the two-layer films made of DOBAMBC,
g» = 500 A. For q « ((:» ', the system is equivalent to a
two-dimensional isotropic XY model with dipolar interac-
tions. The dipolar interactions are irrelevant to the long-
wavelength behavior until q = ((:G ', where"

—i Gi/(i —~)
gG Q 6 (12)

In (12), r( is the critical exponent associated with the two-
dimensional XY model, ranging from 0 at T = 0 to 4 at Tc&.
Thus, for q « gG ', the stiffness parameter K(q) defined
in (8) can be replaced by K, the common value of K, and
Kb at long wavelengths. The dipolar forces, however, do ul-
timately control the critical behavior. There is another
wave-vector scale ((:: (T) associated with the disclinations
in the system, which behaves as'

(T) —a 'exp
Tc~ —T I

(13)

There will always exist a temperature T„such that
(T„)=pa'. For T„& T & Tc& the dipolar forces will

dominate the critical behavior. However, estimates of the
parameters appropriate to the films made of DOBAMBC
suggest that this region is inaccessible to experimental
probes due to the extremely small value of the molecular di-
pole moment. '

Thus, while the dipolar forces may be apparent in the
mode structure (7) deep in the C phase, we will assume that
((:a is sufficiently large, so that we may neglect G in our dis-
cussion of the critical dynamics. For T ( Tc~, but not too
much less than Tc&, we have the modes (7) with K (q) = K.
For T & Tc~, qualitatively similar modes will persist provid-
ed q ) g+'(T), where ((:+(T) is the XY correlation length, '

where, g+(T) —a exp
I T Tcw

(14)

K(q) =K, " +K, " +G (8)

and
1 1

I K( ) 7( + K('q)
mno mno

(9)

0
q

2

mno
(10)

which can be obtained from (7) by setting K (q) = 0.
%e now discuss the critical dynamics in the vicinity of

Tc„. Since the stiffness K(q) is finite at Tc~, ' the C phase
modes (4) and (7) should be qualitatively correct even at
Tc&. There are, however, a number of crossovers occurring
as a function of q. First, as q 0, Kb(8) —K, (8) ~ 0 at a
wave-vector scale ((:» ' of magnitude, "

.In the A phase, (2) and (3) would be replaced by corre-
sponding expressions with K, = K(, = G =0 (i.e., an isotropic
liquid). The ordinary sound modes are the same as in the C
phase (4). The two transverse modes (7) are replaced by a
single diffusive shear mode

For q & (('+ (T), a finite density of free disclinations des-
troys the quasi-long-range C order and reduces the number
of modes by one [i.e., the two modes in (7) are replaced by
the single mode (IO)1. This reduction can be studied by in-
corporating disinclinations into the hydrodynamic equations.
Instead of using P as a hydrodynamic variable, it is con-
venient'~ to introduce a "superfluid velocity" V = V(t,

which is a smooth function except at the sites of the dis-
clinations. Aside from the difference in disclination
strengths (multiples of ~ in the hexatic case, and multiples

of unity here), the analysis is identical to that of Sec. VI of
Ref. 14. We will not reproduce the analysis; rather, we will

simply quote the results and discuss their implications here.
%ith. the introduction of V, there are now five modes to

consider. Two of the modes are ordinary sound and have
the same form as in (4). They are unaffected by disclina-.
tions because of the linear form of the hydrodynamic equa-
tions. Mode coupling nonlinearities would presumably
make some small differences. The equations for V and the
transverse part of g [(6.9), (6.14), (6.29), and (6.30) of
Ref. 14] can be solved with the following results:

(1) The transverse part of V has a characteristic frequen-

—~[K.(e)K, (e)1"'
g» '=a exp

B

cy

Qj( = I (Dq +Qofg ) (15)

where a is a short-wavelength cutoff, e.g. , the film thick- (2) The longitudinal part of V and the transverse part of
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g are coupled together. The eigenfrequencies are given by

2

co+ = —— +ype, + ~e,
2 mnp

+
2

—iypE iq ~c
1 —1 2 —1

mnp

1/2E 1 4
&c

mnp

(16)

The parameters appearing in (15) and (16) are D, the dis-
clination diffusion constant, yp, which is proportional to the
disclination mobility, e„ the bound disclination dielectric
constant, and y, which is I E. The diffusion constant yp is
proportional to the density of free disclinations and goes to
zero at Tcq as g+~(T). The solutions (15) and (16) exhibit
crossover behavior from A-like to C-like hydrodynamics as
a function of qg+( T). For qg+ « 1 we obtain A
behavior. Equation (15) yields coy = —iyoE —lg+',
and the transverse part of V relaxes in a nonhydrodynamic
fashion (i.e., cu does not vanish as q 0). In the same lim-
it, (16) yields

sin'8 ( r, t) = 1 —S'(r, t), (21)

where S(r, t) is the free disclination field (assumed to take
on the values 0, + 1). At the disclination cores S =1, and
away from the cores S =0. In neglecting values of IS I

greater than one, we are assuming that T is near T&&. Since
S satisfies

S(r, t) =e,VxV(r, t), (22)

we can calculate thermal averages of sin0 by evaluating
thermal averages of the transverse part of V. The Fourier
space (22) becomes

pendicular to the film and finally in the y direction. The
thermal average in (19) will factor into separate averages
over the P and 8 degrees of freedom. As noted in (1), sin&
is the magnitude of the XY order parameter c. In the
Kosterlitz-Thouless picture of the XY model this magnitude
is assumed to be unity away from the core of a disclination,
and zero at the core. Fluctuations about either extreme are
assumed to be unimportant. Thus, within this approxima-
tion we can write

2

OJ I
mnp

(17a) S(q, o)) =is, qx V(q, o))

Similarly, for @ we have

(23)

Ql+ I pot& I g+
—1 —2 (17b)

~+= —~q' h. ~c '+
mnp

Equation (17a) represents the viscous shear mode of the A

phase [compare with (10)], and we see that there is no
anamoly in this mode as T~~ is approached from above.
Equation (17b) represents a nonhydrodynamic mode associ-
ated with the longitudinal part of V. Thus, (17a) and the
ordinary sound modes give us the three expected hydro-
dynamic modes of the A phase.

In the opposite limit, q g+ » 1 we obtain C-like
behavior, since we are probing small length scales where the
presence of free disclinations is not apparent. Equation (15)
is irrelevant since the transverse part of V is zero when dis-
clinations are absent. From (16) we obtain in this limit

( )
. q V(q o))

q
2 (24)

21 AT q(+ « 1,~2+/ 2

21 AT
o) + (I'Kq~)~ , q +»1

(25)

The correlation functions of U can be evaluated by adding a
Langevin noise source to the equation of motion for U
[i.e., Eq. (6.30) of Ref. 141. Solving that equation of
motion and using (23) and (24), we find

2I k T
'+ (ran'+ g-, ') '

+
mnp

' 2 ~ 1 1/2'
c

mnp
(18)

t(q, ~) = (Is~(q, ~) I'),
where Be(q, cu) is the Fourier transform of

(19)

If we identify E ~, ' as the renormalized stiffness and X6, '

as the renormalized quantity I IC, then (18) is in agreement
with (7).

We now discuss our results (15) and (16) for the mode
structure above T~& in terms of their experimental implica-
tions. While formally identical results were obtained previ-
ously for hexatics, ' experimental probing of the orienta-
tional fluctuations near Tc~ are far simpler than correspond-
ing probes of the bond angle fluctuations in hexatics. One
probe of orientational order is inelastic light scattering. The
intensity I (q, co) of scattered light is given by7

and

21 k Ts[Q) +(Dq ) ]
Cd'[Ql'+ (Dq'+/+') ]

2I AT q(+ « 1~2+/ 2

2I AT
q$+ » 1

Using (20) and (21), we have

I(q, co) = (P(q, ~)P( —q, —~))
x 1 —2J) (S(q')S( —q')) d~q'

1

+3 Jl (S(q')S( —q')) d'q'

(26)

(27)

Se(r, t) = sin'8(r, t)P(r, t) (20) Close to T, we can write, using (26),

Equations (19) and (20) assume that the local C order is
along the x axis, and that the light is polarized initially per- Jl (S (q')S ( —q')) d'q' = (28)
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and thus, our final result for the intensity is

4mi ks Ta 2 12m (I ks Ta 2)~
x +

Cd Cd

(29)

For the films made of DOBAMBC, the crossover point
q g+ ( T) = I, with q = 1000 cm ', corresponds to T
—T, = 0.02 K.

Another possible experiment to explore the mode struc-
ture of this system would involve shear waves. For
T ) T~~, the dispersion relation for shear waves is given by
(10). For T & Tcq, the coupling of the shear to orienta-

1
jeff P 1 +

4I vmnp
(30)
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tional fluctuations yields an effective viscosity v, ff, different
from the bare viscosity v =q/nmo, as first noted in Ref. 14
for the case of hexatics. From (6.44) of Ref. 14, we expect
shear waves below Tc-~ to exhibit a viscosity given by
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