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Strong damping and low-temperature anomalies for the harmonic oscillator
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We consider Ullersma's model of a damped harmonic oscillator interacting with a heat bath. We
show that for large damping the oscillator does not undergo Brownian motion at any temperature.
For high temperatures non-Markovian effects show up in initial slips only. For low temperatures
we find, as further anomalies, power-law decay of time-dependent expectation values as well as a
strong squeezing of the displacement and momentum uncertainties; again these anomalies are most
strongly pronounced for strong damping.

I. INTRODUCTION

The simplest systems for which the origin of irreversi-
ble behavior can be studied quantitatively on a microscop-
ic basis are linear ones. Of special interest is a harmonic
oscillator linearly coupled to a heat bath which itself con-
sists of harmonic oscillators. ' For the characterization
of this prototypical system the following five parameters
are needed. Most importantly, we have the complex fre-
quency 0+iI into which the unperturbed real frequency
coo of the oscillator is shifted by the heat bath. With the
heat-bath temperature T there is associated a thermal fre-
quency k~T/fi which sets a time scale typical for quan-
tum effects. Finally, we must consider a rate constant a
to represent the response characteristics of the heat bath
variable to which the oscillator is coupled in the interac-
tion Hamiltonian. This rate constant, usually related to
an ultraviolet cutoff in the spectrum of eigenfrequencies
of the bath oscillators, must be larger than

~

I +iQ
~

if
the heat bath is to deserve its name.

In view of the abundance of treatments of the damped
harmonic oscillator it is quite astonishing that until the
recent phenomenological approach of Ref. 3 and the mi-
croscopic investigation " a satisfactory understanding
had been reached only in the classical case and for the
weak-coupling limit

««~ T/fi .

In that case the mean displacement and the mean momen-
tum of the "central" oscillator undergo a slowly damped
harmonic oscillation corresponding to the complex fre-
quency 0+iI . The mean energy of the oscillator, on the
other hand, relaxes towards the equilibrium value-

E(0,T)= —,
' A'Q coth(fiQ/2k& T)

which is the thermal excitation energy of a harmonic os-
cillator with frequency 0 at temperature T. In the classi-
cal limit, RQ«k&T, this excitation energy of course
takes on the value k~T. As for fluctuations, the density
operator of the central oscillator may be represented by
the Wigner function and is thus revealed to undergo an
Ornstein-Uhlenbeck process.

Corrections to the ideal weak-damping behavior just
described arise in first order in the small dimensionless ra-

tios I /0, 0/a, etc., defined by the limit (1.1). It is re-
markable that the ideal weak-damping behavior is univer-
sal inasmuch as it does not explicitly involve the rate a
nor any other characteristics of the heat bath beyond the
ones manifest in the small difference between the unper-
turbed frequency coo and the observable complex frequen-
cy 0+iI .

We propose to show, in the following, that the linear
system in question displays a more complex and less
universal behavior if the heat bath is held at low tempera-
tures

(1.3)

and/or is designed such as to impart strong damping

r@n (1.4)

to the oscillator.
In the low-temperature regime (1.3) we encounter

anomalies for various observables of the central oscillator.
The mean displacement and the mean momentum still ap-
proach vanishing equilibrium values through damped os-
cillations, but the temporal behavior depends sensitively
on the coupling to the heat bath and may deviate consid-
erably from simple linear damping. Expectation values of
powers and products of these operators do acquire very
nonclassical and unexpected features both in their relaxa-
tion towards equilibrium and in their equilibrium values.
As for their time dependence, exponentials decaying with
integer multiples of the thermal decay rate k&T/A' begin
to outlive the mechanical transients like exp( —I t). In the
extreme quantum limit kz T «AI the multiples of
AT/A' tend to behave, in their effects with respect to the
time scale 1/I, like a con'tinuum and then give rise to an
inverse power-law falloff in expectation values and corre-
lation functions, a result consistent with that in Ref. 3.

As a most interesting low-temperature anomaly in the
equilibrium state of the central oscillator we shall find
that, in contrast to the weak-damping regime (1.1), the
mean squared displacement and the mean squared
momentum have a ratio rather different from that of a
free oscillator with frequency A. The kinetic energy of
the oscillator is even dramatically .afflicted by the bath.
As the number of bath oscillators goes to infinity the
spectrum of their frequencies must be provided with an
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,a&kT A/' » I (1.5)

that the behavior of the Wigner function on the time scale
1/I can be described by a time-independent generator I of
infinitesimal time translations. In all other cases the drift
or the diffusion coefficients approach stationary limits no
faster than the observables of the central oscillator.

The existence of a time-independent generator I for
kz T»A'I does not, of course, imply Markoviaq
behavior. Rather, the exact time-dependent generator l (t)
and its long-time limit l( ao ) =I can and in general do go
with different initial conditions for the Wigner function.
The effective initial Wigner function W'„(0) to be used
together with I may be defined through

W(t)= exp f dt'1(t') W(0) —&e 'W„(0)

for t » I /a, k/k& T, (1.6)

ultraviolet cutoff for the mean kinetic energy of the cen-
tral oscillator to remain finite; compare Refs. 3 and 8.

The low-temperature anomalies just mentioned become
especially well pronounced for a strongly damped or even
overdamped oscillator. Inverse power-law decay of equili-
brium correlation functions and of nonequilibrium expec-
tation values then tend to acquire weights comparable to
those of exponential transients. Moreover, the equilibri-
um uncertainties of the displacement and the momentum
display a considerable amount of "squeezing. "

While the central oscillator can be said to undergo an
Ornstein-Uhlenbeck process in the weak-coupling regime
(1.1) there is no Markovian stochastic process we could
associate with the behavior at low temperatures and for
strong damping. However, the Wigner function of the
central oscillator still displays a simple Gaussian behavior
provided only the heat bath is in some sort of thermal
equilibrium initially such that the Wigner function of the
whole system is a Gaussian with respect to the displace-
ments and momenta of the bath oscillators. This is the
case, due to the harmonicity of the Hamiltonian, for any
of the following physically relevant initial states: (i)
thermal equilibrium of the whole system, (ii) thermal
equilibrium of the heat bath with the coupling to the cen-
tral oscillator disregarded and without any correlation to
the central oscillator, the latter in any arbitrary state, and
(iii) global thermal equilibrium constrained by prescribed
initial expectation values for any linear or quadratic func-
tion of the displacement of the central oscillator. For all
of these initial conditions we find the Wigner function of
the central oscillator to obey a simple second-order partial
differential equation. There are, in fact, only two impor-
tant differences between the general equation of motion
and the Fokker-Planck equation of the Ornstein-
Uhlenbeck process. First, there is an additional diffusion
coefficient (vanishing in the classical limit) which unfor-
tunately generates a negative eigenvalue for the diffusion
matrix. Second, both the drift and the diffusion coeffi-
cients carry an explicit time dependence; they become sta-
tionary only for times larger than both the bath response
time 1/a and the thermal relaxation time R/k~T. It is
thus only in the limit

where ( )+ means a time-ordered product. The differ-
ence W(0) —W„(0), a so-called initial slip, ' constitutes a
non-Markovian effect. We shall show that slip to be large
except for very weak damping.

We shall in the following mostly employ Ullersma's no-
tation. In fact, our paper may be considered as an exten-
sion of Ullersma's work to include large damping and low
temperatures. Similar to our approach are the recent ones
by Lindenberg and West and by Riseborough, Hanggi,
and Weiss. " Some of our results on low-temperatures ef-
fects are also implicit in the papers of Caldeira and Leg-
get and of Grabert, Weiss, and Talkner. A preliminary
version of our work was presented at the seminar on
"Fundamentals on Quantum Optics" in Ref. 12.

II. THE MODEL AND ITS EXACT SOLUTION

We denote the displacement and momentum operators
of the central oscillator by Qo and Po and the correspond-
ing operators for the N bath oscillators by Q;,P;,
i =1,2, . . . , N. Whenever convenient we shall use Greek
indices running over all N+ 1 oscillators and write Q„,P„
with v =0, 1,2, . . . , N. Ullersma's Hamiltonian then
reads

0= —,
' g(P„+co„g )+ pe„goQ„.

n=l
(2.1)

N

Pq ——g Xq„P„' (2.4)

v=O

The N + 1 eigenfrequencies z are the positive zeros of
the function

2

= 2 2 &n
g (z) =z —coo —g

n Z —Q7 n

while the matrix X& is determined by

(2.5)

For H to have a finite lower bound the coupling constants
e„and the unperturbed eigenfrequencies have to fulfill the
"positivity" condition

N ~2
coo —g ~ &0. (2.2)

n=l ~n

The Hamiltonian (2.1) being a quadratic form in the Q„
and P the time-dependent displacements and momenta
are linearly related to their initial values as

Qp(t) = g [Ap„(t)Q (0)+Ap, (t)P,(0)],
v=O

(2.3)
P~(t)=Q~(t) .

The matrix elements Az„(t) are easily found with the help
of the orthogonal matrix X&„which diagonalizes the
Hamilton'ian (2.1) as

N

g„=QX„.Q.',
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1 dg (z)
2Z dZ z=z 'V

—1/2

(2.6)
time derivatives,

C(t) = ( IPp(t), gp(0) I ) = —( I go(t), Po(0) I ), (3.4)
&n

+nv= 2 2 +Ov '
Z —COv n

(2.7) C(t) = —( IPp(t), Pp(0) I ), (3.5)

By first solving the initial-value problem for each normal
mode we immediately find the matrix A&„(t) as

N 1
A~„(t)= gX„+„p sin(zest) . (2.8)

Since the X bath oscillators are to behave as a heat bath
they must be large in number and their unperturbed eigen-
frequencies co„must be densely spaced. We may therefore
simplify the function g (z) by introducing a spectral
strength function y(co) as

y(co)b.co = g e„ (2.9)
co (co+ (co+Aco

and by replacing the sum in (2.5) by an integral'

g (z) =z —coo — dco
y(co)

O z2 —m2
(2.10)

Similarly, the positivity condition (2.2) can be written as
I

COO
— CO

2
)0 .y(co) (2.11)

For any given spectral strength y(co) we now have, up
to some frequency integrals, the complete solution of the
initial value problem for the Hamiltonian (2.1).

III. THERMAL EQUILIBRIUM

Since we are dealing with a macroscopic system we may
describe its equilibrium statistics by employing the canon-
ical density operator

p-e ~, P= 1/kg T . (3.1)

Due to the harmonicity of the Hamiltonian (2.1) this is a
Gaussian ensemble.

To describe temporal correlations in equilibrium we
consider the symmetrized autocorrelation function

C(t)=( ' [Qp(t)go(0)+Qp(0)go(t)]):—~ IQo(t) Qo(0)I ) .

By using (2.3) and (2.6) we find

N 1
C(t) = gXp+(z, T) 2 cos(z„t)

v=0 Z

1 z E(z, T)
dz cos(zt),

2vri g (z) z~

(3.2)

(3.3)

provided the closed contour in the complex z plane encir-
cles all 2(N+ 1) zeros of g (z) in the positive sense but
none of the poles of E(z, T) except the one at z =0. We
shall discuss complex integrals of this type below.

The function C(t) completely defines the Gaussian pro-
cess undergone by the central oscillator since it has the
other symmetrized two-point correlation functions as its

and contains the second- and first-order static moments as
initial values and as limiting values for t~ oo, respective-
ly. Also, through the fiuctuation-dissipation theorem' it
determines the linear response of the displacement of the
central oscillator to an external force acting on its dis-
placement.

IV. PARTIAL EQUILIBRIUM

As a simple nonequilibrium situation we now imagine
the set of bath oscillators to be decoupled from the central
oscillator and in thermal equilibrium according to the
canonical operator

N

pb. th -exp Pg —,—(P.'+ con Q.')
n=1

(4.1)

P(0) =Pospbath . (4.2)

Clearly, this does not correspond to a stationary ensemble
with respect to the Hamiltoriian (2.1). Moreover, due to
the arbitrariness of pp we are now in general facing a
non-Gaussian problem, at least for finite times.

We shall investigate the time-dependent first and
second moments for the central oscillator. Since for the
ensemble (4.2) we have (P„(0)) = (Q„(0)) =0 the mean
displacement now reads

(g (t)) =A(t)(g (0))+A(t)(P (0)), (4.3)

where we have introduced the shorthand A (t) for the ma-
trix element Aoo(t). Similar to the equilibrium correlation
function C(t), we can transform the sum defining the am-
plitude A (t) [see (2.8)] into a complex integral,

A (t) =Aoo(t) = dz sin(zt) .1 1

2~i g (z)
(4 4)

By recalling that the zeros of g (z) are the N+ 1 real pairs
+z we easily verify that A(t) is the inverse Laplace
transform of

00 1A(z)= f dte "A(t)=-
g ( iz)—(4.5)

As for the second moments, we have the initial values

( I g.(0),p„(o) ) ) =o,

([P„(0)] ) =co'„([Q„(0)] ) =E(co„,T)

and obtain

The central oscillator we imagine prepared separately, so
as to bear no correlations with the bath and to be
represented by some initial density operator pp. If the two
subsystems are then brought into contact sufficiently fast
and without any further perturbation we can describe the
subsequent process by the Hamiltonian (2.1) and the "ini-
tial" density operator
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([Q,(t)]') =A(t)'([Q, (0)]')+2A(t)A (t)( I Q, (0),P,(0) j )

+A(t) ([Pp(0)] )+X(t), (4.7)

N
Y(t)= g I [A„p(t)] /co„+[A„p(t)] jE(co„,T) .

n=1

(4.10)

Since the amplitude decays to zero as t~ ao the functions
X(t) and Y(t) must approach the stationary mean squares
([Qp(ao)] ) and ([Pp(oo)] ), respectively. We shall
show presently that these are actually the equilibrium ex-
pectation values.

In order to bring the quantities X(t) and Y(t) into
manageable form we recall the results (2.7) and (2.8) for
the matrix elements X„v and A„o which imply that the
amplitudes A„p(t) can be looked upon as driven oscilla-
tions according to

A„,(t)+ t0'„A„p(t) = —e„A (t) . (4.11)

Using this to express A„p(t) and its derivatives by A (t)
we can carry out the sums in (4.10) in the sense of (2.9)
and obtain

ce y(~) t . , 2

X(t)= f de
~ f dt'e' 'A(t') E(o),T),

(4.12)

Y(t)= f des
~ f dt'e'"'A(t') E(co, T) .

V. CONSTRAINED EQUILIBRIUM

Another nonequilibrium situation of physical interest
arises if we impose by some external means fixed expecta-
tion values of the displacement and the momentum of the
central oscillator. After allowing the coupled system to
equilibrate otherwise, the constraints are relaxed at some
moment of time to be referred to as t =0. We obtain the
appropriate initial density operator, a generalized canoni-
cal operator, by maximizing the entropy of the system
described by the Hamiltonian (2.1), accounting for the
constraints

([P (t)]')=A(t) ([Q (0)] )+22(t)A(t)([Q (0),P (0)j)

+A(t)'& [P.(O)]'&+ Y(t), (4.8)

( [Qp(t), Pp(t)j ) =— ( [Qo(t)] ) , (4.9)
2 dt

where we have defined the new auxiliary quantities
N

X(t)= y I [A p(t)] /co + [A p(t)] jE(co T)

%+1 pairs P„,Q„we are again, as for the canonical
operator (3.1), facing a Gaussian ensemble. Moreover,
both density operators are diagonalized by the same ma-
trix X&„. The normal coordinates appropriate for (5.2),
Q„"and P„",are related to Q„and P, by

N

P~ ——QXpvPv q~p—o ~

v=O

N

Qp= QXpvQv —g+Xo~p /zv .
v=O

(5.3)

This transformation allows for the determination of the
Lagrange parameters as

g'= —QQ(, rt = P, —
N

QXox/z~
—2 2 2

A, =O

1 1
dz

2&l zg z

(5.4)

(5.5)

t
a(t)=1—0& f,dt'A(t') . (5.7)

Since the constraints (5.1) do not involve any moments
beyond first-order ones the variances must take their
equilibrium values at all times t &0. We can therefore
find the second moments of Qp(t) and Po(t) without any
new calculations as

([Q.(t)]') = (Q.(t) )'+ (Q.')„,
( [Po(t)]') = (Po(t) )'+ (P'o ),
( IQo(t) Po(t) j &

= &Qo(t) &&Po(t) & .

(5.8)

VI. FREQUENCY INTECxRALS

We now turn to the problem of evaluating the complex
integrals (3.4), (4.4), and (5.5) which are all of the struc-
ture

Note that the frequency Q~ would reduce to the unper-
turbed eigenfrequency cop of the central oscillator if the
couplings e„were all switched off. We shall meet this
quantity several times below.

We also infer from (5.3) the initial mean displacements
and mornenta of the bath oscillators and thus find the
time-dependent mean displacement of the central oscilla-
tor as

( Q (t) ) =a (t)Q +A (t)P, (Po(t) &
=

& Q (t) ), (5.6)
d
dt

( Qo(0) & =Q, &Po(0)) =P (5.1) QXp+(z„)= . fdz f(z)=I(If j) (6.1)

beyond the usual ones of fixed mean energy and normali-
zation. The density operator then reads

p(0) =z-' e~' "~"""' (5.2)

with additional Lagrange parameters g' and g to be fixed
by the constraints (5.1).

The exponent in (5.2) being a quadratic form in the

with suitable functions f(z). As already mentioned in
Sec. II the closed contour encircles the 2(% +1) zeros off(z) in the positive sense but leaves eventual singularities
of f(z) (save for a possible pole at the origin) outside. In
the limit of a dense spectrum of bath frequencies these
poles merge to a cut along the real z axis. We can thus
place the contour along the edges of the cut where the
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function g (z) takes the values

g+(x)=g(x+i0+)

=X —COP+P da)
2 2

+l 7T
2

Q7 —Q 2X

The integrals (6.1) can then be written as

I(Ifj) ) f d f(x)y( Ix I
)

g+ (x)g (x)

(6.2)

(6.3)

CZK C C00
2 (7.2)

(7.3)

by the positivity condition (2.11). The combination Ica2
obviously measures the overall strength of the coupling of
the central oscillator to the heat bath. The meaning of a
can be inferred from the response function

In exploiting the identity (6.3) we assign to the ampli-
tude A (t) and to the correlation function C(t) the follow-
ing Fourier integrals:

with the time dependence according to the free bath Ham-
iltonian (e„=o). In the continuum limit and with the
spectral strength (7.1) we have

pb„h(t) = dco y(co) —sin(cot) =Ica e
0 CO

(7.4)
& (t) = f dco sin(cot),y(CO)

g+ co g co co

C( ) f d y(co)E(co T)
( )

g+ (Co)g (CO)CO'

(6.4)

and thus recognize a ' as the response time of the bath
observable to which the displacement of the central oscil-
lator is coupled in the Hamiltonian (2.1).

The most important virtue of (7.1) is that it allows for
closed-form expressions for all of the frequency integrals
encountered above. Especially the functions g+(co) take
the form

(6.5)

Similarly, we may bring the definition (5.5) of the shift-
ed frequency to the form

Q
Co'g+ (Co)g (CO)

(6.6)
KQ . K(X CO

3 2

g+(~) =~ —~P+ 2 2
+'

2a +co a +co
(7.5)

Finally, we would like to remark that the identity (6.3),
together with (4.12) and (4.5), can be used to prove that
the nonequilibrium mean squares (Qp(t) ) and (Pp(t) )
as given in (4.7), (4.8), and (4.12) relax to the equilibrium
ones, i.e.,

where the shifted frequency comes out as

2 — 2
Q1 ——mp —aK . (7.6)

Due to (7.2) Q& is non-negative.
Before turning to the other frequency integrals it is in-

structive to discuss the zeros of the denominator in the in-
tegrand in (6.3) in some detail. There are obviously three
pairs of complex conjugate zeros. Of the three roots with
positive imaginary parts one is always purely imaginary
and will be denoted as i k. The other two roots are either
also purely imaginary (iI +) or lie symmetrically to the
imaginary axis (il +Q). The three roots with positive
imaginary parts obey the identities

( Q,')„=c(o)=x(

(P.'),„=—C(O) = Y(
(6.7)

0=A, —a+2I
cop ——Q +I +2k,I

Qi ——(Q +I )(A, /a) .

(7.7)

(7.8)

(7.9)

These remain correct in the overdamped case in which Q
is imaginary.

Figure 1 shows how the pair iI +0 moves in the com-
plex plane as Ica/cop is varied for a/cop ——10. For small
values of za/cop we have I «Q. Upon increasing ica/cop
we find I to grow and 0 to decrease until, at
Ka/co0-0. 99, the two roots iI +0 meet on the imaginary
axis. For yet higher coupling 0 becomes imaginary so
that il Q turn into a pair of purely imaginary zeros,
i I + i(I +

I
Q

I

)——. We shall show presently that the fate
of the two roots just described reflects the transition from
weak damping to overdarnping of the mean displacement
of the central oscillator. ' As a further illustration we
display, in Fig. 2, the ratio I /(Q +I )'~ as a function
of ica/cop for various fixed values of a/Qp. The Plot
shows that the case of overdamping, fL (0, is possible
only for a/cop & v 3.

VII. ULLERSMA'S SPECTRAL STRENGTH

Ullersma has given some physical motivation for a
particular choice of the spectral strength, '

y(co) =-
A' +67

(7.1)

The two parameters involved, K and a, both have the di-
mension of a frequency. They are restricted to obey

Having replaced the original frequency sums by in-
tegrals in the quantities Q~, (Qp),q, (Pp),q, A(t), C(t),
X(t), and Y(t) we are in effect facing an infinite number
of degrees of freedom. It is therefore worthwhile to check
that the integrals in question are free of both infrared and
ultraviolet divergencies. Indeed, any spectral strength
y(co) consistent with the positivity condition (2.11) leads
to integrable behavior of y(co)/co near co=0 and co~ co.
It follows that (g+g )

' approaches a finite constant at
zero frequency and falls off as co for large co. The con-
vergence of the integrals representing the amplitude A (t)
and the shifted frequency 01 is thus obvious. The
temperature-dependent quantities C(t) given in (6.5), and
( Qp ) q and (Pp ),q given in (6.7), on the other hand, also
converge since E(co, T)~k&T for co~0 and E(co, T) +co-
for co~ oo. General statements about the quantities
X(t), Y(t) at finite times are more difficult to achieve.
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The amplitude governing the relaxation of the means
{QQ(t) } and {PQ(t)) can now be written as

A r = [e '—e 'cos(Qt)]
A,'+ Q'+ I' —2XI

A +Q —I 1 r, .
(Q ) (710)

A,'+Q'+I' —2I A, Q

v =2mk~ T/fi (7.11)

has the meaning of a thermal relaxation time. We
find

The equilibrium correlation function C(t) takes a more
complicated form due to the poles of E(co,T) in the com-
plex co plane at integer multiples of iv where

k TA,

1,'~Q'+I ' —2A, I Q'+ I '
Q' —3r'

cos(Qt)+ —1+ sin(Qt)
I 3Q —I
Q A,

2

41 (A/v)e '—le ' (1/v)(I'+iQ)e ' +' "—le

(A, /v) —l (I +iQ) /v l-I=& »
2 p22 Q —I

Q~ g2 (r+ i Q)'/2 —l' (7.12)

{ } and {P } as C(0) and —C(0), respectively.e finall obtain the equilibrium mean squares i QQ fpq and & Q i pq

1 oles to ex ressions involving the digamma function g,We can even sum up the contributions from the thermal po es to expressions
'

k~ TA,2 q= g~+Q~+I-~
R [P(1+A,/v) —P(1+(I +iQ)/v)]

Q2+ P2 g3»2

~'
I q(1+(r+lQ)/v)

Q~ g2
(7.13)

kg TA,
0 q{P2) Q —3I1+ Re[/( 1+1 /v) —g( 1+( I + i Q )/v) ]

Q —I + Img(1+(I +i Q) /)v
Q2 P2)2Q— (7.14)
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We shall not write down, for the moment being, the even
lengthier closed-form expressions for the quantities X(t)
and Y(t) which describe the relaxation of the mean
squares &[Qp(t)] & and &[Pp(t)] & into equilibrium.

In discussing these exact results special interest is due
to the instant response

a, A, )&
~

I +iQ
~

. (7.15)

The bath oscillators cannot constitute a heat bath unless
the inequality (7.15) holds, i.e., unless the response time of
g„e„Q„(t)in the free bath is much smaller than the time
constants of the central oscillator. For times larger than
1/A, and apart from corrections of order

~

I +i Q
~

/A, the
amplitudes A (t) and a (t) then simply undergo damped
oscillations with the complex frequency 0+ iI,

t '& 1/A,

A(t) ~ A„(t)=—e "'sin(Qt),
Q

X„(t)=(kII T/QI) I 1 —[a.,(t)]'—Q', [A„(t)]'I,
Y„(t)=kII TI 1 —[A„(t)] —Q&[A„(t)] I .

(7.21c)

(7.21d)

We should note that the results (7.16) and (7.21) are
correct regardless of the ratio I /Q. -Especially, their re-
gion of validity includes the cases of strong damping
(I =Q) and overdamping (Q imaginary).

a, A, ))v, (
I"+iQ ~, (8.1)

irrespective of the relative magnitudes of v, I, and Q.
Our exact results then take the asymptotic forms, fort) 1/A, ,

VIII. QUANTUM EFFECTS

Nonclassical behavior arises if the bath response is fast
with regard to the thermal relaxation time,

t& &/& r.a(t) ~ a„(t)=e ' cos(Qt)+ —sin(Qt)0

(7.16) C„(t)= (ks T/QI )e "' cos(Qt)+ —sin(Qt)0

I =a./2 (7.17)

For imaginary Q the result (7.16) remains correct, too, but
A and a then creep to zero as for an overdamped oscilla-
tor.

We should note that in the limit (7.15) the damping
constant I can be evaluated explicitly as

+ ImIe '"+' "[g(1+(I+i Q)/v)
2m.A

—g(l (I +—i Q)/v)]]

ao ie Ivt-
+ Im

, (I +iQ) /v —i (8.2)

while the shifted frequency Q
&

becomes the modulus of
the complex frequency Q+i I",

& Q &,„=C(0)=, + I p(1+(r+ Q)/ ), (8.3)
AT

~Q0)——0 +I (7.18)

We should note that the replacement (7.16) corresponds
to the formal limit A.~oo in (7.10) and (5.7). It will be
important below that this limit is uniform in time for
a(t), A (t), and A(t) However, . A(t) is not uniformly in
time approximated by A»(t); for t & 0 (7.16) does give the
right limit as A,~oo, but the initial values A(0) and
A„(0) differ; we have A(0)=0 but A„(0)=—2I. We
shall come back to such "initial slip" effects in Sec. X.

According to (4.3), (5.6), and (7.16) the mean value
&Qp(t)& tends, for t & 1/1, , to behave like the displace-
ment of a classical damped harmonic oscillator, i.e., obeys
the differential equation

& Qo(t) & +2r& Qo(t) & +Q & Qp'(t) & (7.19)

kII T/A &)a, i, ))
~

I +i Q
~

(7.20)

in which the lifetime of thermal fluctuations of the bath
observable g„e„q„(t) is smaller yet than the response
time 1/u. For t ) 1/A, , the classical expressions read

k~T r .C„(t)= 2 e "' cos(Qt)+ —sin(Qt)
1

QI &Qp &.q=-&Pp &.q=ka T

(7.21a)

(7.21b)

The temperature-dependent quantities C(t), & Qp &,q,
&Pp &, , X(t), and Y(t), on the other hand, take especially
simple and well known forms in the classical limit

& PP & q=kIIT+ A'r Re ln ——g(1+(r+iQ)/v)2 2

V

lmq(1+(r+iQ)/v) . (8.4)
e(Q' r')—

Note that (8.2) and (8.3) formally result from (7.12) and
(7.13) by taking the limit A, ~oo. In obtaining (8.4) we
have also neglected corrections of order

~

I +i Q
i

/1, and
v/A, ; we could not simply let A,~ oo, however, because of
a logarithmic divergence we would incur in the digamma
function,

g(1+A, /v)~ln —+0(v/A, ) . (8.5)

We should also note that (8.4) cannot be derived from
(8.2) as —C„(0)because by taking two time derivatives in
(8.2) we do not obtain an approximation for C(t) which is
uniform in time. We are again facing an initial-slip
phenomenon here.

In order to obtain the asymptotic versions of the quan-
tities X(t) and Y'(t) we use the exact result (7.10) for both
A(t) and A(t) in (4.12). After performing the time and
frequency integrals we extract the leading terms in 1/X.
Again for t & 1/A, , we have

X„(t)= I 1+[a„(t)] I & Qp &,q+ [A„(t)]2&Pp &,

+2[A (t)C(t) a(t) C(t)]„, —(8.6)
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Y„(t)=n', [~„(t)]'(Q'. )„+I 1 + [&.,(r)]'I (P'. ).,
+2[n', A (r)C(t)+A(r)C(t)]„. (8.7)

These remarkably simple expressions generalize the classi-
cal results (7.21). They correctly imply X(ao)=(Qo),q
and Y( ao ) = (Po )eq as well as the initial values
X(0)=Y(0)=0. We should emphasize again, however,
that we may use (8.2) to obtain C(t) and C(t) for t & I/1,
only. To ensure Y(0)=0 from (8.7) we must use the
correct initial value C(0)= —(Qc ),q.

It is instructive to further specialize the above results
for the various order-of-magnitude relations between
k&T/fi, I, and n or

~

n
~

which are compatible with the
instant-response limit (8.1).

For applications in quantum optics, for instance, one is
mostly interested in the case of short-lived thermal tran-
sients, I «v. In that regime, it makes sense to restrict
the consideration to times larger than I/v, i.e., to neglect
the thermal transients in the expression (8.2) for the corre-
lation function C„(t). Of course, we thus incur an initial
slip since the resulting expression does not extrapolate
back to (Qo ),q at t =0. 'If we use (8.9a) in the results
(8.6) and (8.7) the initial slip in C(t) carries over to the
quantities X(t) and Y(t). By expanding the digamma
functions in powers of 1 /v we reveal the slip effects in
question as of relative order I /v.

Figure 3 illustrates the behavior of the equilibrium
second moments (8.3) and (8.4) for 1 /v=0. 01, a case
marginally compatible with the limit I «v. Note the
considerable difference between (Po),q and the unper-
turbed thermal energy E(n~). That difference becomes
negligible only for much smaller values of I /v.

Often, one is even confronted with weak damping such
that I «v is sharpened to I «v, Q. It is appropriate,
then, to neglect I against v and 0 everywhere except in
the exponentials exp( —I t). We thus recover the ideal
weak-damping behavior characterized in the Introduction.
There might, on the other hand, be situations in which
corrections of first order in 1 /n or I /v are observable.
Such corrections are immediately obtained by expanding

v« I,Q . (8.8)

In writing down the corresponding asymptotic results for
the static mean squares we must distinguish the case of
real n (damped oscHIation),

(Qo),q
—— arctan —+ (k~T)2 ~ +O(T3),

t

( Po ),q
= (n I —)arctan

(8.9a)

- +—firln +O(T ),2 cz 3

jT Q(

from the case of overdamping (imaginary n),

2 - ]nQ' "=~(r —r )'". r

(8.9b)

, r+I
+ (kgT) —

2 +O(T ),
fi(l +1 )

r

(P,')„=—(r, +r )in +r r

(8.9c)

p2 ++2
ln

2m I + —I
I+
I +O(T ) . (8.9d)

These expressions are equivalent to the results of Ref. 3.
For strong damping (I (n) and for the case of over-
damping these mean squares differ radically from the cor-
responding ones of a free harmonic oscillator (I =0) at
low temperatures (see Fig. 4). Especially noteworthy may
be the strong asymmetry between n&(Qo), q and (Pc),q
at zero temperature. Such asymmetries or squeezing ef-
fects are of potential relevance for displacement measure-
ments of high resolution.

Finally, the correlation function C»(t) as given by (8.2)
also simplifies in the low-temperature limit (8.8). Espe-
cially, the sum over thermal transients,

the expressions given in (8.2)—(8.4). Of special interest
may be the logarithmic anomaly —I in(A, /v) in (8.4).

Quantum effects become much more pronounced when
the temperature is sufficiently low for the lifetime 1/v of
the thermal transients to be larger than the relaxation
time 1/I and the period 1/n,

5C(t)= (8.10)
g

—lvt
Im

( (r+in) /v I—
.2-

.001 1 10 100 ~v

is then well approximated by an integral as

f dc'.
0 (8.9e)

FICx. 3. Equilibrium expectation values (Pp) „(solid line)
and Qf(go) (dashed line) according to (8.3) and (8.4). Note the
large difference between these two quantities.

We find, for real Q, the result to be given in terms of the
exponential integral as
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OO COe5C(t) = Im dco (r+t n)' —~'
100-

Im{e '"+' "Ei[(I +iQ)t]
2mQ

+e+' +' "Ei[—(I +iQ)t]I . (8.9f)
10-

The most remarkable property of 5C(t) is its nonexponen-
tial decay at large times '"

2
2%I l5C(t)»— (8.9g)

Clearly, this "long-time tail" will tend to outweigh the ex-
ponentially decaying part of C(t). In the case of.strong
damping the contribution (8.9g) to the correlation func-
tion can even be comparable in magnitude to the initial
value (go).

FICx. 4. This plot characterizes situations of strong squeez-
ing. While Qf(go), q (dashed curve) is independent of A, and
remains of order unity, the kinetic energy is sensitive to A, and
can acquire large values.

IX. THE SIGNER FUNCTION

For a full characterization of the statistics of the cen-
tral oscillator it is not sufficient to discuss the means and
the mean squares of the displacement and the momentum.
We should either evaluate the means of all symmetrized
products ( [go(t)"Po(t) I ) or, rather more conveniently,
calculate the Wigner function which has these mean
values as its moments.

By associating c-number variables q& and p& with the
operators Q& and P„, respectively, we can write the equa-
tion of motion for the Wigner function W([q„,p„I,t) of

the N + 1 oscillators as the partial differential equation '

N

p=O
ps+ gqjM, pp,

(9.1)

N

+g&n
~ qo+~ py,
~Pp ~PO

The method of characteristics yields the solution originat-
ing from an initial distribution Wo( tq&,p& I ) as

W(I q~,ppj, t)= Wo, g[Aq„(t)q Aq (t)p ],g—[ A„„(t)q,+A—„(t)p,]
V V

(9.2)

W(q, p) = [2m.E(co, T)/co] exp[ H/E(ro, T)], —

H= —,'(p'+co'q ) .
(9.3)

The partial-equilibrium density operator of (4.1) and
(4.2) corresponds to a Wo( Iq„,p„] ) which is a product of
TV+1 functions. Each bath oscillator is represented by a
thermal Wigner function of the form (9.3) as a factor
while the central oscillator contributes an unspecified
Wigner function Wo(qo, po),

N

Wo( Iq p I ) = Wo(qo po) + W(q. ,p. ) .
n=1

(9.4)

The reduced Wigner function W(qo, po, t) for the central
oscillator finally obtained as the 2N-fold integral of
W(Iq&,p&j, t) over the bath coordinates Iq„,p„j. For-

tunately, that integral can be evaluated for the two initial
ensembles introduced in Secs. IV and V. The correspond-
ing initial distributions 8'o can be constructed from the
well-known Wigner function of a free harmonic oscillator
of frequency co in canonical equilibrium at the tempera-
ture T,

The constrained-equilibrium density operator (5.2), on the
other hand, is associated with a product of %+1 thermal
Wigner functions, one for each of the normal modes de-
fined in (5.3),

N
W'o( I q„p, I )=+W(q„",p„") . (9.5)

X W(Iq„,p„j,t) (9.6)

and represent the delta functions by Fourier integrals.
After inserting (9.2) and (9.3) we change the 2(N+1) in-
tegration variables q,pv to

Since both functions given in (9.4) and (9.5) are Gaussians
with respect to the bath coordinates we can carry out the
integrals over the q„and p„explicitly. We shall sketch
the calculation for the case of partial equilibrium.

We first extend the 2%-fold integral defining the re-
duced Wigner function W(q, p, t) to a 2(N+ 1)-fold one as

N

W(q, p, t) = J +dq„dp„5(q qo) 5(p —po )—
v=0
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qp g——[Ap (t)q„A—p„(t)p,],

pq ——g[ A„—(t)q„+A„(t)p ] .
(9.7)

This transformation is interpretable as the inverse of the
time evolution (2.3); it is thus unitary and has a Jacobian
equal to unity. The integral (9.6) then reads

k+k O O
~ ~ ~ 0W(q p, t) =

2 2
e ' ~ dqodpoexp[ iq—o(kA+kA ) ip—o(kA +kA )]Wo(qoo, po)

1V

X f + fdq„dp„exp[ iq—„(OA 0+O'A o) ip—„(OAO„+k'Ao„)]W(q„,p„)
n=1

(9.8)

=expI —[k /coo+(k') ]E(co„T)/21 . (9.9)

The reduced Wigner function therefore takes the form of
a Fourier integral,

W(q,p, t)

Note that the twofold integral over qo and po now in-

volves the Fourier transform Wo(kA+kA, kA —O'A) of
the initial Wigner function of the central oscillator. Simi-
larly, the nth bath oscillator contributes the Fourier
transform W(kAO„+kAo„, kAO„+k'Ao„) of its thermal
Wigner function (9.3),

W(k, k')= fdq„dp„e' " "W(q„,p„)

with the first moments given by (5.6) and the equilibrium
mean squares by (6.4) and (6.5).

Both Wigner functions, (9 4') and (8.5'), relax, as t +oc, —
to a stationary distribution which is of the form (9.5')
with & Qo(t) & ~0 and & Po(t) & ~0. In the partial-
equilibrium case (9.4) this statement is easily verified
from A(t)~0, X(t)~&go&,q, Y(t) +&P &0,

—,qand the
normalization condition Wo(0, 0)= 1.

In order to make contact with the classical theory of
random processes we now propose to discuss the equa-
tions of motion obeyed by the Wigner functions (9.4') and
(9.5'). By simply differentiating these functions it is easily
checked that in both cases the equation of motion is a
second-order partial differential equation of the form

dk dk
p & kq+ k'p)

2~ 2~
'

x Wo(kA (t) +k'A (t),ka (t) +O'A (t) )

XexpI —[k'X(t)+O'Y(t)+kk'X(t)]/2j .

W(q, p, t) =1W(q,p, t),

[f~(t)q+f„(t)p]
Bq Bp

(9.10)

(9.4')

The three functions A (t), X(t), and Y(t) which determine
the first and second moments according to (4.3), (4.7), and
(4.8) are now revealed as determining the evolution in
time of the whole Wigner function. This simple behavior
is, of course, due to the harmonicity of the Hamiltonian
(2.1) and the Gaussian initial statistics of the bath as-
sumed in (9.4).

In the constrained-equilibrium case (9.5) we can obtain,
after a similar reasoning, an even more explicit result. As
we have already noted at the end of Sec. V, the constraints
(5.1) do not affect the variances of the observables Qo and
Po which therefore take on their equilibrium values at all
times t )0. For the same reason we must expect and do
indeed find a Wigner function yielding thermal, i.e., van-
ishing cumulants of third and higher orders; i.e., the
gaussian

W(q, p, t) = 1

2 (&g'. &.,&P.'&.,)'"
Xexp I

—[q —
& Qo(t) &]'/2& Qo &,q

f~(t) = —(A '—AA)/(A ' —AA),

f (t) = —(A —AA )/(A AA ),—

dpi'(t) = —,
' Y—,' f~X f Y, ——

d~(t) = —Y——,
' X—,' fppX f~qX——

(9.4")

for the partial-equilibrium ensemble and as

f,(t) = —(A ' AA )/(A '—+Aa/0', ),
f~p(t) =(AA+Aa/II, )/(Az+Aa/Qf),

d (t)= —&P', &,g (t),
d, (t)= —&Qo&.g (t) —&P,'&„

(9.5")

The drift coefficients f~q(t), fez(t) and the diffusion coef-
ficients diaz(t), dz~(t) come out as

—[p —&P (t)&] /2&P &, I (9.5') for the constrained-equilibrium ensemble.
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In the instant-response limit (7.16) of Ullersma's spec-
tral strength (7.1), where the amplitudes 2 (t) and a (r) are
given by (7.17), the drift coefficients for the two cases
(9.4") and (9.5") become equal to one another and in-
dependent of the time,

2
fpq ———Ai, fop ———2I (9.11)

The diffusion coefficients, however, remain different for
the two initial ensembles. In the case of partial equilibri-
um we obtain for r & 0

il [Bi+lv(i 0 I—)]e
d (t)=2I (P,')„+ e 'Re e'"'g

1Q
r

~2( 2 ) (P2 )
2vrhv r, ;n,~ I(&+.iI +ilv)e

e 'Re e''
(9.4"')

For the constrained-equilibrium case, on the other hand,
the diffusion coefficients contain no thermal transients
and read

d„=2r (p', ),„,
d~, =0', (Qo)„—(Po)„.

(9.5'")

We should accompany the presentation of the asymptotic
results (9.11), (9.4'"), and (9.5"') with a warning, however.
Due to the noncommutativity of the limits t~0 and

A, ~no in A(t) and A(t) with A(t) given by (7.10), the
above asymptotic results hold for t &0 only. Their in-
discriminate use in solving initial-value problems for the
evolution equation (9.10) can amount to tampering with
initial slips and lead to errors.

In the classical limit (7.20) we easily infer from (7.21)
that for both initial ensembles diaz

——2I k&T and de ——0.
The evolution equation thus turns out to be the Fokker-
Planck equation for the Ornstein-Uhlenbeck process with
the asymptotic ( t & 1/A, & 1/v) generator

2 a'
p+ (2rp+Q2iq)+

Bq Bp Bp
(9.12)

B2
p+ (2I p+0',q)+, 2I'(P'),

Bq c1p Bp

+
g g

(~I'&Qo'&.,—&Po'&.,)
Bp elf

(9.13)

with the equilibrium moments given in (8.3) and (8.4).
We should note that the diffusion matrix has one negative
eigenvalue, due to the off-diagonal matrix element d~~.
The potential relevance of the off-diagonal element de is
obvious from Fig. 3. It is only in zeroth order in I that
the generator (9.13) becomes a genuine Fokker-Planck
operator which is, in fact, of the classical form (9.12) save
for the replacement of the classical thermal energy k&T
by the quantum expression E(Q, T).

No useful analogy to any classical stochastic process
survives in the low-temperature limit (8.8). Not only is
the diffusion matrix nonpositive because of dz~(t)&0.
Worse yet, the difference of the diffusion coefficients
(9.4"') and (9.5'") shows that the diffusion matrix depends

The only other case with a time independent generator
is the one of short-lived thermal transients, I «v. For
T & 1/v & I/A, we have, again for both initial ensembles,

on the initial preparation of the heat bath. We should
also emphasize that the thermal transients in the diffusion
coefficients (9.4'") live as long as the ones in the mean.
squares (Qo(t) ) and (Po(t) ).

A(0) =0&3„(0)= —2I (10.1)

Assume, now, the partial equilibrium state of (4.1), and
(4.2) with given initial means (Qo(0)) and (Po(0)). Sup-
pose we want to calculate the time-dependent means
(Qo(t)) and (Po(t)) for t & 1/k, i.e., the asymptotic ver-
sions ( Qo(t) )„and (Po(t) )„.We may, of course, use the
exact results (4.4) and (7.11) and let A, ~co therein. We
thus obtain (Po(r) )„=(d /dt) ( Qo(t) )„and

(Po(t))„=A„(t)(Q (0))+A„(r)(P (0)) (10.2)

and conclude, with the help of (10.1), that the asymptotic
means extrapolation back to the effective initial values

( Po(0) )a„=—2I ( Qo(0)+ (Po(0) ),
& Qo(o) &..= & Qo(0) & .

(10.3)

Instead of employing exact results we can solve the
asymptotic equation of motion (7.16). We must then, in
order to recover (10.2), use the effective initial data (10.3).

Similar considerations apply to higher-order moments,
to the density operator, or the Wigner function of the cen-
tral oscillator whenever asymptotic equations of motion
are available. We have seen asymptotic evolution equa-
tions to arise both in the classical limit and for I «v.
For such asymptotic equations of motion to be useful they
must be accompanied with effective initial data. '

The effective initial values for the asymptotic second
moments can be read off the exact results (4.7)—(4.9),

X. INITIAL SLIPS

By dropping fast "mechanical" (-e ') and thermal
(-e "') transients from the quantities A(t), a(t), C(t),
X(t), and Y(t) and their time derivatives we incur impor-
tant initial slips whenever the limits A,—+ oo and v~ oo are
not uniform in time. We have, e.g.,
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( Q', (0) )„=( [Qo(0)]')+X„(0),

(P'(0))„=41' ([Q (0)]')—21 (IQo(0),P (0)I )

+ ( [P (0)]')+ Y,.(0), (10.4)

( t Qo(0) Po(0) I ) = —2I'([Qo(0)] ) +X (0) ~

X„(0)= —— p —&0,4%I Q
7T ~ V

The terms proportional to I are related to the slips we
have found for the first moments. No additional slips
arise in the classical case, as is clear from (7.21c) and
(7.21d) and the uniform convergence of a(t), A(t), and
A (t) with A,~ ao. In the case of short-lived thermal tran-
sients (I « v), however, we do incur "thermal" slips since
the formal limit v~ co is nonuniform in time for X(t)
and Y(t). From (8.2), (8.6), and (7.16) we determine

r

trix. We should mention once more that the asymptotic
means ([Qo(t)] ), etc. , take on a physical meaning for
times larger than 1/1, and 1/v; they meet all positivity re-
quirements then, of course. For instance, the quantity
X„(t) is easily seen, from (8.9e), to turn positive at a time
of the order 1/v.

Finally, the asymptotic Wigner function can also be ob-
tained from an asymptotic initial-value problem as

W„(q,p, t) =e "W„(q,p, O), (10.7)

provided there is an asymptotic time-independent genera-
tor like (9.12) or (9.13). The effective initial distribution
W„(q,p, O) can be read off (9.4'), assuming the partial
equilibrium ensemble,

dk'
W ( pO)= e"&+"''W,(k 2rk, —k)

2~ 2~
'

00

(i2+x2)2.p(x) =
(10.5) &&expI —[k X„(0)+(k') Y„(0)]/2] .

I

(10.8)

([Q,(0)]')=Pi'/4o', ([P (0)]')=o',

( I Qo(0) Po(0) J ) =0
(10.6)

For a sufficient degree of squeezing, i.e., for sufficiently
large o, the effective initial mean ( [Qo(0)] ) as given by
(10.4) and (10.5) becomes negative. Conversely, the effec-
tive initial matrix is restricted by the positivity of the ob-
servable initial matrix. It is quite easy to identify forbid-
den effective initial data which would imply, through
(10.4), negative eigenvalues for the observable initial ma-

and a similar result for Y„(0). It is only in zeroth order
in I that no slips at all appear. We should recall that to
that order the asymptotic evolution equation is of the
Ornstein-Uhlenbeck form, with E(Q, T) as the equilibri-
um energy.

The second moments (Q ), (P ), (QP) =( tQ, PI )
+i&/2, and (PQ) =( tQPJ ) —iR/2 form a non-negative
2&2 matrix at all times t )0. However, the correspond-
ing effective initial matrix, being an auxiliary quantity
rather than an observable one, may have negative eigen-
values. As an example, consider a squeezed coherent ini-
tial state such that

In the classical case this reduces to

W„(q,p, O)= Wo(q,p+2I q), k~T/A'&&A, && i
I +tQ

i

(10.9)

while in zeroth order in I, i.e., for the extreme weak-
damping limit we find the ideal no-slip case

W„(q p, O) = Wo(q, p) +0 (I ), A, »Q, ks T/A » I

(10.10)

The asymptotic initial weight W»(q, p, O) is not admit-
ted to all of the function space accessible to a genuine
Wigner function since the initial Wigner function
Wo(q, p) related to W„(q,p, O) by (10.8) must have a posi-
tive matrix of second moments. On the other hand, for
the integral in (10.8) to exist at all the initial Wigner func-
tion Wo must be sufficiently sharply peaked in k space to
compensate the growth of exp[ ——,k X„(0)]at large k.

We would like to conclude by touching upon a rather
subtle but conceptually important point. By transforming
the c-number evolution equation (9.10) into a master
equation for the density operator p of the central operator
we find

p(t) =l(t)p(t)

= —
~ [ 2 Po ——.'f„(t)Qo p(t)]+ —f„(t)[Qo, [Po,p(t) }]

1 1
2dtt (t)[Qo [Qo p(t)]]+ 2dtq(t)[Po [Qo p(t)]] . (10.1'1)

This being a rigorous equation of motion for both initial
ensembles considered, the positivity of the density opera-
tor p(t) is maintained at all times if given initially.

For both the classical limit and the weak-damping case
we may, as above, restrict our consideration to times
larger than 1/A. and 1/v. The generator l(t) then takes an
asymptotic time-independent form l and the asymptotic

I

density operator can be written as

p„(t)= e "p„(0) (10.12)

with an effective initial operator corresponding to the
Wigner function (10.8). For t & 1/A, , 1/v the asymptotic
density operator (10.12) approaches the exact one p(t) and
is positive. Neither the effective initial operator p„(0) nor
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the operator p„(t) for t & 1/A, , 1/v need be positive. It is
even known that generators l of the form as in (10.11)
with time-independent drift and diffusion coefficients can
transform positive into nonpositive operators.

For axiomatic approaches to master equations it would
be quite a challenge to identify the class of operators (con-
taining nonpositive ones) which are turned into positive
density operators by "nonpositive" generators I according
to the transformation (10.12) for sufficiently long times.
In microscopic treatments no conceptual difficulties arise
as long as I and p„(0) are consistently calculated and
correctly interpreted. Our exactly diagonizable Hamil-
tonian (2.1) combined with Ullersma's spectral strength
(7.1) has the special virtue of allowing for a rigorous
determination of l and p„.

XI. REMARKS ON UNIVERSALITY

As was already shown by Ullersma, the behavior of the
central oscillator is insensitive to the choice of the
strength function y(co) in the weak-coupling limit in
which I &&Q,v and A=coo. In fact, corrections to the
ideal weak-coupling behavior [I =0 everywhere in

~ 4 ~

A, A, A, C except in the exponentials exp( —I t)] arise only
in first order in I y'(cop)/y(cop). The latter parameter,
given by I /cop for the special spectral strength (7.1), obvi-
ously measures the relative variation of the strength func-
tion across the resonance at 0=coo.

For strong damping, however, we encounter a less
universal behavior. To illustrate it we propose to replace
Ullersma's strength (7.1) with

Q+i I = [(cop—Ka)/(1 —imK/a)] (11.5)

A(t)=
2 2 2 3

for t&1/I (11.6)
CC +n. K (I t)

The power law in (11.6) is due to the factor
~

x
~

in the
integrand in (11.4) which has a discontinuous third
derivative at x =0.

For the temperature-dependent quantities (Qp), q and
C(t) we employ (11.4), (6.4), and (6.9). At high tempera-
tures k&T~~AI =AQ, we have

( 2) B KC2

p2 ~2+ 2 2

C (t) = ( Qp ),q fort ~ 1/I(«)'

(11.7)

while the low-temperature results ( kB T «Rl =A'Q) read

While the case of imaginary Q [overdamping in A (t)]
cannot appear it is obviously possible to realize, by suit-
ably choosing cop, K and cc, any value for the ratio I /Q
without violating the inequality

~

Q+iI
~

&&a.
It is now quite straightforward to confirm Ullersma's

general result for I /Q « 1. For the strongly damped os-
cillator, on the other hand, more complicated expressions
arise. It suffices, for our purpose, to note the following
limiting results. The temperature-independent amplitude
A(t) is obtained from (11.4) and (6.8) as displaying an
algebraic decay,

y(Cp) = 2K(X CO

(~2+~2)2

The positivity condition (2.11) again implies

CXlC (COO .2 (11.2)

( g2 )
fl 7TKCX

I 4(CC+mK)

C(t) = (Qp ),qe "'[Q cos(Qt) —I sin(Qt)] .
(11.8)

In order to evaluate the frequency integral (6.3) we
must discuss the principal-value integral in (6.2),

P d y(co) Ka
1

x3 2

0 2 ~ 2 ~2+~ 2 ~2+X 2

(11.3)

As the frequency x changes from zero to infinity, this in-
tegral decreases monotonically from Kcc to zero. For
x =cc the decrease has gone half way, to Kcc/2. Since the
physically interesting special cases [(6.4), (6.5), (6.8), and
(6.9)] of (6.3) draw their important contributions from fre-
quencies much smaller than the cutoff a we may, accept-
ing relative errors of the order

~

I'+iQ
~
/a, replace the

principal-value integral (11.3) by its value for x =0, i.e.,
by ~a.

Thus simplified, the frequency integral (6.3) takes the
orm

The reason for the algebraic decay of the correlation
function at high temperatures is the same as in the case of
the amplitude A (t). At zero temperature, on the other
hand, the integrand in the frequency integral representing
C(t) is regular at x =0 since

~

x
~

E(x, T)~fix l2 for
T~O; this is the reason for the exponential behavior of
C(t) in (11.8). Of course, there are algebraic tails in the
temperature-dependent corrections to C(t) in (11.8).

We must conclude that the strong-damping anomalies
depend rather critically on the spectral strength y(co). In-
terestingly enough, both the "ultraviolet" (co) ct) and the
"infrared" (cp —+0) properties of y(cp) enter sensitively. It
also follows from the above discussion that either the am-
plitude A (t) or the correlation function C(t) at low tem-
peratures must decay algebraically provided y(cp)-co"
with n integer as co —+0.

( If ] ) d ~ ~ f ( )

cc +m K
—

~

x (Q+il )—

where the complex frequency A+i I is given by

(11.4)
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