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Information theory and Riemann spaces: An invariant reformulation
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A geometric representation for information theory is introduced by recourse to a covariant formu-
lation, according to the customary procedure employed in connection with Riemann spaces. The
central tool of this representation is the metric tensor that characterizes the particular dynamics of a
given system and yields the corresponding quantal invariants.

I. INTRODUCTION

The information-theoretic (IT) approach to statistical
mechanics has been pioneered by Jaynes' more than twen-
ty years ago. Since then, numerous applications of his
ideas can be found in the literature, especially in con-
nection with approaches to irreversible thermodynamics.
Recently, several studies have provided a way to insert
IT concepts into quantum dynamics, thereby giving rise
to an interesting and suggestive combination of the micro-
scopic and macroscopic conceptions of nature. For exam-
ple, a connection between IT and the Ehrenfest theorem
has been outlined and expressions for usual thermo-
dynamical relationships in terms of the expectation values
of quantal operators have been derived. In particular,
"Onsager-like" coefficients can easily be derived using a
quantal linear-response theory.

These developments are based in the idea of regarding
the entropy as a constant of motion. This well-known
fact provides us with a dynamical conception of the entro-
py, a quantity broadly used within thermodynamical con-
texts, although not often seen within quantum dynamical
ones. ' Quantal friction is also a good example of this
type of approach, as shown in Ref. 6.

In the light of the above-mentioned works, ' ' it may
be of interest to look into the possibility of extracting
from IT new insights into well-known concepts, and re-
gard it as a tool with which one can do much more than
reformulate statistical mechanics.

In this sense, it should be useful (and this is the aim of
the present effort) to carefully study the physical context
into which the two main ingredients of IT, the I agrange
multipliers IA,;] and the operator set IO;], are inserted.
This purpose is achieved by describing them as the
geometric elements of a Riemann space, each of them
having a covariant or contravariant behavior. This co-
variant formulation of IT results in the interpretation of A,

and 0 as dual spaces. Within this geometric representa-
tion, the Massieu-Planck function A,o is the potential
function of the vectorial field of operators IO;] and the
sources are the usual quantal dispersions.

As a bonus, we have outlined the procedure needed in
order to construct all the invariants of motion for a given
system, valid also for time-dependent Hamiltonians. As is
well known, these invariants provide us with two main re-
sults: the identification of symmetries and the solution of

the time-dependent Schrodinger equation.
This work is organized as follows: In Sec. II we give a

brief review of IT basic concepts, in Sec. III we outline
the covariant formulation of IT, Sec. IV is devoted to
some illustrative examples, and in Sec. V some sugges-
tions and conclusions are drawn.

II. THE MAXIMUM-ENTROP Y FORMALISM

(0&lp) =Tr[p(t)OJ]=OJ, j=0,1, . . . , M . (2.1)

The subindex "0" refers to the normalization condition
Trp= l. The operator is given, within the IT framework,
by

M
p=exp —A,o

—g AJ(t)0~. , (2.2)

I
lnp= —A,o —g A,q(t)OJ. (2.3)

in terms of the M+ 1 Lagrange multipliers, A,;,
i =0, 1, . . . , M, determined so as to fulfill Eq. (2.1). The
density matrix p 'maximizes the entropy, S[p] given (in
units of the Boltzmann constant) by

S[P]=—Tr(plnp) =A,o+ g A,J (0&/P), (2.4)

subject to the constraints given by Eq. (2.1). The opera-
tors p(t) and lnp(t) obey, respectively, the equations of
motion

i% =[H(t), p(t)]Bt (2.5)

We shall present here a brief summary concerning in-
formation theory and the least biased (probability) assign-
ment criterium, which is usually referred to as the
maximum-entropy principle (MEP). Within the IT con-
text, the statistical operator (or density matrix) p is con-
structed' starting from the knowledge of the expecta-

A A A
tion values, of, say, M operators OJ (00 I=identity-—
operator),

32 2455 1985 The American Physical Society



2456 E. DUERING, D. OTERO, A. PLASTINO, AND A. N. PROTO 32

and

i' lnp(t) =[H(t), lnp(t)] .
at

(2.6)

It is well known that if P is constructed so as to obey Eq.
(2.5), then S is a constant of the motion. Consequently,
one should endeavor to find those (relevant) operators
entering Eq. (2.2) so as to satisfy Eq. (2.5) [or Eq. (2.6)] in
order to guarantee that S is a constant of the motion. Us-
ing Eqs. (2.2) and (2.5) it is easy to verify that the relevant
operators are those that close a partial Lie algebra under
commutation with the Hamiltonian H,

[H(t), oj ]= g g,qo;,
j=0

(2.7)

where the gj; are the elements (c-numbers) of a q &(q ma-

trix, G (which may depend upon the time if H is time
dependent). Then, the number of observables we need is q
[see Eq. (2.1)]. The case M &q is discussed in Ref. 5. For
our present purposes we shall assume M =q.

Equation (2.7) constitutes the central requirement to be
fulfilled by the operators entering the density matrix.
Moreover, the closure condition (2.7) on the 0~ leads to
the fact that the time-dependent Schrodinger equation [or
equivalently Eq. (2.6)] can be replaced by a set of coupled
equations for the A, s,

As we have pointed out before, the operators entering p
are those which fulfill Eq. (2.7); besides, the F(t, to) ma-
trix (or G) contains all the information about the dynam-
ics of the Hamiltonian. Within this context, Eqs. (2.11)
and (2.13) define covariant vectors with respect to the
transformation characterized by F(t, to). This matrix is
not necessarily a unitary one. Instead, A,

' is defined as a
contravariant vector by Eq. (2.9).

III. INFORMATION THEORY
IN COVARIANT FORM

A. The vectorial equation

As demonstrated in the preceding section, the [I,; I and

t 0; I sets can be recast in contravariant (I,') and covariant
(0, or &0 ),) forms, respectively. In doing so, the entropy
[Eq. (2.4)] reads

(3.1)

which clearly allows for a geometrical interpretation of
the invariance of S. In the Heisenberg representation,
and using Eqs. (2.13) and (2.14), the surprisal lnp [Eq.
(2.3)] becomes

(3.2)

~i g gili(l ~ (2.8)
However, in order to be able to define vectorial

Riemann spaces with &0 ), (or 0,) and A.
' as elements, we

need to define scalar products of the form
which is easily obtained using Eqs. (2.2), (2.5), and (2.7).

The Lagrange multipliers are related to & 0„/p) by'

(2.9)

The temporal evolution of the expectation values of the
operators [Eq. (2.1)] can be easily obtained by recourse to
the condition

or

and

O =ooo

(3.3a)

(3.3b)

(3.3c)

S(t, ) =S(t), (2.10)

as shown in Ref. 5 or using sum rules. Of course, in both
cases, the result is (using a vectorial notation)

where the "zero" index refers to the "original" [before the
F(t, to) temporal transformation is applied] vector. We
now need to find the metric tensor of the space, e (with
ee ' = 1), for which

(2.11) & 0 &'=e&0 & (3.4)

where &0)„&0), are row matrices and F(t, to) is a
square matrix defined by

(2.12)

where on the right-hand side (rhs) we are referring to a
transposed vector, or in other words, we need to find the
transformation which allows us to change the character of
the vector from covariant to contravariant class or vice
versa. Additionally (and equivalently),

In the Heisenberg representation we can also write

0, =0, F(t, to), (2.13)
0 '=eO, ,

and, correspondingly,

(3.5)

which, in respect to the Lagrange multipliers A. , can also
be arranged as a column matrix,

X'=F '(t, t, )A,
' . (2.14)

The subscript or superscript t or to in Eqs. (2.11) and
(2.14) indicates whether we are working with a covariant
or a contravariant vector, respectively.

(3.6)

I' eI'" =e, (3.7a)

where, of course, e and e' are determined so as to satisfy
the relations (3.3). Thus, using Eqs. (3.3) and (3.4) we find
(F indicates transposed matrix)
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and, equivalently,

F —]. iF—& (3.7b)

In operator form, Eq. (3.11c) reads

z, =-,' [o„o,] —&o, )(o,), (3.11d)
In particular, if F is a unitary matrix (which is not always
the case) we can write

[F,e]=0 and [F e']=0. (3.8)

The metric tensor will be, in general, of the block form

e l
e' (3.9)

and will contain 2(q+1)X2(q+I) elements, with q de-
fined in Eq. (2.7).

We may ask ourselves whether there is a unique choice
of the metric e. The answer is a qualified no, and, more-
over, we argue that this constitutes an advantageous facet
of our formalism. Indeed, we are not tied to any specific
basis. Were we to be so tied, the choice would be certainly
a unique one (cf. Ref. 9, Chap. 2.III). In physical terms,
this would entail selecting specific numerical values for
our invariants, which we have not seen fit to do, as one of
the main advantages of resorting to tensor calculus is to
free ourselves from any basis. An obvious way to make
our choice of e a unique one would be to work with a
canonical basis defined by, for example,

&Po&i

&xo» 0

&po&2

(3.10)

In any case, as stated above, we wish to keep our for-
malism as general as possible, and will illustrate below,
with reference to some specific examples, how to select e.
It will be clearly shown that the lack of uniqueness does
not pose any difficulty whatsoever.

Until now we have dealt with the mathematical tools of
our approach, of which the metric tensor e is the most
important. Now we shall insert the elements of IT. Let
us begin with Eq. (2.9), from which we can write

a'x, a&o„& a&o &

BA BA BA BA,

v, (o)= —g J:„„ (3.12)

and

v, x&o&=o. (3.13)

The results (3.12) and (3.13) are a consequence of Eqs.
(3.7) and can be traced to the fact that the tensor metric e
is independent of the A, 's. Moreover, Eq. (3.11a) can be
rewritten as a Poisson equation,

(3.14)

Equations (3.13) and (3.14) show that the Massieu-Planck
function A,o (Ref. 10) is the potential function of an irrota-
tional field, whose sources are the quantal dispersions.
This is in agreement with Feynman s philosophy (path-
integral method). " An elementary example of Eq. (3.14)
is given by the specific heat of a canonical system.

If all the dispersions vanish, then Eq. (3.14) is Lapla-
cian, with the trivial solution

N

x,= —g (o, )x, , (3.15)

where by hypothesis (01 ) is independent of the A, 's and
the entropy is equal to zero. Of course, this situation ob-
tains for a complete set of commuting operators.

Summarizing, we have defined the gradient and rotor
of the (0) vector, by resorting to using the operators
which fulfill Eq. (2,7). Besides, we established in Eq.
(3.14) the relation between the quantal fluctuations and A.o
(which is equivalent to the partition function).

In the following subsection we shall delve further into
the physical meaning of the (direct-product) K space.

although this is not the only possible way of arranging
things, any other expression compatible with (3.11) being
equally acceptable.

We are now in a position to define the divergence and
the rotor of (0), with respect to A, ', if we are willing to
consider the latter as a "coordinate, " remembering that we
are working with an (N+ 1)-dimensional "space." We ob-.
tain

with
(3.11a)

x „=-,'([o,o„],) —(o )(o„), (3.11b)

where [,]+ denotes anticommutation.
For the sake of brevity, we leave the demonstration of

Eqs. (3.11) to the Appendix. The X space is the direct
Kronecker or tensor product of the (0 )„having, then, a
covariant character. The corresponding tensor K is thus

expressed as a (covariant) second-order tensor (0, is re-
ferred to the transposed vector)

B. The E space

K=OgO (3.16a)

or

re=(o)e(o). (3.16b)

As we have seen in the preceding subsection, the quan-
tal correlations K„~ play an important role in our formal-
ism (see Appendix). They can be conveniently expressed
by introducing the Kronecker product

rc, = —,'([o„o,] ) —&o, )(o, ) . (3.11c)
The temporal evolution is given, using Eq. (2.11) and the
usual rules of the direct product, by
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K( r) =[FF]K(rp ) = [F]2K'( tp ) (3.17a)

K(t) =FK(rp)F (3.17b)

K, =FK, F . (3.17c)

For the sake of simplicity, in the following we shall work
with square matrices.

The expressions we have derived above can be used in
combination with Eq. (2.4). In particular, taking the
derivative of Eq. (2.4) with respect to A,;, and using Eq.
(2.9), we obtain

as +& a(o rp) (3.18a)

for column vectors, or, equivalently, for square matrices,
by

(a) Construct the g matrix by implementing Eq. (2.7).
(b) Construct the F matrix, following Eq. (2.12).
(c) Finally, find the 8 matrix by solving the linear sys-

tem of q equations arid q unknowns [cf. Eq. (2.7)) that
arises out of Eqs. (3.7).

F=0 1

0 0 1

and, after solving the system (3.7), we find

e11 0 e13

(4.1a)

A. The free particle

For a free particle H=P /2m with the operator set

[ l,x,p I [which fulfills Eq. (2.7) (see Ref. 5)] we find, us-

ing Eqs. (2.7) and (2.12),

1 0 0

e= 0 0 e23 (4.1b)
and, using Eq. (3.11a) and the covariant notation

VgS = —K,k', (3.18b)

so that multiplying by A, we obtain the directional deriva-
tive of S,

e31 e23 e33

where the e,j are c-numbers to be determined. . The in-

dices 1,2,3 refer to the operators [1,x,PI, respectively.
Then

—A, ,VgS =A, 'K, A,'=o. . (3.19) OtO =I811+p(813+831)+[x,p]823+833p (4.2)

X'K,X'=X tFK ~X'=X'K P', , (3.20)

which is formally analogous to the entropy source (see, for
example, the illuminating report by Nicolis' ), with a pos-
itive definite sign. However, Eqs. (2.5)—(2.7) imply no en-

tropy variation and a continuity equation cannot be de-

fined within the (A, ,O) space. '

We can extend our formalism further by studying tem-
poral evolutions in the K space, and, using Eqs. (3.4),
(3.5), and (3.11d), we can write (in covariant notation)

K'=e K,e,
and multiplying from the right by K„

(3.21)

tT is an invariant since, using Eqs. (3.17) and (2.14), we
immediately obtain

which is a linear combination of quantal invariants. [No-
tice that it is not necessary to fix an a priori value to the
lhs of (4.2), as explained above. ] Heisenberg's uncertainty
principle is seen to provide us with a seldom referred to
invariant. If we calculate (0,)(0'), then only classical
invariants are involved, as expected. For the vector X we
obtain a similar structure.

If, instead, we use the operator set

[ l,x,L =(px+xp)/2, p

which also fulfills Eq. (2.7), then we obtain a less trivial
invariant combination (the indices 4,5,6 refer to the opera-
tors x,L,p, respectively)

0 Ot= 181 I+( 186+ 681)P +846(x p +p x
K'K, =eK,eK, .

Using Eq. (3.17c), Eq. (3.19) can be rewritten as

K'K, =eK,eFK, F

(3.22)

with

+856(Lp' p'L )+866p'—

e„o

(4.3a)

=eFK, Fe FK, F 0 0 0 e46

=F 'eK, eK, F —2e46 es6

e16 e46 —e56 e66

(4.3b)

=F-'KPK ~ .

IV. EXAMPLES

(3.23)
and, for the mean values, ( ( 0, ) ( 0') ), only the first,
second, and fifth terms survive.

In this section we shall illustrate our formalism with
reference to some specific and simple examples. The
main objective here is that of explicitly showing how to
evaluate the metric e. The general procedure can be con-
sicely described as follows:

B. The harmonic oscillator

For a one-dimensional harmonic oscillator of frequency
tp (mass m) we obtain, following the same procedure as
before,
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2

+PlCO X
2ppl

L = T'(px+xp),

0,0'= e„I+(e2(+e(2)(mcox +p )

+e22[(mcox) +2(mcoL) +p ]

(4.4a)

(4.4b)

the nondiagonal elements of a generalized "stress tensor. "
For a number of systems greater than two, the corre-

sponding generalization is not simple, but in working it
out correlations of the form E;~k,EJJk)p . will appear.
Such elements do not appear to be useful in physics.

V. CONCLUSIONS

+e23 [(me@) [x,L ]+mco[L,p ]]
+mco e24, (x p —2L +p x ), (4.4c)

if the relevant set is chosen to be

II, (mcox),P, (mcoL) I, and only the first three terms
contribute to the mean value.

C. Larmor precession

The Hamiltonian is

H =coL,Sz, (4.5)

eB
2mc

(4.6)

is the Larmor frequency in an external magnetic field of
strength 8.

The set of relevant operators results I 1,S„,S» I and the
e matrix is

e11 0 0

22 23

where Sz is an operator corresponding to the Z com-
ponent of the spin (S =S„+S»+S,) of a particle of
mass I and charge e, such that

The formalism we have outlined deserves some addi-
tional comments. The covariant formulation of IT is a
compact representation of the dual spaces of the A, 's and
0's. The quantum invariants that we have found are the
scalar products defined in a space whose metric tensor is a
characteristic both of H and the set t 0, I. The procedure
can be easily extended to the product "space" K
(=OSO); Eq. (27) and the possibility of applying it to
generate an infinite number of independent invariants
may be regarded as a basic property of the covariant prod-
ucts.

Our central tool here is the metric e that characterizes
the particular dynamics of a given system and automati-
cally yields the invariant combinations of the operator set
defined by Eq. (2.1).

Within this geometric representation, the Massieu-
Planck function ko is the potential function of a vectorial
field of operators [Eq. (2.1)] (or observables [Eq. (2.4)]),
where the sources are the quantal dispersions [Eq. (2.5)].

Up to this point we have always assumed that the set of
operators defined in Eq. (2.1) closes an algebra. If this is
not the case, or if a "new" operator not contained in the
original set is taken into account, the entropy and the X's
are not well defined.

However it is possible, by means of a straightforward
calculation, to obtain

so that

0 —e23 e22 a(o )
m, n (5.1)

0,0'=e~~ I+e22(S „+S»)+e23[S„,S»], (4.8)
A. 2which is a sum of invariants of motion as both S„+S»

and [Sn,S»] commute with the Hamiltonian. As for the
mean values, only the first and second terms contribute.

and (A is a "new" operator)

a(a)
An

with

(5.2)

D. Sets of identical systems

An interesting feature of this formalism lies in the fact
that two systems described by the same H and 0, set also
generate invariants of the form

z' „=( [o„,o„],) —(o ) ( o„),
=([~,o ] ) —(a)(o )

(where 0 is the Kubo transform of 0).' '
Then (see Ref. 8 for further details)

(5.3)

(5.4)

0, '02' ——OP '02 (4.9)
+mA %+Am ~ +mn W+nm (5.5)

~11—~22 F 1 ~ 11—~22Ft ——t — ——tO- —to— (4.10)

where the indices 1,2 indicate to which system one is
referring. Also, except if [A,O ]=0, [O„,om] =O.

Besides, as a consequence of Eq. (5.2) we can write

v, n, (o)=J, (5.6)
or

e K t' e E t ——F 'e K t e K t' F (4.1 1)
where the components of J are

Jp =&mn —&nm (5.7)
A A

(with %~2 ——0~ X02, etc.), and where 0,'0'; can be con-
sidered as a sort of generalized "pressure" and O,JO'; are

(J represents a hyperplane with A, =N —2 dimensions).
We see that in this case the (0 )-field is not a conserva-
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tive one. In other words, the change from A,o to Ao is
"path dependent, " and, of course, the system follows that
one that increases the entropy.

As a concluding comment we can say that this covari-
ant formulation provides us' with a rather powerful
methodology for dealing with the basic elements of IT,
the A, 's and 0's, and may shed some light upon their
dual-space characteristics.

aA, O
e = —Oj&J + Mj

l

e= —(O, az, +(O, )SX, ) .

Then, it is readily verified that

(A8)
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a~
=+p

where OJ is the Kubo transform of OJ.
The desired expression is then

(A9)

APPENDIX

To analyze the meaning of the correlation coefficient
K~„, defined in Eq. (3.11a), we begin taking derivatives in
Eq. (2.4) with respect to a particular AJ,

5„,(D„)+A,„
as ax, ~ a((o„/p) )

5

(A 1)

where 5„J takes into account the BA,„/M~ derivative.
Remembering Eq. (2.9),

q

g A,,O„=lnp —A,o, (A 1 1)

the following equation obtains:

as
ai, .

= g A,„(0„)( OJ ) —Tr[ pOJ (lnp —A,o)

, Tr[(pO—~O„+O„pOJ) —(OJ ) (0„)].
j

(A 10)

Consequently, if Eq. (A10) is inserted into Eq. (A3), we
obtain a more useful expression. After using

asapa:== —(0 /p),

we find

(A2)
+p(lnp —A,o)OJ] . (A12)

a((o„/p) )

BA,J
A p (A3)

The next step is to find an adequate expression for the
derivative of the expectation value with respect to A,J. It
is readily verified that

The Kubo transform can be easily eliminated from Eq.
(A12) by introducing lnp into the Kubo transform of OJ
and noting that p and lnp commute.

Finally, we arrive at

———g k„(—,
' ([0„,0,]+)—(0„)(0,))

J r=l
( 0„/p) = —,

' Tr(pO„+O„p) . (A4)
(A13)

In taking the derivative of Eq. (A4) with respect to AJ. , we
factorize in the following way, and, comparing Eqs. (A3) and (A13), we obtain

p=e 'exp —g A,„D„ (A5) B(D /p) (2) (A14)

eA+E eA(1+e)

with (derivatives taken only with respect to AJ)

(A6)

g A,„O„+AJOJ. ,

r=0
r+j

(Aj)

and in dealing with the exponential function on the rhs we
apply the well-known expression

We have thus seen that the variation of the expectation
value of one of the O„with respect to a given A,J. Lagrange
multiplier is given by the correlation between the corre-
sponding 0, and 0j operators. When 5XJ values can be
measured (i.e., the temperature, chemical potential, etc.),
we obtain, through Eq. (A14), the quantal-statistical
correlation between the involved operators. Equation
(A14) differs from Eq. (A10) in that it does not'contain
the Kubo transform.
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