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Non-Markovian theory of activated rate processes. V.
External periodic forces in the low-friction limit
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The escape of a particle from a potential well under the influence of both thermal (generalized

Langevin) noise and friction and an external periodic driving force is studied in the low-friction lim-

it. We consider three models: (a) additive thermal noise and a completely coherent driving force; (b)

additive thermal noise and a phase-diffusing driving force; (c) coherent driving force and multiplica-

tive random noise. The last two models are characterized by dephasing which affects the escape
dynamics both qualitatively and quantitatively. In all three cases the escape rate is resonantly

enhanced; however, while the first case is characterized by a finite energy peak in the steady-state
distribution function, the presence of strong dephasing in the other two cases leads to a generalized

Boltzman distribution with an effective temperature which depends resonantly on the external

pumping. The relevance of this work to recent experimental results on the resonant activation of a
Josephson junction out of its zero-voltage state is discussed.

I. INTRODUCTION

In a recent series of articles' we have generalized
Kramers's treatment of escape of a Brownian particle
from a potential well to the whole friction range, "'
to non-Markovian situations, " ' " ' to situations which
include the effects of coupled nonreactive modes, "s' and
to the presence of multiplicative random noise (position-
dependent friction). ""' Many authors have also over the
years extended Kramers's theory in these and other direc-
tions.

A related, relatively unexplored problem is the escape
of a Brownian particle out of a potential well in the pres-
ence of an external periodic force. Processes such as mul-

tiphoton dissociation and isomerization of molecules in
high-pressure gas or in condensed phases, laser-assisted
desorption, and transitions in current-driven Josephson
junctions under the influence of microwaves may be
described with such a model, where the periodic force re-
sults from the radiation field.

Some time ago we present a solution for the case of a
truncated harmonic well in the low-friction Markovian
limit. For this case the escape rate is given by the inverse
mean first-passage time for a particle starting with an en-

ergy sampled from the steady-state distribution to reach
the critical escape energy. The equation of motion for
this case is

x'+yx+co x =A cos(coR t)+( I/M)R (t), (l)

where x is the coordinate of the harmonic particle charac-
terized by a mass M, frequency co, and friction coefficient
y. A is the amplitude of the external force divided by M,
of frequency coR. The thermal noise R satisfies

( R ) =0, (R (t, )R (t2) )= 2ykR T5(t1 —t2),

where T is the temperature and kB the Boltzmann con-
stant. The steady-state distribution for this model was
found to be

(E1/2 E 1/2
)
2

Pss(E) =XEexp ~2+ ~2R kB T

where

M(co +coR )A

4l(~ —~R ) +y ~R1

and the mean first-passage time to reach the threshold en-

ergy ER is (for co=coR )

~= (ykR T)

(E1/2 E 1/2)2

kBT

For anharmonic potential surfaces the problem becomes
much more complicated: The underlying deterministic
equation (zero-temperature limit) may have several locally
stable-state solutions corresponding to resonances of the
external force with higher harmonics and subharmonics
of the potential well. These give rise to the phenomenon
of steps in the current-voltage characteristics of the

y (
1/2 E 1/2)2

&( f dz exp — . (5)
kBT

For high barriers or low temperatures (ER E~~kR T)—
Eq. (5) reduces to

1/2
1 4~E EB—E

exp (6)
B B
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microwave-driven Josephson junction. For a strong
external driving force the deterministic motion becomes
chaotic and it seems impossible to identify a slow dynam-
ic variable for a convenient reduction of the problem.
[The simplicity of the solutions (3)—(5) stems from the
fact that in the low-friction limit the energy near steady
state varies much more slowly than the phase. ] An
analytical treatment is therefore possible only in the
weak-oscillating-force limit. '

In many physical systems the situation becomes simpler
due to the inherent stochastic nature of the driving field
itself. To see the possible significance of this effect con-
sider a conventional Coz-laser pulse with duration of 10
nsec and bandwidth of 1 cm ' incident on a diatomic
molecule characterized by an environment-induced energy
relaxation time of —100 nsec. The laser pulse is obvious-
ly not uncertainty limited and its width is associated with
the random fluctuations in its phase and/or amplitude.
For simplicity we consider random phase fluctuations,
whence the external field is

t
F(t)=Fpcos

coact

+ f dt'P(t ) (7)

x+ f drZ(t r)+ — =F(t)+ R(t),1 BV(x) 1

0 M Bx M (10)

{R(t))=0, {R(t,)R(t, ))=Mk~TZ(t, —t, ),
where the external driving force satisfies Eqs. (7)—(9). We
consider this system in the low-friction limit [Z(co) «cp
where Z(co) is the Fourier transform of Z(t)], and show
that the assumption of rapid phase randomization of the
driving field makes it possible to derive a reduced
Fokker-Planck equation for the system's energy, which in
turn is used to obtain a simple equation for th'e low- .

friction escape rate. This should be contrasted with the
deterministic limit (I ~0, T +0) of the same —model
where the energy and phase variables vary on the same
time scale, giving rise to multiple field-drive steady states
and, for strong enough driving, to deterministic chaotic
motion.

The observation that rapid dephasing of the driving
force results in a simpler description of the stochastic
dynamics suggests that, since the phase of interest is
presumably the relative (difference between the system

with P being a Gaussian random variable

{y(t)) =0, {y(t])y(tz) ) =21 6(t, t )—
so that

{E(t&)F(tz))=Fpexp( —I
~

t& tz
~

)cos[co(t& ——tz)] .

(9)
I ' is the inverse correlation time and I may be shown
to be an additive part of the beam spectral width. For the
present. example ~, is thus 10 " sec. This is much short-
er than the energy relaxation time, so that in this respect
the radiation field is similar to a thermal bath. In partic-
ular, phase coherence necessary to generate deterministic
chaos does not exist in this situation.

In Sec. II we consider a model which is the anharmonic
and non-Markovian analog of Eq. (1),

1 dV(x)
M dx

I

—f drZ(t —r)U(r)

(13)

and the driving field) phase, similar simplification will
arise from dephasing processes associated with the motion
of the system. This leads us to consider (in Sec. III) such
dephasing processes which arise from the presence of the
thermal noise R(t). In this context we find it useful to
generalize Eq. (10) to include multiplicative noise terms

g (x)R (t). In the presence of such terms [and also for the
case of purely additive noise if the potential V(x) is
anharmonic] it is possible, in analogy to quantum statisti-
cal mechanics, to distinguish between pure dephasing
( Tz) processes and dephasing associated with energy re-
laxation (T&) processes. We confirm in Sec. IV our ex-
pectation that in the presence of strong internal dephasing
processes reduction to a simple energy Fokker-Planck
equation is possible and an expression for the low-friction
escape rate easily follows.

The validity of this model to describe laser-induced re-
actions in condensed phase is uncertain, even though such
models have been used for this purpose before. ' '" The
reason for this is that many laser-induced processes are
better modeled as a quantum-mechanical system involving
only the limited number of discrete states which resonant-
ly interact with the radiation field. In other cases where a
classical model is advantageous because the number of
quantum states is too large we should be concerned about
rapid thermal relaxation and consequently heating of the
environment, in contrast to the model assumption of fixed
temperature. Provided that this assumption holds, the
present model should be useful for quick estimates of the
effects of oscillating driving fields on escape processes. In
this respect it should be mentioned that some of the
current experimental work on laser-induced desorption
mostly uses the laser as a fast heating device. It is of
great interest to perform similar experiments using the
laser to excite directly the adsorbate-substrate bond. '

Such a process will be directly related to the calculation
described below.

A recent experiment by Devoret et al. has demonstrat-
ed that the transition from the zero-voltage state to the
nonzero-voltage state of an underdamped current-biased
Josephson junction may be resonantly activated by a weak
microwave perturbation. The model discussed in Sec. IV
is directly relevant to this experiment. We further discuss
this application in Sec. V.

A recent paper by Faetti and Grigolini' discusses the
effect of an external radiation field on the escape of a par-
ticle from a potential well. These authors discuss the
high-friction (diffusion) limit in which the well motion is
overdamped leading to elimination of resonance phenome-
na. Here we are concerned with the opposite low-friction
limit and with the resonant response of the activation pro-
cess.

II. PHA$E-DIFFUSING DRIVING FIELD
IN THE LOW-FRICTION LIMIT

%'e start from the I.angevin equations
X =U,
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where R is a Gaussian random function satisfying
(R & =0 and

y= dtZ t =Zo,

(R (t, )R (t, ) ) =Mks TZ(t, —t, ),
(F(t, )F(tq) }=MY(t) tp—) .

(14)

(15)

and where Z„',Z„', Y„',Y„' are cos and sin Fourier
transforms, e.g.,

u (J,P) = g u„(J)e'"& (1&)

[note that u„(J)=

intro(

J)x„(J), co(J)=BE (J)/BJ].
Using the method in I (this method involves calculation

of moments of the form ([bJ,(r)] [bP, (r)] ) where
bJ,(r) = dt'J(t'). In this calculation we neglect, as

t
usual, terms of order r", n) 1, and also terms of order

[Z(to)/co]", n ) 1. Z(co) is the Fourier transform of Z(t)
and the latter approximation corresponds to the low-
friction limit) we obtain the following Fokker-Planck
equation for P(J,P, t):

BP(J,y, t)
0 + 1 (19)

Lo e(J) k+T—— +co(J) +I (J) z
—A(J)B B B B

'=aJ ' aJ B$2

L, = p(J) +A.(J) q
+g(J)B B B B

BJ BJ BP~

where'

(20)

(21)

The correlation functions Z(t) and Y(t) decay to zero on
time scales r, and r," respectively. We assume that the
time scales characterizing the process satisfy

~(E) '&«„r",«(d ln(E)/dt) (16)

where tu(E) is the frequency associated with the potential
V(x) and with the particle's mass M and energy E.
Under these conditions we can use a reduction procedure
identical to that described for the purely thermal case
[Ref. 1(e), henceforth referred to as I] to derive a Smolu-
chowski equation for the energy. To this end we
transform (x,u) to the action-angle coordinates ( J,P) and
expand

x (J,P) = g x„(J)e'"~, (17)

Z„'(to) = f dt Z(t)cos(naut),

Z„'(tu) = f dt Z(t)sin(neet)

and depend on the action J through the J dependence of
to. Integrating over P and using the fact that P has to be
periodic in P we get [setting P(J)= f dPP(J, Q)] the
Srnoluchowski equation

P

BP(J t) B k
Be(J) k&T +co(J) P(J, t)

at

+ p(J) P(J t),

where J is the action variable. %'e can get the corre-
sponding energy equation using the transformation
J~J(E), dJ =dE/co(E). This leads to

Di(E) k~T +1 co(E)P(E,t)BPEt B

Bt BE - BE

+ D~(E) [cu(E)P (E,t)]a a

with

D i (E)=to(E)e(E),

D~(E) =to(E)p(E) .

(30a)

(30b)

BP(E,t)
at

a aDi(E) kaT, tt(E) +1 tu(E)P(E, t)

The results (29) and (30) are a generalization of the
energy-diffusion equation obtained in the absence of the
external phase-diffusing driving force (Dz ——0). It is in-
teresting to note that (29b) may be written in the form

e(J)=2M g n x„Z'„,
n=1

'2
8x~ dxo

I'( J)=2Mkg T g Z '„+Mkg T
dJ

d (x„)
&(J)=co(J) MkgT —co(—J) g n

dJ „ ( gJ

(22)

(23)

(24)

(31)

where the energy-dependent effective temperature is given
by

Dp(E)
T,tt(E) =T +

BD1

The general steady-state solution (BPss/Bt =0) of pq
(31) is

p(J)=2M g n'x„'Y'„,
n=1

2
8x~

A,(J)=2M g Y'„,
dJ

d (x„)
g( J)=M Q Y'„,

dJ „ 1 dJ

(25) Pss(E) =

(26)

where

A1 S
exp —f dE'P(E')

f ~ dE'P(E )

co(E) o D ) (E') . E'

(33)
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/3(E) =[kg T,tt(E)] (34)

jss = —Di(E) P '(E} +1 to(E)Pss(E) =~2 ~

dE
(35)

The equilibrium solution (in the presence of the driving
field) corresponds to zero current,

'

t0(E)
exp —f dE'P(E') . (36)P,q(E) =

In the very-low-friction limit the barrier energy Es
may be considered to be an absorbing boundary for the
diffusion motion described by (31), i.e., Pss(Es) =0. This
and Eq. (33) imply

E'
A

&
——Az f dE', exp f dE"P(E") . (37)

D, (E')

The rate is given by
E~

k =jss f dE Pss(E)

which, using (33)—(38), results in

(38)

and where A
&

and A2 are constants. One of them may be
determined given a normalization condition and the other
is easily shown to be the steady-state current

%'e see that T,~~ goes through a maximum near the reso-
nance condition to~ ——to (to is the oscillator frequency).
The phase-diffusing driving force results in a thermallike
kinetics with a renormalized temperature which is
resonantly enhanced relative to the bare temperature.

(c) The result just discussed is in sharp contrast to that
obtained for a coherent incident radiation field. For this
case in the harmonic limit the equilibrium distribution is

given by Eq. (3) and has a maximum for E =E where

resonant behavior enters through the resonant nature of
E, Eq. (4). In the present case the driving field enters
through the effective temperature. Physically the differ-
ence between the two situations arises from the fact that
in the former one the deterministic ( T~O) system has a
well-defined phase relative to the radiation field while
here, because of the field's phase diffusion, this coherence
is lost and the field operates in this respect as a tempera-
ture source. Remarkably, this effectiue-temperature source
still maintains its resonance properties.

(d) As in other calculations of the escape rate a first-
order kinetics characterized by a constant rate is valid
only when the well depth is much larger than kz T so that
the long-time dynamics reflects the establishment of a
quasisteady distribution in the well. Note that the mean
first passage time to go from some initial energy Eo to Es
is given by

Z(t)= ~ e
+C

Y(t)=F e "'cos(cozt) .

(40)

(41)

~, and &~=I ' are the thermal and the driving-force
correlation times, respectively. Equations (22) and (25)
become [in the harmonic-oscillator case only the term
n= 1 appears and x~ (J/2M')'r =co——'(E/2M)'~ ]

e(J)=-J y
1+(cow, )

()JF I
I +(co~ —co)

(42)

(43)

(in (43) we disregard a small term proportional to
I [I +(cog+co) ] '). Using Eqs. (30), (32), (42), and (43)
we get

P~ 1+(ter, )
kg T,g ——k~ T+

2~y 1+[(co~—~)/r]' ' (44)

(39)

The following observations can be made concerning
these results.

(a) When P(E) is replaced by (k&T) ' the result (39)
becomes identical to the low-viscosity rate obtained in the
purely thermal case (see paper I).

(b) The effect of the phase-diffusion driving force enters
through the (generally energy-dependent) effective tem-
perature T,tt(E). To see this effect more explicitly we

may consi'der the harmonic-oscillator case together with
the simple choices

(45)

and that another common expression for the steady-state
rate is

k = f dE Pss(E)~(E~,E) (46)

For sufficiently deep wells, ~(E~,EO) is a very weak func-
tion of Eo up to energies close to Ett so that for a tem-
perature sufficiently small relative to Es the results (46)
and (39) are practically identical.

(e) The qualitative difference observed between the ef-
fect of a fully deterministic and a phase-diffusing periodic
force has been attributed to the rapid elimination of the
relative phase between the particle motion and the driving
force. This suggests also that fully deterministic driving
forces may lead to stochastic dynamics similar to that ob-
tained here (i.e., governed by a field-dependent effective
temperature), provided that the thermal fluctuations af-
fecting our system result in a rapid erasure of the same
relative phase. In the harmonic-oscillator example of Ref.
6 (reviewed above) such a dephasing process is absent (due
to linearity of both the system's deterministic motion and
of its coupling to the bath). As we shall see below, when
strong dephasing prevails (usually a consequence of multi-
plicative random noise and/or strong anharmonicity of
the deterministic motion) the energy-diffusion equation is
again controlled by a field-dependent effective tempera-
ture. Before turning to this we shall briefly discuss the
origin of dephasing effects in classical stochastic dynam-
1cs.
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III. DEPHASING IN THE LOW-FRICTION LIMIT

1 dV(x) t

M dx
—f(x(t)) j drZ(t —r)f(x(r))v(~)

0

+ f(x(t))R(t),1
(48)

(R (t) ) =0, (R (t, )R (t, ) ) =Mk~ TZ(t, —t, ) (49)

Dephasing process are usually discussed in their
quantum-mechanical context, referring to the destruction
of the quantum-mechanical phase of a system due to its
coupling to the thermal environment. It is customary to
distinguish between pure (proper) dephasing ( T2 ) process-
es, which lead to phase destruction without energy
change, and total dephasing, which includes also the ef-
fect of energy-changing (T, ) interactions. In quantum
mechanics pure dephasing is associated with the diagonal
(in the system energy eigenstate representation) part of the
system —thermal-environment interaction. As we show
below, the analogous process in classical mechanics is
often (but not necessarily) associated with the presence of
multiplicative random noise.

Several authors' ' '""' have recently discussed the ef-
fect of multiplicative random noise on the escape of a
Brownian particle out of a potential well. For the low-
friction limit of the non-Markovian problem modeled by

(47)

action-angle representation

aH
aJ

a VsB

ay
a(Hv + Vsa)

aJ

(52')

(52")

where H is the total Hamiltonian (including the thermal
environment), Hv the system's Hamiltonian, and VsB the
system-bath interaction. Expanding

VsB —— g V„' '( J)e'"~, (53)
n = —oo

where V„' '(J) depends on J and on the thermal bath
coordinates, it is obvious that the n=0 term of (53) leads
to a time dependence of p due to the system-bath coupling
which is not associated with a corresponding time depen-
dence of J. The n=0 term in (53) is thus a source of pure
dephasing ("T2 processes") while the n&0 terms induce
both phase and energy relaxation.

For a harmonic oscillator [where x (J,P)
=v'2J/Mcocosg] pure dephasing interactions can result
only from contributions to Vsn which are nonlinear in x.
In general, however, even linear system-bath coupling
may lead to pure dephasing. For example, for the Morse
oscillator ( V(x) =D I exp[ —(x —x )/a] —1 j ) it may be
shown that

we have shown""' that the energy distribution evolves ac-
cording to the Smoluchowski-like equation

ap(E t) a D (E) kz T + 1 to(E)P (E,t)

2A.2

xp( J)=x —a ln
1+A '

where

A, = 1 J/(2MDa —)'

(54)

(55)

where

D (E)=2M'(E) g n
i
G„(E)

i
Z„'(tp(E) ),

n=1

(50)

(51)

so that even linear (in x) coupling leads to a pure dephas-
ing contribution. In order to apply these observations to
the problem described by Eqs. (47)—(49) we follow the
procedures of Refs. 1(b) (paper I) and 1(h). Defining

G(x) = f dx'f (x'), (56a)

and „where G„(E)=G„(J(E)) is related to G (x)
= I dx 'f (x ') by [using the transformation ( x,v)

~(J,P)]
6 =fx (56b)

G(J,P) = g G„(J)exp(in/) . (52)
and transforming G(x,x)~G(J,Q), G(x,x)—+G(J,Q) ac-
cording to

Note that D~(E) of Eq. (30a) is a special case of Eq. (51)
in which f (x) =1 and G(x) =x.

It should be noted that Eq. (48) may be derived from a
microscopic model' ' only for the special case where the
friction kernel does not depend on the particle's velocity.
This is not generally the case and a rigorous derivation of
reduced stochastic equations describing the motion of a
subsystem coupled nonlinearly to its thermal environment
leads to more-complicated equations (see Refs. 18—21 for
further discussions of this issue). Equation (48) may still
be derived for special cases. Here we use this equation as
a model for a simple demonstration of the dephasing pro-
cess.

Pure classical dephasing may be understood in terms of
the general equations of motion for the particle in the

G(J,P) = g G„(J)e'"&,
n =—oo

oo

G(J,Q) = g into(J)G„(J)e'"&

(57a)

(57b)

oo

nn'coG 6 Z e""+"'~
n n' n'

In= —oon = —oo

oo

+iR (t) g nG„e'" (58)

[note that G„(J)=into(J)G„(J)], we get [in analogy to
Eqs. (29) and (39) of I]
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iti=co+M g g in'ci)G„Z„e'"+" '&e(+
dJ

~ (t) g " in/
dJ

OO

Here Z (co) — dt '" 'Z
b b

e (t)dt. Obviousl
o ut not to J and ma

d o f h
n Ref. 1(h), Eqs. (58) and (59) were sh

following Fokker-Planer- anck equation for P(J,i', t):

p(J,p, t) a
e J) kii T +co(J) P(J,i', t

(59)

+I (J),—Q(J) P
ay' ay

' (60)

where e(J), I (J), and 0(J) are given bwh, , n are given by equations similar

In particular
w ic x„ is replaced

2

I ( J)=2MksT
2

Z '„(co(J) ) +Mks Ty
dJ

field it imimplies that the phase diffuses du to the therma

obt
.

o ~t '
yo hisuan i ative criterion for th

an icipate results of Sec.
the following sim lif' d f

ec. IV and consider

the phase, P, in the
p i ie orm for thee time evolution of

adds a term p(x)cos(m t
e presence of an exexternal field which

cos ~& t) to the Hamiltonian

~r~(t) cosP cos(co+ t), (63

where (p) =0 and (p(0)p t =25 t;p p t =25(t); 10 is giv'en b (62)
is a coefficient inin the expansion

quation (62 is a
sion of Eq. (73b)

is a simplified ver-
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re o t e phase most e
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e istribution Pss(~) associated with Eq.
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dI 0(J)=Mk~ Ty dJ (62)
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when the characteris

'
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p) /I () «1,dJ
(65)

We now focus on the model described by Eqs.
(47)—(49), now supplemented by the presence of an oscil-
lating force

(66)

where we should keep in mind that dp) /d J and I o appear
here as leading orders of more complicated expressions.

/

IV. EXTERNAL OSCILLATING FORCE
IN THE FAST-THERMAL-DEPHASING LIMIT

co( J)»r, ' »y = f dt Z(t) (72a)

and in addition we assume that the external force is not
too strong so that

co( J) »dp„/dJ (all n) . (72b)

In addition we shall make use of the fast-dephasing as-
sumption (65).

Our aim is to reduce Eqs. (69)—(71) to a
Smoluchowski-type equation for the action variable J. To
this end we first follow the procedure which leads to Eqs.
(29) and (30) of paper I, eliminating the memory terms.
This leads to

U=— 1 d V(x)
M dx

—f(x(t)) f drZ(1 z)f(x(z—))U(r)
0

f(x (t) )R (t) — cosQ,
1 1 dp(x)

(67)

Here we have taken the particle —external-field interaction
to be represented by the potential p(x)cosP where g satis-
fies (68) and where p(x) is some function of the particle's
coordinate which also depends on the external field inten-
sity. Transforming to the particle's action-angle variables
( J,P) associated with the deterministic undamped motion
in the potential V(x) (using the procedure of paper I),
Eqs. (66)—(68) are replaced by

J= —M g inG„(t)e'"&'" f dr Z (t r)e'" "G—„,(r)
0

n, n'

~ B(J)ei( +n)nP+'os' y (I) in/
nn'e

n, n'

+R (t) g harn
'e'"~,

n

j=~+ g B(f'ei'n+» '~ —cosy' p«)ein&

n, n'

R (t) y (p) in/

where

(p) dGn
an

(73a)

(73b)

(74a)

(74b)

+cos@ginp„e'n~+R (t) ginG„e'n&,

/=co(J)+M g e'"~'"
dJ

X f drZ(t r)e'n'~(—)Gn, (r)

(69) &„„=—nn 'Muon Gn.z„. ,

(]) don
Bnn =in'Mu G„z ~n n

(J) ~

Pn =lOPn

dpn
Pn

(75a)

(75b)

(76a)

(76b)

p'n ' dGn
cosQ g el Q»R (t) g ines

dJ
(70) '

(71)

where G„ is defined by (52) and where""' Gn =into(J)G»
As in paper I we focus on the low-friction and short
environment-correlation-time limit

00

and where, as usual, Z„= dt e'" 'Z(t). Note that (r(~)

»d ~, ' are equivalent to n and Pn wh le +nn' nd +n~n'

are equivalent to Bnn and C„„ofpaper I.
To reduce Eq. (73) to a Fokker-Planck equation we use

an iteration procedure similar to that used to perform a
similar task in paper I. Here we give only an outline of
the derivation. The iteration equation's equivalent to (40)
and (41) of I are

(&)

Q J~( )(r)=e~r+ g f du R (u) cr„+ " &J(u) expI)n[p+~p" "(u)]I
dJ

(J)
—,'e'& f du e g p„' '+ hJ" "(u) expfin[P+i()P( "(u)]J+c.c.

n

(77)
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&PI"(~)= f du co+ hJ" "(u)
dJ

f+r
( )

d~&—g f du R (u) cr„'~'+ AJ" "(u)
dJ exp[in[P+b, P" "(u)] j

(p)
—,'e'& f du e " g p„'~'+ bJ" "(u) expIin[P+bP't "(u)]j+c.c.

n

(78)

In these equations nonargumented variables are evaluated
at time t (i.e., the first term on the right-hand side of (78)
is f +'du fco[J(t)]+(dco/dJ), bJ' "(u) j and the incre-
ments hJ, (r) and bP, (~) are defined by
bJ, (r)=J(t+r) —J(t), etc ) A. .lso in Eq. (77) we have
anticipated a simplifying feature (see Appendix B of I) by
replacing a term involving g„„.B„'„'by eco~ where

n'~ G„~'Z„=2M g n'~ G„~'Z'„',
n=1

(bJ) =~ co(J)—e(J)+ktiT +k~T +il{J)dJ dJ

(hJ ) =2k~T~[e(J)+A(J)],

where

e(J)=2M g n
~
G„( Z'„,

n=1

(79)

(80)

(81)

while in (78) we have neglected the term

g„„,B„'~~'e'"+" '~ which is small compared to co (or else

we could have added its diagonal part to co as a small fre-
quency shift).

The iteration procedure used here differs from that in I
by one important detail: there we have followed the usual
procedure of expanding e'" ~=1+in bP using the fact
that the coarse-graining time w of Eqs. (77) and (78) is
much smaller than a typical oscillator period (2~co ').
Here this is still true; however, following the same pro-
cedure we encounter potentially divergent denominators
like (co+ nco) '. This di—vergence has the same source as
that encountered in treating coupling between a (classical
or quantum) oscillator and the radiation field in low or-
der. To eliminate it we are forced to keep b,P in the ex-
ponent, which leads in the course of the iteration pro-
cedure to the appearance of exp( f R) terms (R is the
random force). The latter are handled by cumulant
averaging techniques which are easily carried out since R
is a Gaussian variable. It should be noted however that
while in I we perform a systematic iteration procedure to
third order (while showing that higher-order contributions
are negligible), here we keep higher-order contributions
when necessary to renormalize co (thus avoiding the diver-
gencies mentioned above). We should also note that in ad-
dition to neglecting terms small in the thermal interac-
tions (using y/co « 1) as well as contributions of order v,
l& 1 to {b,J) and {b,J ) (see paper I) we also use repeat-
edly the inequality (72b). Furthermore, in performing the
averages that lead to {hJ ) and ( b,J ) we use the strong
dephasing approximation, assuming that P(t) is uniformly
distributed in 0, . . . , 2m. We thus take an average over
the P distribution [(2m) ' f dP] together with an aver-

0
age over the thermal noise R (t).

With these additional complications the evaluation of
(b,J) and (b,J ) proceeds as in paper I and will not be
reproduced here. We only give in Appendix D an exam-
ple (evaluating the average of one of the terms that contri-
bute to (b,J ) ) in order to demonstrate our method and
approximations. The final result is

n '
~ p„~ 'I-, /k, T

i (nco cori—) +n I 0

dI 0 n I 0—(nco co~)—4 2 2

il(J)= —& n p„

(82)

(83)

and where I 0(J) is given by (62). The corresponding
Fokker-Planck equation for P(J) is

(e+A, ) keT + " P(J, t)
at BJ

' 'BJ +A

Transforming from J to E and defining

D (E)= (eco 'ct)j j(E)— —

P( E)= (k~ T) e+ A. J=J(E)

we get

(84)

(85)

(86)

aP(E, t)
at

a a
BE

D{E) +1 P(E, t)E BE
(87)

(88)

where P(E) and D(E) are given by Eqs. (85) and (86) and
where

P.q(E) = A1 E

co(E)
exp —f dE'P(E') (89)

Equation (87) is identical in form to Eq. (31) and leads to
equations of the form (33), (35), (36), and (39) for the
steady-state distribution and flux, the equilibrium distri-
bution, and the steady-state escape rate. In particular, the
latter is given by

—1
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[A& is determined by normalization. Note that its value
does not affect the result (88).]

In the absence of the external field (q=k, =o) Eq.
(89) reduces to the purely thermal result P,q (E)—E/k~ T—[&~/to(E)]e . In the presence of the field we ex-
pect the effective temperature P '(E) to be larger than
the actual temperature. From (86) this implies

&I, (90)
g+k

s.e.,

D (E)=ego,

P(E)= 1+—1

k~T e

(100)

EdE'P(E') = E —c ~ In 1+
kgT C) +C2

(101)

In particular, using (98)—(100) leads after a little algebra
to

co )7j/A. . (91) where

Using Eqs. (82) and (83) it is easy to show that
g(J)/k(J) &k~Tdlnro(J)/dJ. Thus a sufficient condi-
tion for (91) to hold is

a [1+(2tor, ) ]
8M (~o —~R) +ro

(102)

dlnI p
ct) )AT dJ

or, integrating over J,
r,(J)

E(J))k~T ln
ro(o)

(92)

(93)

f(x)=1+—

which holds for all relevant E(J). Thus indeed the field-
induced effective temperature is larger than the actual
temperature.

More explicit results may be obtained by treating spe-
cial cases. Consider, for example, a harmonic oscillator
[(1/M)d V/dx =co x in (67)] with

while

k~Ty I+(2cor, )

2I o 1+(cor, )
(103)

The presence of the oscillating external field obviously
make the higher-energy states more probable. This effect
is characterized by a resonance behavior and is maximized
for co=co~. Unlike the result obtained in the absence of
dephasing (Ref. 6 and Sec. I) the equilibrium distribution
does not peak sharply at any E)0 but, more like the
chaotic external-field case (Sec. II) may be characterized
by an effective temperature. This can be clearly seen
at resonance, where for energy sufficiently small
[E/(c~+c2) && 1] Eq. (101) may be approximated by

and f dE'/3(E') = 1 — E,
kgT 2 C(+C2

(104)

p(x) =ax . (95)

G+2=, (96)
JJ

2Mtog

The parameter g measures the strength of the multiplica-
tive stochastic noise while a is proportional to the ampli-
tude of the external field. Using G (x)=x +x /2g we get

1/2

C]
T,gf —— 1—

2(ci+C2)
(105)

V. NUMERICAL RESULTS AND DISCUSSION

so that P,q(E) is a Boltzmann-like distribution character-
ized by the temperature

G„=O for ~n )2.
From (62) we have

kg Ty
4M' g

(97)

Ey 1 E 1E= 2+
co I+ (car, ) 2M' g I+ (2cor, )

(98)

and from (82)

rp
2ksT (~—~~) +I o

Equations (85) and (86) yield

(99)

so that g of Eq. (83) vanishes. Usia for the noise corre-
lation function Z(t) = (y/r, )e ', i.e., Z '„=y/[1
+ ( no&r, ) ], we obtain from (8 1) {using also E =coJ)

In what follows we shall refer to the model reviewed in
Sec. I (no dephasing) as model I, to the external-field de-
phasing model of Sec. II as model II and to the intrinsic
dephasing model of Sec. IV as model III. These three
models are compared in the Markovian limit for a har-
monic well (with a cutoff at E =Es) in Figs. 2 and 3.
Figure 2 shows the escape r'ate k [expressed in terms of
ln(k/ko) where ko is the corresponding rate in the ab-
sence of the external field] as a function of the external-
field frequency co+ (in units of the well frequency co). In
Fig. 3 the equilibrium distribution P,q(E) is displayed as
function of E for the three models in the presence of the
external field and for the purely thermal system (no exter-
nal field). The parameters used in these calculations are
y=0.01, the phase-damping rate in model II 1=0.025,
the intrinsic dephasing rate in model III I p

——0.025, all in
units of the harmonic-well frequency co, Ez ——8.0 (in units
of k&T), and the external-force amplitude a=0.03 [in
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6.0
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0.75 I.OO I.25
QJR /4P

FIG. 2. ln( k/ko) vs co~ /co for the harmonic well models dis-
cussed in Sec. I (no dephasing, dashed-dotted line), Sec. II
(external field dephasing, solid line), and Sec. IV (intrinsic de-
phasing, dashed line). Parameters used in this calculation are
given in the text.

I.O

0.8

0,6

0.4

0.2

I

2.0 4.0 8.0
F / ICBT

FIG. 3. P~(E) vs E/k~T for the harmonic well models
displayed in Fig. 2. Line notation is as in Fig. 2. The dotted
line represents the distribution obtained in the absence of the
driving field. Parameters used in the calculation are given in the
text.

6.0

units of (k&TM )'/ j. The results of Fig. 3 are for the
resonance situation coR ——co. The full lines in these figures
correspond to model II, the dashed lines to model III, and
the dotted-dashed lines to model I. The dotted line in Fig.
3 corresponds to the purely thermal (no driving) case.
The following points should be noted about these results.

(I) In Fig. 2 the resonances are symmetric and centered
about the harmonic well frequency. Their widths are
determined by the choice of y and I or I o. All these
features are characteristic of the harmonic situation.

(2) The sharpest resonance in Fig. 2 is that associated
with model I. This results from the absence of a dephas-
ing contribution to the width in this model.

(3) The resonance enhancement of the escape rate in
model III is seen in Fig. 2 to be substantially smaller than
that of model II. The cause for this difference may be
traced to the difference between the effects of the
external-field dephasing and the intrinsic dephasing asso-

ciated with the multiplicative random noise. The latter
affects the higher-energy states of the oscillator much
more strongly than the former, effectively taking these
states out of resonance with the driving field, thus reduc-
ing the resonance enhancement.

(4) While the three models yield qualitatively similar re-
sults for k/'ko (namely, resonance enhancement of the es-
cape rate), the effects of external driving on the energy
distribution function (Fig. 3) lead to qualitatively different
results: As discussed in preceding sections and as seen in
Fig. 3, in the absence of dephasing an external periodic
force leads to a peak at finite energy in P,q(E) while in
the presence of strong dephasing this peak is absent and
the enhancement is best associated with a (generally E
dependent) effective temperature.

(5) The rates displayed in Fig. 2 were calculated from
the low-friction expressions [(5) for model I, (39) for
model II, and (88) for model III]. Alternatively we could
invoke the transition-rate-theory assumption (valid for in-
termediate thermal relaxation rate within the well) that
the rate is proportional to the equilibrium population
P,q(E&) near the threshold energy, and use Eqs. (3), (36),
and (89) for models I, II, and III, respectively. As seen
below, both assumptions lead to qualitatively similar re-
sults. (For sufficiently deep wells these results should be-
come identical; see paper I.)

Resonant enhancement of activated rate processes is a
common phenomenon in multiphoton photochemistry
where in many cases we have enough spectroscopical data
to make a quantum treatment possible. Recently Devoret
et al. have observed resonant activation of the transition
from the zero- to the finite-voltage state of a current-
driven Josephson junction induced by a weak microwave
perturbation. This phenomenon provides a potentially
important tool for determination of the junction parame-
ters. For such an application, however, the origin of fric-
tion and the possibility of dephasing have to be con-
sidered.

The main qualitative difference between the results
displayed in Fig. 2 and the experimental results of Ref. 8
lies in the details of the line shape. The resonance ob-
served in Ref. 8 is asymmetric with a tail on the low-
frequency side, and its peak is shifted to the red relative to
the estimated well-bottom frequency. Both these features
have been previously observed in multiphoton dissociation
of large molecules and are associated with the anharmonic
nature of the well, namely the existence of lower frequen-
cies associated with higher-energy states in the well.

In Figs. 4 and 5 we present calculations done with an
anharmonic model —a Morse oscillator. The choice of
this model makes the calculations described in Secs. II
and IV particularly easy because the functions E(J) and
co(J) and the coefficients of the expansion
x = g„x„(J)e'"~are known analytically (see, e.g., paper
I). Focusing on model III we have thus taken in Eq. (67)

~(&) E (e —2x/a 2e —x/a)

f(x) = I+—
and
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1.0
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CUR /4lp

I

1..0 1.2

FIG. 4. 1n( k/ko) vs co~ /coo for model III with Morse poten-
tial. Parameters used for the solid line are aa/k&T=0. 45,
Es/kT=8. 0, g/a=0. 42, and y=0.0225. Dashed line is ob-
tained when the external-field strength a is reduced by a factor
of 10.

p(x) =ax,
The parameter a is related to the well bottom frequency
cop by a =(Mrop/2' )' and the energy dependence of
the frequency is rp(E) =rap( E/Es )' . —The parameters
defining the Morse potential were taken so that the pa-
rameters Ez ( =8kT) and cop were the same as those given
in Ref. 8. In Figs. 4 and 5 we show the results obtained
for k/kp Ik and kp calculated from Eq. (88)] and for
P,q(E&)/P, q(E& ) [calculated from Eq. (89)] where kp and
Ppq correspond to the purely thermal (no driving) limit.
As discussed above, the former result corresponds to the
extreme low-friction limit while the latter describes the
rate ratio expected under conditions of fast thermal relax-
ation in the well so that the escape rate is proportional to
the equilibrium population near the threshold energy. In
both cases we have chosen the parameters a, g, and y to
yield the experimentally observed yield and red shift.

The results of both calculations are in qualitative agree-
ment with the observations: the red shift of the peak and

the asymmetric red tail are clearly observed. The reso-
nance width is about twice as large as the width observed
experimentally. At the temperature considered, this width
is not very sensitive to the choice of y and g and is mostly
determined by the frequency spectrum of the potential
(Morse in our case, cosine in the actual system). This is
seen by the narrowing observed when the external force is
reduced (dashed lines of Figs. 4 and 5). In this case the
resonance is governed by the field-induced dynamics
closer to the well bottom. This leads to a smaller red shift
of the peak and to a narrow line. The asymmetry be-
comes more pronounced because the main contribution
(near cop) now lies to the blue of all other frequencies.

Similar calculations on model II yield qualitatively
similar results.

We should end this discussion by noticing that there is
no evidence that dephasing effects play an important role
in the experiment of Devoret et al. Such an evidence
can be obtained in principle by monitoring the well distri-
bution function [point (4) above ] but this is not a feasible
measurement. The microwave source used in Ref. 8 is
likely to be very coherent. On the other hand, intrinsic
dephasing always exists in an anharmonic system even in
the absence of a multiplicative noise and when the exter-
nal driving is weak enough (as may be the case here), may
lead to the strong dephasing limit discussed here and in
Sec. IV.

VI. CONCLUSIONS

We have treated a classical non-Markovian model of
activated rate process in the presence of an external
periodic force. In particular we found that dephasing ef-
fects (both those associated with the driving field and in-
trinsic dephasing associated with the coupling between the
system and its thermal environment) may lead to qualita-
tive changes in the escape process. Our results may be
relevant to recent experiments on microwave-induced
resonant enhancement of the activation out of the zero-
voltage state of a current-biased Josephson junction.
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APPENDIX A

0'00.6
l

1.0 1.2

Here we consider the case of a damped harmonic oscil-
lator with a simple multiplicative noise

x+ro x +a x (t) f dr Z (t —q )x (r)U (r)+ x (t)R (t),0 M
Flax. 5. 1n[P,q(E&)/P q(Es)] vs co~ /coo for the same model

as in Fig. 4. Parameters used for the solid line are
aa/k+T=0. 35, Ea/kT=8. 0, g/a=0. 25, and y=0.0225.
Dashed line is obtained when au/AT is reduced by a factor of
10.

(A1)

where a is a constant of dimension of inverse length and
where Z and R satisfy Eq. (49). For Z(t)=(y/r)e
we get Z'„( o)r=y(1 n+co r ) '. Using
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x„=(J/2M~)'t Q)„), and G(x)= —,ax we get [from
Eq. (61)]

Using (A7) we find that the inequality (A6) is satisfied for
most realistic systems.

kg Ta
I =I ()+ 2 Z2(pi)

j.6M'
and [from Eq. (62)]

k~Ta'
~o=

8M'
Similarly, from Eq. (51) we obtain

2E2
D(E)=8M'

I G2 i
Zz(tt)) =

3 Z2(c0) .
2M')

(A2)

(A3)

(A4)

APPENDIX B

Here we show that when the dephasing rate is much
faster than the energy relaxation rate it constitutes the
major contribution to the spectral width of the motion in
the well. The spectrum is taken to be the cosine Fourier
transform of the correlation function

C(t) =(x(0)x(t))
The energy relaxation rate is related to D(E) by""' = g gx„(J)x„.(Z)(e'"~" '"'~(')),

n n'
(81)

1 dE
E dt

Zg(to) .
2M'

(A5)

We see from Eqs. (A2) and (A3) that the pure dephasing
rate I 0 is larger than the "improper" contribution to the
dephasing provided that y»Zz(tt)) (i.e., toe »1) and is
larger than the energy relaxation rate provided that

kgT y &) i ~

Z2(to)
(A6)

In most chemical rate processes kz T/E is of the order of
10 '—10 while y/Zz(cg) is of the order of tt)r. If we
take for tt) a typical value of a molecular frequency (10
eV) and for v ' a typical cutoff frequency for liquids
( —10 eV) we get t))r-10 . This is however an underes-
timate. For (t) larger than the cutoff frequency tt)D of the
medium Zn(co) falls off with tt) much faster than to: a
more realistic estimate is given by the "energy-gap law"

where in the rhs of (81) we have assumed that the energy
E (and the action J) do not change on the time scale of
interest. The time evolution of the phase P is governed by
the tt)-dependent part of Eq. (60)

BP(P t) ~ t)P ~ (3P
(82)

dt BP

Taking i(t,ttt=tt) Qt w—e find for the probability distribu-
tion P(hP) of b,P

BP(hg, t) ~ t3 P(bg, t)
Bt tl( Qt))) )

~

This leads to
OO

P(&g, t
~
bgp, 0)= g pex[i (nb/ bPp) n —I t] . —

2~.= .
(84)

Zn'(to) -y exp( neo/tt)~) . — (A7) Using (84) we get

'"~o in'f(t) i in'Qt i '"a( o in t)p(t) )'
' f, d(&Pp) f d(hatt))P(fatti, t

~
bPp e

—llfQE —Pl I f
n, —n'e (85)

and from Eqs. (Bl) and (85) we get F« ~-kg we replace costI) costtt by its rotating-wave ap-
proximation

00I.(tt))= f dcocos(cot)C(t) —g 20 (co nQ) +n I— cost)I) cosg~2 cos(tt. —g) . (C2)

APPENDIX C

(86) Transforming to the detuning variable ~=/ —P we get
(setting ri =it) —co+ )

dp&
2 coaz —~lp(o( t)dJ (C3)

dp~
p =co— cosp cos1i —~l'~(t),dJ (Cl)

Here we obtain the steady-state distribution associated
with Eq. (63). It is convenient to rewrite Eq. (63) in terms
of two variables, t)tt and

which is equivalent to the Fokker-Planck equation

BP(,t) a d) )
g —2 co~ P(~, t)Bt B~ dJ

„a'P(,t)+ 0
8

(C4)
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A general steady-state solution of Eq. (C4) is obtained
from (p( d——p, /dJ)

Fss(~) =ass(~+2~) .

This leads to

(C7)

&ss(~)
(g —2p& co~)Pss(~) +I 0 =C,a~

where C is any constant. This yields

'gm —2p )sly
Pss (~)=X exp I p

(C5) 2~&/Fo
8 —1C =I"0

d~ exp[ —(g~ —p&sinz )/I o]0

which, inserting into (C6), yields Eq. (64).

(CS)

X 1+ f d~'e xp
0

'gm —2p ] s1I1z

r,
(C6)

N is determined from the normalization requirement.
The constant C is determined by imposing periodic
boundary conditions

APPENDIX D

Here we evaluate the term k&T(de/dJ) appearing in
Eq. (79), and comment on the calculation of the other
terms appearing there. Repeatedly using Eqs. (77) and
(78) in the iteration procedure discussed above we arrive
at 'the following expression for hJ,' '(w) where i is very
large:

b J,(r) = wc@(J)e—(J)+ g f du R (u)o'„'exp[in/(u)]

(&)

f du R (u)
"

exp[in/(u)] f ds R(s)f' '(s)+ —e'" f ds e g' '(s)+cc.
n

e'" f du e'" "gp'„'exp[in&(u)]+c. c.
n

l f dg p 8 exp jyg g
2 o „dJ

f ds R(s)f' '(s)+ —e'~ f ds e' 'g' '(s)+c.c.
0 0

+C.C. (Dl)

where

P(u) =P+nu —f ds R (s)F(u, s)
u

2
e'" ds e' 'G(u, s)+c.c.

F(u,s)=f'~'(s) —(u —s) f' '(s),J
G (u, s) =g'4''(s) —(u —s) g' '(s),

dJ
f'~'(s) = g u'„~'exp[in'(s)],

g' '(s)= gp'„'exp[ink(s)]

(D3a)

(D3b)

(D4a)

and where W stands for either J or P and 0'„~', o'„' ', p'„~',

and p'„' are given in Eqs. (74) and (76), respectively. Note
that Eq. (D2) is a self-consistent equation for P(u) which
may be solved by iterations. However, one may expect the
iterations to converge very rapidly in the low-friction lim-
it (i.e., co &&F,G) and in fact we are going to use

in Eqs. (D4) whenever the divergencies of the type
(co~ neo) —' (which were discussed in Sec. IV) are not ex-

pected to appear. In particular we invoke this approxima-
tion for Eq. (D2) but we do not use it for f' '(s) and
g' '(s) appearing explicitly in Eq. (Dl).

Next we calculate the second Sz and the third S3 terms
of Eq. (Dl). For the second term we have

le u
Sz ——ger'„' du exp inP+incou ——e'" f ds e " G(u, s)+c.c.0 0

Q

R (u)exp in f dsR (s)F(u,—s) (D6)

using the properties of Gaussian variables we get

(
Q

R (u)exp in f ds R (—s)F(u, s)

Q yg~ Q Q= —in f ds F(u, s)(R (u)R (s) )exp f ds F(u, s) f ds'F(u, s') (R (s)R (s')) . (D7)
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Using Eq. (D5) for F(u, s) we get

f ds F(u, s) f ds'F(u, s')(R (s)R (s') )

Q Q

=Mk&T g exp[i(n +n')(/+cpu)] f ds [G„exp( i—naos)] f ds [G„exp( in—'cps')] Z(s —s')
dJ dJ

=2uMkg Tg dG„dG„dZ„(co) ~ d Z„(co)
dJ " " dJ dJ " dJ

=2ur, +4uMk, T g
n=1

dG„d (G„) dZ„(co) ~ dZ„(co)
dJ " dJ dJ " dJ (D8)

In the fast dephasing limit we assume that the term 2uI 0 is much bigger than the rest of the rhs of Eq. (D8). Thus we
only consider this term whenever the double integral of the left-hand side of Eq. (D8) appears. Equation (D6) may now
be written as

Sz —— iMk~—T g no„' ' .du exp inP+incou n I pu—
0

2
e'& f ds e G(u, s)+c.c.

Qf ds F(u, s)Z(u —s) . (D9)

Next we neglect the terms containing G(u, s) and I 0 with respect to co in the spirit of the weak-interaction approxima-
tion and we find

T Q

Sz —— iMk&T+—no„' ' du exp(inP+incgu) ds Z(u —s) +exp(in'/+in'cps) o'„'—(u —s) cr'„'
n n'

where we have used Eqs. (D3a), (D4a), and (D5) for F(u, s). Taking the average over the phase and using

I 2~
c(n +n')p

2n n, —n'

we obtain from Eq. (D10)

(D10)

(Dl 1)

S2 ™zTg n cr„' o „' f du f ds exp[into(u s)]Z (—u —s)
n

u—0 "dJ du ds exp[inca(u —s)](u —s)Z (u —s) (D12)

Using o &„=o„~=dG„ldJ and o' '„(dc—oldJ)exp[in'(u —s)](u s)=G„(d—ldJ)exp[in'(u —s)] we rearrange Eq.
(D12) to get

2 8 v Q

Sq ——Mk~T+n G„G„f du f ds exp[inca(u —s)]Z(u —s)
CjJ 0 0

&Mk~ T Q n G„[G„Z„(co) ] ."dJ (D13)

Turning now to the third term of Eq. (Dl), using the Gaussian properties of the stochastic variables and taking only
average terms contributing to the lowest order in the interactions, we find for this term

8cT~
(J)

S3 ——g du exp inP+incou—
dJ

e'" f ds e G(u, s)+c c n I .ou. —

X f ds g o„' 'exp(in'/+in'cps)(R (u)R (s)) .
n'

(D14)
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Ignoring as before the terms containing G (u, s) and I o relative to co and taking the average over the phase, we obtain
from Eq. (D14)

(J)
dOpg 2 dGn

S3 —Mkit T y tr „f du I ds exp[into(u —s)]Z(u s)—=rMktt Tg n G Z (~)dJ
(D15)

Combining Eqs. (D13) and (D15) we obtain

Sp+S3 rMk—t—t T g n G„Z„(co) =2rMktt T g n G„Z„(co) =skit Td d "
2 2 de(J)

dJ „ " " dJ „ i
" " dJ (D16)

where Eq. (81) has been used to get the last equality.
Note that besides the weak-coupling limit [co »Z„(co) and co »dp„ldJ] we need not use in the derivations described

any other approximation. Thus we could safely neglect I o compared to co. The situation is different however when we
evaluate the rest of the summations appearing in Eq. (Dl). For example, in the fourth term exp[in/(u)] does not appear
alone as before but it is rather accompanied by exp( icottu). In this case we are not allowed to neglect I o relative to
co~ —neo since the last quantity may be very sma11 under resonance conditions. Taking this into account, in addition to
the weak-interaction approximation, we arrive at Eqs. (79) and (80).
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